mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
7853ae1d97
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122551 91177308-0d34-0410-b5e6-96231b3b80d8
716 lines
27 KiB
C++
716 lines
27 KiB
C++
//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ScheduleDAG class, which is used as the common
|
|
// base class for instruction schedulers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
|
|
#define LLVM_CODEGEN_SCHEDULEDAG_H
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
|
|
namespace llvm {
|
|
class AliasAnalysis;
|
|
class SUnit;
|
|
class MachineConstantPool;
|
|
class MachineFunction;
|
|
class MachineRegisterInfo;
|
|
class MachineInstr;
|
|
class TargetRegisterInfo;
|
|
class ScheduleDAG;
|
|
class SDNode;
|
|
class TargetInstrInfo;
|
|
class TargetInstrDesc;
|
|
class TargetMachine;
|
|
class TargetRegisterClass;
|
|
template<class Graph> class GraphWriter;
|
|
|
|
/// SDep - Scheduling dependency. This represents one direction of an
|
|
/// edge in the scheduling DAG.
|
|
class SDep {
|
|
public:
|
|
/// Kind - These are the different kinds of scheduling dependencies.
|
|
enum Kind {
|
|
Data, ///< Regular data dependence (aka true-dependence).
|
|
Anti, ///< A register anti-dependedence (aka WAR).
|
|
Output, ///< A register output-dependence (aka WAW).
|
|
Order ///< Any other ordering dependency.
|
|
};
|
|
|
|
private:
|
|
/// Dep - A pointer to the depending/depended-on SUnit, and an enum
|
|
/// indicating the kind of the dependency.
|
|
PointerIntPair<SUnit *, 2, Kind> Dep;
|
|
|
|
/// Contents - A union discriminated by the dependence kind.
|
|
union {
|
|
/// Reg - For Data, Anti, and Output dependencies, the associated
|
|
/// register. For Data dependencies that don't currently have a register
|
|
/// assigned, this is set to zero.
|
|
unsigned Reg;
|
|
|
|
/// Order - Additional information about Order dependencies.
|
|
struct {
|
|
/// isNormalMemory - True if both sides of the dependence
|
|
/// access memory in non-volatile and fully modeled ways.
|
|
bool isNormalMemory : 1;
|
|
|
|
/// isMustAlias - True if both sides of the dependence are known to
|
|
/// access the same memory.
|
|
bool isMustAlias : 1;
|
|
|
|
/// isArtificial - True if this is an artificial dependency, meaning
|
|
/// it is not necessary for program correctness, and may be safely
|
|
/// deleted if necessary.
|
|
bool isArtificial : 1;
|
|
} Order;
|
|
} Contents;
|
|
|
|
/// Latency - The time associated with this edge. Often this is just
|
|
/// the value of the Latency field of the predecessor, however advanced
|
|
/// models may provide additional information about specific edges.
|
|
unsigned Latency;
|
|
|
|
public:
|
|
/// SDep - Construct a null SDep. This is only for use by container
|
|
/// classes which require default constructors. SUnits may not
|
|
/// have null SDep edges.
|
|
SDep() : Dep(0, Data) {}
|
|
|
|
/// SDep - Construct an SDep with the specified values.
|
|
SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
|
|
bool isNormalMemory = false, bool isMustAlias = false,
|
|
bool isArtificial = false)
|
|
: Dep(S, kind), Contents(), Latency(latency) {
|
|
switch (kind) {
|
|
case Anti:
|
|
case Output:
|
|
assert(Reg != 0 &&
|
|
"SDep::Anti and SDep::Output must use a non-zero Reg!");
|
|
// fall through
|
|
case Data:
|
|
assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
|
|
assert(!isArtificial && "isArtificial only applies with SDep::Order!");
|
|
Contents.Reg = Reg;
|
|
break;
|
|
case Order:
|
|
assert(Reg == 0 && "Reg given for non-register dependence!");
|
|
Contents.Order.isNormalMemory = isNormalMemory;
|
|
Contents.Order.isMustAlias = isMustAlias;
|
|
Contents.Order.isArtificial = isArtificial;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool operator==(const SDep &Other) const {
|
|
if (Dep != Other.Dep || Latency != Other.Latency) return false;
|
|
switch (Dep.getInt()) {
|
|
case Data:
|
|
case Anti:
|
|
case Output:
|
|
return Contents.Reg == Other.Contents.Reg;
|
|
case Order:
|
|
return Contents.Order.isNormalMemory ==
|
|
Other.Contents.Order.isNormalMemory &&
|
|
Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
|
|
Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
|
|
}
|
|
assert(0 && "Invalid dependency kind!");
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(const SDep &Other) const {
|
|
return !operator==(Other);
|
|
}
|
|
|
|
/// getLatency - Return the latency value for this edge, which roughly
|
|
/// means the minimum number of cycles that must elapse between the
|
|
/// predecessor and the successor, given that they have this edge
|
|
/// between them.
