mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
f012705c7e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92726 91177308-0d34-0410-b5e6-96231b3b80d8
666 lines
21 KiB
C++
666 lines
21 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found, the functions are folded. We can only fold two
|
|
// functions when we know that the definition of one of them is not
|
|
// overridable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * fold vector<T*>::push_back and vector<S*>::push_back.
|
|
//
|
|
// These two functions have different types, but in a way that doesn't matter
|
|
// to us. As long as we never see an S or T itself, using S* and S** is the
|
|
// same as using a T* and T**.
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such implementations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
|
|
namespace {
|
|
struct MergeFunctions : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MergeFunctions() : ModulePass(&ID) {}
|
|
|
|
bool runOnModule(Module &M);
|
|
};
|
|
}
|
|
|
|
char MergeFunctions::ID = 0;
|
|
static RegisterPass<MergeFunctions>
|
|
X("mergefunc", "Merge Functions");
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Comparison of functions
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
static unsigned long hash(const Function *F) {
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(F->size());
|
|
ID.AddInteger(F->getCallingConv());
|
|
ID.AddBoolean(F->hasGC());
|
|
ID.AddBoolean(FTy->isVarArg());
|
|
ID.AddInteger(FTy->getReturnType()->getTypeID());
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
ID.AddInteger(FTy->getParamType(i)->getTypeID());
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
|
|
/// walking the chain of cast operands. Otherwise, returns the argument.
|
|
static Value* IgnoreBitcasts(Value *V) {
|
|
while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
|
|
V = BC->getOperand(0);
|
|
|
|
return V;
|
|
}
|
|
|
|
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
|
|
/// type equivalence rules apply.
|
|
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
|
if (Ty1 == Ty2)
|
|
return true;
|
|
if (Ty1->getTypeID() != Ty2->getTypeID())
|
|
return false;
|
|
|
|
switch(Ty1->getTypeID()) {
|
|
case Type::VoidTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
case Type::MetadataTyID:
|
|
return true;
|
|
|
|
case Type::IntegerTyID:
|
|
case Type::OpaqueTyID:
|
|
// Ty1 == Ty2 would have returned true earlier.
|
|
return false;
|
|
|
|
default:
|
|
llvm_unreachable("Unknown type!");
|
|
return false;
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy1 = cast<PointerType>(Ty1);
|
|
const PointerType *PTy2 = cast<PointerType>(Ty2);
|
|
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const StructType *STy1 = cast<StructType>(Ty1);
|
|
const StructType *STy2 = cast<StructType>(Ty2);
|
|
if (STy1->getNumElements() != STy2->getNumElements())
|
|
return false;
|
|
|
|
if (STy1->isPacked() != STy2->isPacked())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
|
|
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
|
|
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
|
|
if (FTy1->getNumParams() != FTy2->getNumParams() ||
|
|
FTy1->isVarArg() != FTy2->isVarArg())
|
|
return false;
|
|
|
|
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
|
|
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
case Type::VectorTyID: {
|
|
const SequentialType *STy1 = cast<SequentialType>(Ty1);
|
|
const SequentialType *STy2 = cast<SequentialType>(Ty2);
|
|
return isEquivalentType(STy1->getElementType(), STy2->getElementType());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isEquivalentOperation - determine whether the two operations are the same
|
|
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
|
|
/// kept in sync with Instruction::isSameOperationAs.
|
|
static bool
|
|
isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
|
|
if (I1->getOpcode() != I2->getOpcode() ||
|
|
I1->getNumOperands() != I2->getNumOperands() ||
|
|
!isEquivalentType(I1->getType(), I2->getType()) ||
|
|
!I1->hasSameSubclassOptionalData(I2))
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
|
|
if (!isEquivalentType(I1->getOperand(i)->getType(),
|
|
I2->getOperand(i)->getType()))
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
|
|
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
|
|
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
|
|
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I1))
|
|
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<CallInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
|
|
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
|
|
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
|
|
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
|
|
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool compare(const Value *V, const Value *U) {
|
|
assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
|
|
"Must not compare basic blocks.");
|
|
|
|
assert(isEquivalentType(V->getType(), U->getType()) &&
|
|
"Two of the same operation have operands of different type.");
|
|
|
|
// TODO: If the constant is an expression of F, we should accept that it's
|
|
// equal to the same expression in terms of G.
