mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-09 10:05:41 +00:00
9fc5cdf77c
so that Dominators.h is *just* domtree. Also prune #includes a bit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122714 91177308-0d34-0410-b5e6-96231b3b80d8
201 lines
6.8 KiB
C++
201 lines
6.8 KiB
C++
//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the implementation for the LLVM IR Value liveness
|
|
// analysis pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LiveValues.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
FunctionPass *createLiveValuesPass() { return new LiveValues(); }
|
|
}
|
|
|
|
char LiveValues::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LiveValues, "live-values",
|
|
"Value Liveness Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
|
|
INITIALIZE_PASS_END(LiveValues, "live-values",
|
|
"Value Liveness Analysis", false, true)
|
|
|
|
LiveValues::LiveValues() : FunctionPass(ID) {
|
|
initializeLiveValuesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool LiveValues::runOnFunction(Function &F) {
|
|
DT = &getAnalysis<DominatorTree>();
|
|
LI = &getAnalysis<LoopInfo>();
|
|
|
|
// This pass' values are computed lazily, so there's nothing to do here.
|
|
|
|
return false;
|
|
}
|
|
|
|
void LiveValues::releaseMemory() {
|
|
Memos.clear();
|
|
}
|
|
|
|
/// isUsedInBlock - Test if the given value is used in the given block.
|
|
///
|
|
bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) {
|
|
Memo &M = getMemo(V);
|
|
return M.Used.count(BB);
|
|
}
|
|
|
|
/// isLiveThroughBlock - Test if the given value is known to be
|
|
/// live-through the given block, meaning that the block is properly
|
|
/// dominated by the value's definition, and there exists a block
|
|
/// reachable from it that contains a use. This uses a conservative
|
|
/// approximation that errs on the side of returning false.
|
|
///
|
|
bool LiveValues::isLiveThroughBlock(const Value *V,
|
|
const BasicBlock *BB) {
|
|
Memo &M = getMemo(V);
|
|
return M.LiveThrough.count(BB);
|
|
}
|
|
|
|
/// isKilledInBlock - Test if the given value is known to be killed in
|
|
/// the given block, meaning that the block contains a use of the value,
|
|
/// and no blocks reachable from the block contain a use. This uses a
|
|
/// conservative approximation that errs on the side of returning false.
|
|
///
|
|
bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) {
|
|
Memo &M = getMemo(V);
|
|
return M.Killed.count(BB);
|
|
}
|
|
|
|
/// getMemo - Retrieve an existing Memo for the given value if one
|
|
/// is available, otherwise compute a new one.
|
|
///
|
|
LiveValues::Memo &LiveValues::getMemo(const Value *V) {
|
|
DenseMap<const Value *, Memo>::iterator I = Memos.find(V);
|
|
if (I != Memos.end())
|
|
return I->second;
|
|
return compute(V);
|
|
}
|
|
|
|
/// getImmediateDominator - A handy utility for the specific DominatorTree
|
|
/// query that we need here.
|
|
///
|
|
static const BasicBlock *getImmediateDominator(const BasicBlock *BB,
|
|
const DominatorTree *DT) {
|
|
DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom();
|
|
return Node ? Node->getBlock() : 0;
|
|
}
|
|
|
|
/// compute - Compute a new Memo for the given value.
|
|
///
|
|
LiveValues::Memo &LiveValues::compute(const Value *V) {
|
|
Memo &M = Memos[V];
|
|
|
|
// Determine the block containing the definition.
|
|
const BasicBlock *DefBB;
|
|
// Instructions define values with meaningful live ranges.
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
DefBB = I->getParent();
|
|
// Arguments can be analyzed as values defined in the entry block.
|
|
else if (const Argument *A = dyn_cast<Argument>(V))
|
|
DefBB = &A->getParent()->getEntryBlock();
|
|
// Constants and other things aren't meaningful here, so just
|
|
// return having computed an empty Memo so that we don't come
|
|
// here again. The assumption here is that client code won't
|
|
// be asking about such values very often.
|
|
else
|
|
return M;
|
|
|
|
// Determine if the value is defined inside a loop. This is used
|
|
// to track whether the value is ever used outside the loop, so
|
|
// it'll be set to null if the value is either not defined in a
|
|
// loop or used outside the loop in which it is defined.
|
|
const Loop *L = LI->getLoopFor(DefBB);
|
|
|
|
// Track whether the value is used anywhere outside of the block
|
|
// in which it is defined.
|
|
bool LiveOutOfDefBB = false;
|
|
|
|
// Examine each use of the value.
|
|
for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
|
|
I != E; ++I) {
|
|
const User *U = *I;
|
|
const BasicBlock *UseBB = cast<Instruction>(U)->getParent();
|
|
|
|
// Note the block in which this use occurs.
|
|
M.Used.insert(UseBB);
|
|
|
|
// If the use block doesn't have successors, the value can be
|
|
// considered killed.
|
|
if (succ_begin(UseBB) == succ_end(UseBB))
|
|
M.Killed.insert(UseBB);
|
|
|
|
// Observe whether the value is used outside of the loop in which
|
|
// it is defined. Switch to an enclosing loop if necessary.
|
|
for (; L; L = L->getParentLoop())
|
|
if (L->contains(UseBB))
|
|
break;
|
|
|
|
// Search for live-through blocks.
|
|
const BasicBlock *BB;
|
|
if (const PHINode *PHI = dyn_cast<PHINode>(U)) {
|
|
// For PHI nodes, start the search at the incoming block paired with the
|
|
// incoming value, which must be dominated by the definition.
|
|
unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo());
|
|
BB = PHI->getIncomingBlock(Num);
|
|
|
|
// A PHI-node use means the value is live-out of it's defining block
|
|
// even if that block also contains the only use.
|
|
LiveOutOfDefBB = true;
|
|
} else {
|
|
// Otherwise just start the search at the use.
|
|
BB = UseBB;
|
|
|
|
// Note if the use is outside the defining block.
|
|
LiveOutOfDefBB |= UseBB != DefBB;
|
|
}
|
|
|
|
// Climb the immediate dominator tree from the use to the definition
|
|
// and mark all intermediate blocks as live-through.
|
|
for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) {
|
|
if (BB != UseBB && !M.LiveThrough.insert(BB))
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the value is defined inside a loop and is not live outside
|
|
// the loop, then each exit block of the loop in which the value
|
|
// is used is a kill block.
|
|
if (L) {
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
|
|
const BasicBlock *ExitingBlock = ExitingBlocks[i];
|
|
if (M.Used.count(ExitingBlock))
|
|
M.Killed.insert(ExitingBlock);
|
|
}
|
|
}
|
|
|
|
// If the value was never used outside the block in which it was
|
|
// defined, it's killed in that block.
|
|
if (!LiveOutOfDefBB)
|
|
M.Killed.insert(DefBB);
|
|
|
|
return M;
|
|
}
|