|
|
unsigned getLatency() const {
|
|
return Latency;
|
|
}
|
|
|
|
/// setLatency - Set the latency for this edge.
|
|
void setLatency(unsigned Lat) {
|
|
Latency = Lat;
|
|
}
|
|
|
|
//// getSUnit - Return the SUnit to which this edge points.
|
|
SUnit *getSUnit() const {
|
|
return Dep.getPointer();
|
|
}
|
|
|
|
//// setSUnit - Assign the SUnit to which this edge points.
|
|
void setSUnit(SUnit *SU) {
|
|
Dep.setPointer(SU);
|
|
}
|
|
|
|
/// getKind - Return an enum value representing the kind of the dependence.
|
|
Kind getKind() const {
|
|
return Dep.getInt();
|
|
}
|
|
|
|
/// isCtrl - Shorthand for getKind() != SDep::Data.
|
|
bool isCtrl() const {
|
|
return getKind() != Data;
|
|
}
|
|
|
|
/// isNormalMemory - Test if this is an Order dependence between two
|
|
/// memory accesses where both sides of the dependence access memory
|
|
/// in non-volatile and fully modeled ways.
|
|
bool isNormalMemory() const {
|
|
return getKind() == Order && Contents.Order.isNormalMemory;
|
|
}
|
|
|
|
/// isMustAlias - Test if this is an Order dependence that is marked
|
|
/// as "must alias", meaning that the SUnits at either end of the edge
|
|
/// have a memory dependence on a known memory location.
|
|
bool isMustAlias() const {
|
|
return getKind() == Order && Contents.Order.isMustAlias;
|
|
}
|
|
|
|
/// isArtificial - Test if this is an Order dependence that is marked
|
|
/// as "artificial", meaning it isn't necessary for correctness.
|
|
bool isArtificial() const {
|
|
return getKind() == Order && Contents.Order.isArtificial;
|
|
}
|
|
|
|
/// isAssignedRegDep - Test if this is a Data dependence that is
|
|
/// associated with a register.
|
|
bool isAssignedRegDep() const {
|
|
return getKind() == Data && Contents.Reg != 0;
|
|
}
|
|
|
|
/// getReg - Return the register associated with this edge. This is
|
|
/// only valid on Data, Anti, and Output edges. On Data edges, this
|
|
/// value may be zero, meaning there is no associated register.
|
|
unsigned getReg() const {
|
|
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
|
"getReg called on non-register dependence edge!");
|
|
return Contents.Reg;
|
|
}
|
|
|
|
/// setReg - Assign the associated register for this edge. This is
|
|
/// only valid on Data, Anti, and Output edges. On Anti and Output
|
|
/// edges, this value must not be zero. On Data edges, the value may
|
|
/// be zero, which would mean that no specific register is associated
|
|
/// with this edge.
|
|
void setReg(unsigned Reg) {
|
|
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
|
"setReg called on non-register dependence edge!");
|
|
assert((getKind() != Anti || Reg != 0) &&
|
|
"SDep::Anti edge cannot use the zero register!");
|
|
assert((getKind() != Output || Reg != 0) &&
|
|
"SDep::Output edge cannot use the zero register!");
|
|
Contents.Reg = Reg;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct isPodLike<SDep> { static const bool value = true; };
|
|
|
|
/// SUnit - Scheduling unit. This is a node in the scheduling DAG.
|
|
class SUnit {
|
|
private:
|
|
SDNode *Node; // Representative node.
|
|
MachineInstr *Instr; // Alternatively, a MachineInstr.