|
|
if (isa<Constant>(V))
|
|
return V == U;
|
|
|
|
// The caller has ensured that ValueMap[V] != U. Since Arguments are
|
|
// pre-loaded into the ValueMap, and Instructions are added as we go, we know
|
|
// that this can only be a mis-match.
|
|
if (isa<Instruction>(V) || isa<Argument>(V))
|
|
return false;
|
|
|
|
if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
|
|
const InlineAsm *IAF = cast<InlineAsm>(V);
|
|
const InlineAsm *IAG = cast<InlineAsm>(U);
|
|
return IAF->getAsmString() == IAG->getAsmString() &&
|
|
IAF->getConstraintString() == IAG->getConstraintString();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
|
|
DenseMap<const Value *, const Value *> &ValueMap,
|
|
DenseMap<const Value *, const Value *> &SpeculationMap) {
|
|
// Speculatively add it anyways. If it's false, we'll notice a difference
|
|
// later, and this won't matter.
|
|
ValueMap[BB1] = BB2;
|
|
|
|
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
|
|
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
|
|
|
|
do {
|
|
if (isa<BitCastInst>(FI)) {
|
|
++FI;
|
|
continue;
|
|
}
|
|
if (isa<BitCastInst>(GI)) {
|
|
++GI;
|
|
continue;
|
|
}
|
|
|
|
if (!isEquivalentOperation(FI, GI))
|
|
return false;
|
|
|
|
if (isa<GetElementPtrInst>(FI)) {
|
|
const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
|
|
const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
|
|
if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
|
|
// It's effectively a bitcast.
|
|
++FI, ++GI;
|
|
continue;
|
|
}
|
|
|
|
// TODO: we only really care about the elements before the index
|
|
if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
|
|
return false;
|
|
}
|
|
|
|
if (ValueMap[FI] == GI) {
|
|
++FI, ++GI;
|
|
continue;
|
|
}
|
|
|
|
if (ValueMap[FI] != NULL)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
|
|
Value *OpF = IgnoreBitcasts(FI->getOperand(i));
|
|
Value *OpG = IgnoreBitcasts(GI->getOperand(i));
|
|
|
|
if (ValueMap[OpF] == OpG)
|
|
continue;
|
|
|
|
if (ValueMap[OpF] != NULL)
|
|
return false;
|
|
|
|
if (OpF->getValueID() != OpG->getValueID() ||
|
|
!isEquivalentType(OpF->getType(), OpG->getType()))
|
|
return false;
|
|
|
|
if (isa<PHINode>(FI)) {
|
|
if (SpeculationMap[OpF] == NULL)
|
|
SpeculationMap[OpF] = OpG;
|
|
else if (SpeculationMap[OpF] != OpG)
|
|
return false;
|
|
continue;
|
|
} else if (isa<BasicBlock>(OpF)) {
|
|
assert(isa<TerminatorInst>(FI) &&
|
|
"BasicBlock referenced by non-Terminator non-PHI");
|
|
// This call changes the ValueMap, hence we can't use
|
|
// Value *& = ValueMap[...]