|
|
public:
|
|
SUnit *OrigNode; // If not this, the node from which
|
|
// this node was cloned.
|
|
|
|
// Preds/Succs - The SUnits before/after us in the graph.
|
|
SmallVector<SDep, 4> Preds; // All sunit predecessors.
|
|
SmallVector<SDep, 4> Succs; // All sunit successors.
|
|
|
|
typedef SmallVector<SDep, 4>::iterator pred_iterator;
|
|
typedef SmallVector<SDep, 4>::iterator succ_iterator;
|
|
typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
|
|
typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
|
|
|
|
unsigned NodeNum; // Entry # of node in the node vector.
|
|
unsigned NodeQueueId; // Queue id of node.
|
|
unsigned NumPreds; // # of SDep::Data preds.
|
|
unsigned NumSuccs; // # of SDep::Data sucss.
|
|
unsigned NumPredsLeft; // # of preds not scheduled.
|
|
unsigned NumSuccsLeft; // # of succs not scheduled.
|
|
unsigned short Latency; // Node latency.
|
|
bool isCall : 1; // Is a function call.
|
|
bool isTwoAddress : 1; // Is a two-address instruction.
|
|
bool isCommutable : 1; // Is a commutable instruction.
|
|
bool hasPhysRegDefs : 1; // Has physreg defs that are being used.
|
|
bool hasPhysRegClobbers : 1; // Has any physreg defs, used or not.
|
|
bool isPending : 1; // True once pending.
|
|
bool isAvailable : 1; // True once available.
|
|
bool isScheduled : 1; // True once scheduled.
|
|
bool isScheduleHigh : 1; // True if preferable to schedule high.
|
|
bool isCloned : 1; // True if this node has been cloned.
|
|
Sched::Preference SchedulingPref; // Scheduling preference.
|
|
|
|
SmallVector<MachineInstr*, 4> DbgInstrList; // dbg_values referencing this.
|
|
private:
|
|
bool isDepthCurrent : 1; // True if Depth is current.
|
|
bool isHeightCurrent : 1; // True if Height is current.
|
|
unsigned Depth; // Node depth.
|
|
unsigned Height; // Node height.
|
|
public:
|
|
const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
|
|
const TargetRegisterClass *CopySrcRC;
|
|
|
|
/// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
|
|
/// an SDNode and any nodes flagged to it.
|
|
SUnit(SDNode *node, unsigned nodenum)
|
|
: Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
|
NumSuccsLeft(0), Latency(0),
|
|
isCall(false), isTwoAddress(false), isCommutable(false),
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false),
|
|
isPending(false), isAvailable(false), isScheduled(false),
|
|
isScheduleHigh(false), isCloned(false),
|
|
SchedulingPref(Sched::None),
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
CopyDstRC(NULL), CopySrcRC(NULL) {}
|
|
|
|
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
|
|
/// a MachineInstr.
|
|
SUnit(MachineInstr *instr, unsigned nodenum)
|
|
: Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
|
NumSuccsLeft(0), Latency(0),
|
|
isCall(false), isTwoAddress(false), isCommutable(false),
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false),
|
|
isPending(false), isAvailable(false), isScheduled(false),
|
|
isScheduleHigh(false), isCloned(false),
|
|
SchedulingPref(Sched::None),
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
CopyDstRC(NULL), CopySrcRC(NULL) {}
|
|
|
|
/// SUnit - Construct a placeholder SUnit.
|
|
SUnit()
|
|
: Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
|
|
NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
|
|
NumSuccsLeft(0), Latency(0),
|
|
isCall(false), isTwoAddress(false), isCommutable(false),
|
|
hasPhysRegDefs(false), hasPhysRegClobbers(false),
|
|
isPending(false), isAvailable(false), isScheduled(false),
|
|
isScheduleHigh(false), isCloned(false),
|
|
SchedulingPref(Sched::None),
|
|
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
|
|
CopyDstRC(NULL), CopySrcRC(NULL) {}
|
|
|
|
/// setNode - Assign the representative SDNode for this SUnit.
|
|
/// This may be used during pre-regalloc scheduling.
|
|
void setNode(SDNode *N) {
|
|
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
|
|
Node = N;
|
|
}
|
|
|
|
/// getNode - Return the representative SDNode for this SUnit.
|
|
/// This may be used during pre-regalloc scheduling.
|
|
SDNode *getNode() const {
|
|
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
|
|
return Node;
|
|
}
|
|
|
|
/// isInstr - Return true if this SUnit refers to a machine instruction as
|
|
/// opposed to an SDNode.
|
|
bool isInstr() const { return Instr; }
|
|
|
|
/// setInstr - Assign the instruction for the SUnit.
|
|
/// This may be used during post-regalloc scheduling.
|
|
void setInstr(MachineInstr *MI) {
|
|
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
|
|
Instr = MI;
|
|
}
|
|
|
|
/// getInstr - Return the representative MachineInstr for this SUnit.
|
|
/// This may be used during post-regalloc scheduling.
|
|
MachineInstr *getInstr() const {
|
|
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
|
|
return Instr;
|
|
}
|
|
|
|
/// addPred - This adds the specified edge as a pred of the current node if
|
|
/// not already. It also adds the current node as a successor of the
|
|
/// specified node.
|
|
void addPred(const SDep &D);
|
|
|
|
/// removePred - This removes the specified edge as a pred of the current
|
|
/// node if it exists. It also removes the current node as a successor of
|
|
/// the specified node.
|
|
void removePred(const SDep &D);
|
|
|
|
/// getDepth - Return the depth of this node, which is the length of the
|
|
/// maximum path up to any node with has no predecessors.
|
|
unsigned getDepth() const {
|
|
if (!isDepthCurrent)
|
|
const_cast<SUnit *>(this)->ComputeDepth();
|
|
return Depth;
|
|
}
|
|
|
|
/// getHeight - Return the height of this node, which is the length of the
|
|
/// maximum path down to any node with has no successors.
|
|
unsigned getHeight() const {
|
|
if (!isHeightCurrent)
|
|
const_cast<SUnit *>(this)->ComputeHeight();
|
|
return Height;
|
|
}
|
|
|
|
/// setDepthToAtLeast - If NewDepth is greater than this node's
|
|
/// depth value, set it to be the new depth value. This also
|
|
/// recursively marks successor nodes dirty.
|
|
void setDepthToAtLeast(unsigned NewDepth);
|
|
|
|
/// setDepthToAtLeast - If NewDepth is greater than this node's
|
|
/// depth value, set it to be the new height value. This also
|
|
/// recursively marks predecessor nodes dirty.
|
|
void setHeightToAtLeast(unsigned NewHeight);
|
|
|
|
/// setDepthDirty - Set a flag in this node to indicate that its
|
|
/// stored Depth value will require recomputation the next time
|
|
/// getDepth() is called.
|
|
void setDepthDirty();
|
|
|
|
/// setHeightDirty - Set a flag in this node to indicate that its
|
|
/// stored Height value will require recomputation the next time
|
|
/// getHeight() is called.
|
|
void setHeightDirty();
|
|
|
|
/// isPred - Test if node N is a predecessor of this node.
|
|
bool isPred(SUnit *N) {
|
|
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
|
|
if (Preds[i].getSUnit() == N)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isSucc - Test if node N is a successor of this node.
|
|
bool isSucc(SUnit *N) {
|
|
for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
|
|
if (Succs[i].getSUnit() == N)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void dump(const ScheduleDAG *G) const;
|
|
void dumpAll(const ScheduleDAG *G) const;
|
|
void print(raw_ostream &O, const ScheduleDAG *G) const;
|
|
|
|
private:
|
|
void ComputeDepth();
|
|
void ComputeHeight();
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// SchedulingPriorityQueue - This interface is used to plug different
|
|
/// priorities computation algorithms into the list scheduler. It implements
|
|
/// the interface of a standard priority queue, where nodes are inserted in
|
|
/// arbitrary order and returned in priority order. The computation of the
|
|
/// priority and the representation of the queue are totally up to the
|
|
/// implementation to decide.