|
|
if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
} else {
|
|
if (!compare(OpF, OpG))
|
|
return false;
|
|
}
|
|
|
|
ValueMap[OpF] = OpG;
|
|
}
|
|
|
|
ValueMap[FI] = GI;
|
|
++FI, ++GI;
|
|
} while (FI != FE && GI != GE);
|
|
|
|
return FI == FE && GI == GE;
|
|
}
|
|
|
|
static bool equals(const Function *F, const Function *G) {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
if (F->getAttributes() != G->getAttributes())
|
|
return false;
|
|
|
|
if (F->hasGC() != G->hasGC())
|
|
return false;
|
|
|
|
if (F->hasGC() && F->getGC() != G->getGC())
|
|
return false;
|
|
|
|
if (F->hasSection() != G->hasSection())
|
|
return false;
|
|
|
|
if (F->hasSection() && F->getSection() != G->getSection())
|
|
return false;
|
|
|
|
if (F->isVarArg() != G->isVarArg())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F->getCallingConv() != G->getCallingConv())
|
|
return false;
|
|
|
|
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
|
|
return false;
|
|
|
|
DenseMap<const Value *, const Value *> ValueMap;
|
|
DenseMap<const Value *, const Value *> SpeculationMap;
|
|
ValueMap[F] = G;
|
|
|
|
assert(F->arg_size() == G->arg_size() &&
|
|
"Identical functions have a different number of args.");
|
|
|
|
for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
|
|
fe = F->arg_end(); fi != fe; ++fi, ++gi)
|
|
ValueMap[fi] = gi;
|
|
|
|
if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
|
|
for (DenseMap<const Value *, const Value *>::iterator
|
|
I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
|
|
if (ValueMap[I->first] != I->second)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Folding of functions
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
// Cases:
|
|
// * F is external strong, G is external strong:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external strong, G is external weak:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external weak, G is external weak:
|
|
// unfoldable
|
|
// * F is external strong, G is internal:
|
|
// address of G taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G not taken:
|
|
// make G an alias to F (2)
|
|
// * F is internal, G is external weak
|
|
// address of F is taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of F is not taken:
|
|
// make G an alias of F (2)
|
|
// * F is internal, G is internal:
|
|
// address of F and G are taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G is not taken:
|
|
// make G an alias to F (2)
|
|
//
|
|
// alias requires linkage == (external,local,weak) fallback to creating a thunk
|
|
// external means 'externally visible' linkage != (internal,private)
|
|
// internal means linkage == (internal,private)
|
|
// weak means linkage mayBeOverridable
|
|
// being external implies that the address is taken
|
|
//
|
|
// 1. turn G into a thunk to F
|
|
// 2. make G an alias to F
|
|
|
|
enum LinkageCategory {
|
|
ExternalStrong,
|
|
ExternalWeak,
|
|
Internal
|
|
};
|
|
|
|
static LinkageCategory categorize(const Function *F) {
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::InternalLinkage:
|
|
case GlobalValue::PrivateLinkage:
|
|
case GlobalValue::LinkerPrivateLinkage:
|
|
return Internal;
|
|
|
|
case GlobalValue::WeakAnyLinkage:
|
|
case GlobalValue::WeakODRLinkage:
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return ExternalWeak;
|
|
|
|
case GlobalValue::ExternalLinkage:
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
case GlobalValue::AppendingLinkage:
|
|
case GlobalValue::DLLImportLinkage:
|
|
case GlobalValue::DLLExportLinkage:
|
|
case GlobalValue::GhostLinkage:
|
|
case GlobalValue::CommonLinkage:
|
|
return ExternalStrong;
|
|
}
|
|
|
|
llvm_unreachable("Unknown LinkageType.");
|
|
return ExternalWeak;
|
|
}
|
|
|
|
static void ThunkGToF(Function *F, Function *G) {
|
|
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
|
G->getParent());
|
|
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
|
|
std::vector<Value *> Args;
|
|
unsigned i = 0;
|
|
const FunctionType *FFTy = F->getFunctionType();
|
|
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
|
AI != AE; ++AI) {
|
|
if (FFTy->getParamType(i) == AI->getType())
|
|
Args.push_back(AI);
|
|
else {
|
|
Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
|
|
Args.push_back(BCI);
|
|
}
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
|
|
CI->setTailCall();
|
|
CI->setCallingConv(F->getCallingConv());
|
|
if (NewG->getReturnType()->isVoidTy()) {
|
|
ReturnInst::Create(F->getContext(), BB);
|
|
} else if (CI->getType() != NewG->getReturnType()) {
|
|
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
|
|
ReturnInst::Create(F->getContext(), BCI, BB);
|
|
} else {
|
|
ReturnInst::Create(F->getContext(), CI, BB);
|
|
}
|
|
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
|
|
// TODO: look at direct callers to G and make them all direct callers to F.