|
|
///
|
|
class SchedulingPriorityQueue {
|
|
unsigned CurCycle;
|
|
bool HasReadyFilter;
|
|
public:
|
|
SchedulingPriorityQueue(bool rf = false):
|
|
CurCycle(0), HasReadyFilter(rf) {}
|
|
virtual ~SchedulingPriorityQueue() {}
|
|
|
|
virtual bool isBottomUp() const = 0;
|
|
|
|
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
|
|
virtual void addNode(const SUnit *SU) = 0;
|
|
virtual void updateNode(const SUnit *SU) = 0;
|
|
virtual void releaseState() = 0;
|
|
|
|
virtual bool empty() const = 0;
|
|
|
|
bool hasReadyFilter() const { return HasReadyFilter; }
|
|
|
|
virtual bool isReady(SUnit *) const {
|
|
assert(!HasReadyFilter && "The ready filter must override isReady()");
|
|
return true;
|
|
}
|
|
virtual void push(SUnit *U) = 0;
|
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
|
|
E = Nodes.end(); I != E; ++I)
|
|
push(*I);
|
|
}
|
|
|
|
virtual SUnit *pop() = 0;
|
|
|
|
virtual void remove(SUnit *SU) = 0;
|
|
|
|
virtual void dump(ScheduleDAG *) const {}
|
|
|
|
/// ScheduledNode - As each node is scheduled, this method is invoked. This
|
|
/// allows the priority function to adjust the priority of related
|
|
/// unscheduled nodes, for example.
|
|
///
|
|
virtual void ScheduledNode(SUnit *) {}
|
|
|
|
virtual void UnscheduledNode(SUnit *) {}
|
|
|
|
void setCurCycle(unsigned Cycle) {
|
|
CurCycle = Cycle;
|
|
}
|
|
|
|
unsigned getCurCycle() const {
|
|
return CurCycle;
|
|
}
|
|
};
|
|
|
|
class ScheduleDAG {
|
|
public:
|
|
MachineBasicBlock *BB; // The block in which to insert instructions
|
|
MachineBasicBlock::iterator InsertPos;// The position to insert instructions
|
|
const TargetMachine &TM; // Target processor
|
|
const TargetInstrInfo *TII; // Target instruction information
|
|
const TargetRegisterInfo *TRI; // Target processor register info
|
|
MachineFunction &MF; // Machine function
|
|
MachineRegisterInfo &MRI; // Virtual/real register map
|
|
std::vector<SUnit*> Sequence; // The schedule. Null SUnit*'s
|
|
// represent noop instructions.
|
|
std::vector<SUnit> SUnits; // The scheduling units.
|
|
SUnit EntrySU; // Special node for the region entry.
|
|
SUnit ExitSU; // Special node for the region exit.
|
|
|
|
explicit ScheduleDAG(MachineFunction &mf);
|
|
|
|
virtual ~ScheduleDAG();
|
|
|
|
/// getInstrDesc - Return the TargetInstrDesc of this SUnit.
|
|
/// Return NULL for SDNodes without a machine opcode.
|
|
const TargetInstrDesc *getInstrDesc(const SUnit *SU) const {
|
|
if (SU->isInstr()) return &SU->getInstr()->getDesc();
|
|
return getNodeDesc(SU->getNode());
|
|
}
|
|
|
|
/// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
|
|
/// using 'dot'.
|
|
///
|
|
void viewGraph();
|
|
|
|
/// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
|
|
/// according to the order specified in Sequence.
|
|
///
|
|
virtual MachineBasicBlock *EmitSchedule() = 0;
|
|
|
|
void dumpSchedule() const;
|
|
|
|
virtual void dumpNode(const SUnit *SU) const = 0;
|
|
|
|
/// getGraphNodeLabel - Return a label for an SUnit node in a visualization
|
|
/// of the ScheduleDAG.
|
|
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
|
|
|
|
/// addCustomGraphFeatures - Add custom features for a visualization of
|
|
/// the ScheduleDAG.
|
|
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
|
|
|
|
#ifndef NDEBUG
|
|
/// VerifySchedule - Verify that all SUnits were scheduled and that
|
|
/// their state is consistent.
|
|
void VerifySchedule(bool isBottomUp);
|
|
#endif
|
|
|
|
protected:
|
|
/// Run - perform scheduling.
|
|
///
|
|
void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos);
|
|
|
|
/// BuildSchedGraph - Build SUnits and set up their Preds and Succs
|
|
/// to form the scheduling dependency graph.