|
|
}
|
|
|
|
static void AliasGToF(Function *F, Function *G) {
|
|
if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
|
|
return ThunkGToF(F, G);
|
|
|
|
GlobalAlias *GA = new GlobalAlias(
|
|
G->getType(), G->getLinkage(), "",
|
|
ConstantExpr::getBitCast(F, G->getType()), G->getParent());
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
}
|
|
|
|
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
|
|
Function *F = FnVec[i];
|
|
Function *G = FnVec[j];
|
|
|
|
LinkageCategory catF = categorize(F);
|
|
LinkageCategory catG = categorize(G);
|
|
|
|
if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(catF, catG);
|
|
}
|
|
|
|
switch (catF) {
|
|
case ExternalStrong:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
case ExternalWeak:
|
|
ThunkGToF(F, G);
|
|
break;
|
|
case Internal:
|
|
if (G->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ExternalWeak: {
|
|
assert(catG == ExternalWeak);
|
|
|
|
// Make them both thunks to the same internal function.
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
|
|
F->getParent());
|
|
H->copyAttributesFrom(F);
|
|
H->takeName(F);
|
|
F->replaceAllUsesWith(H);
|
|
|
|
ThunkGToF(F, G);
|
|
ThunkGToF(F, H);
|
|
|
|
F->setLinkage(GlobalValue::InternalLinkage);
|
|
} break;
|
|
|
|
case Internal:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
llvm_unreachable(0);
|
|
// fall-through
|
|
case ExternalWeak:
|
|
if (F->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
case Internal: {
|
|
bool addrTakenF = F->hasAddressTaken();
|
|
bool addrTakenG = G->hasAddressTaken();
|
|
if (!addrTakenF && addrTakenG) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(addrTakenF, addrTakenG);
|
|
}
|
|
|
|
if (addrTakenF && addrTakenG) {
|
|
ThunkGToF(F, G);
|
|
} else {
|
|
assert(!addrTakenG);
|
|
AliasGToF(F, G);
|
|
}
|
|
} break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Pass definition
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
|
|
std::map<unsigned long, std::vector<Function *> > FnMap;
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration() || F->isIntrinsic())
|
|
continue;
|
|
|
|
FnMap[hash(F)].push_back(F);
|
|
}
|
|
|
|
// TODO: instead of running in a loop, we could also fold functions in
|
|
// callgraph order. Constructing the CFG probably isn't cheaper than just
|
|
// running in a loop, unless it happened to already be available.
|
|
|
|
bool LocalChanged;
|
|
do {
|
|
LocalChanged = false;
|
|
DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
|
|
for (std::map<unsigned long, std::vector<Function *> >::iterator
|
|
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
|
|
std::vector<Function *> &FnVec = I->second;
|
|
DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
|
|
|
|
for (int i = 0, e = FnVec.size(); i != e; ++i) {
|
|
for (int j = i + 1; j != e; ++j) {
|
|
bool isEqual = equals(FnVec[i], FnVec[j]);
|
|
|
|
DEBUG(dbgs() << " " << FnVec[i]->getName()
|
|
<< (isEqual ? " == " : " != ")
|
|
<< FnVec[j]->getName() << "\n");
|
|
|
|
if (isEqual) {
|
|
if (fold(FnVec, i, j)) {
|
|
LocalChanged = true;
|
|
FnVec.erase(FnVec.begin() + j);
|
|
--j, --e;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
Changed |= LocalChanged;
|
|
} while (LocalChanged);
|
|
|
|
return Changed;
|
|
}
|