|
|
///
|
|
virtual void BuildSchedGraph(AliasAnalysis *AA) = 0;
|
|
|
|
/// ComputeLatency - Compute node latency.
|
|
///
|
|
virtual void ComputeLatency(SUnit *SU) = 0;
|
|
|
|
/// ComputeOperandLatency - Override dependence edge latency using
|
|
/// operand use/def information
|
|
///
|
|
virtual void ComputeOperandLatency(SUnit *, SUnit *,
|
|
SDep&) const { }
|
|
|
|
/// Schedule - Order nodes according to selected style, filling
|
|
/// in the Sequence member.
|
|
///
|
|
virtual void Schedule() = 0;
|
|
|
|
/// ForceUnitLatencies - Return true if all scheduling edges should be given
|
|
/// a latency value of one. The default is to return false; schedulers may
|
|
/// override this as needed.
|
|
virtual bool ForceUnitLatencies() const { return false; }
|
|
|
|
/// EmitNoop - Emit a noop instruction.
|
|
///
|
|
void EmitNoop();
|
|
|
|
void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
|
|
|
|
private:
|
|
// Return the TargetInstrDesc of this SDNode or NULL.
|
|
const TargetInstrDesc *getNodeDesc(const SDNode *Node) const;
|
|
};
|
|
|
|
class SUnitIterator : public std::iterator<std::forward_iterator_tag,
|
|
SUnit, ptrdiff_t> {
|
|
SUnit *Node;
|
|
unsigned Operand;
|
|
|
|
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
public:
|
|
bool operator==(const SUnitIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
|
|
|
|
const SUnitIterator &operator=(const SUnitIterator &I) {
|
|
assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
|
|
Operand = I.Operand;
|
|
return *this;
|
|
}
|
|
|
|
pointer operator*() const {
|
|
return Node->Preds[Operand].getSUnit();
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SUnitIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SUnitIterator operator++(int) { // Postincrement
|
|
SUnitIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
|
|
static SUnitIterator end (SUnit *N) {
|
|
return SUnitIterator(N, (unsigned)N->Preds.size());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SUnit *getNode() const { return Node; }
|
|
/// isCtrlDep - Test if this is not an SDep::Data dependence.
|
|
bool isCtrlDep() const {
|
|
return getSDep().isCtrl();
|
|
}
|
|
bool isArtificialDep() const {
|
|
return getSDep().isArtificial();
|
|
}
|
|
const SDep &getSDep() const {
|
|
return Node->Preds[Operand];
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<SUnit*> {
|
|
typedef SUnit NodeType;
|
|
typedef SUnitIterator ChildIteratorType;
|
|
static inline NodeType *getEntryNode(SUnit *N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return SUnitIterator::begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return SUnitIterator::end(N);
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
|
|
typedef std::vector<SUnit>::iterator nodes_iterator;
|
|
static nodes_iterator nodes_begin(ScheduleDAG *G) {
|
|
return G->SUnits.begin();
|
|
}
|
|
static nodes_iterator nodes_end(ScheduleDAG *G) {
|
|
return G->SUnits.end();
|
|
}
|
|
};
|
|
|
|
/// ScheduleDAGTopologicalSort is a class that computes a topological
|
|
/// ordering for SUnits and provides methods for dynamically updating
|
|
/// the ordering as new edges are added.
|
|
///
|
|
/// This allows a very fast implementation of IsReachable, for example.
|
|
///
|
|
class ScheduleDAGTopologicalSort {
|
|
/// SUnits - A reference to the ScheduleDAG's SUnits.
|
|
std::vector<SUnit> &SUnits;
|
|
|
|
/// Index2Node - Maps topological index to the node number.
|
|
std::vector<int> Index2Node;
|
|
/// Node2Index - Maps the node number to its topological index.
|
|
std::vector<int> Node2Index;
|
|
/// Visited - a set of nodes visited during a DFS traversal.
|
|
BitVector Visited;
|
|
|
|
/// DFS - make a DFS traversal and mark all nodes affected by the
|
|
/// edge insertion. These nodes will later get new topological indexes
|
|
/// by means of the Shift method.
|
|
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
|
|
|
/// Shift - reassign topological indexes for the nodes in the DAG
|
|
/// to preserve the topological ordering.
|
|
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
|
|
|
/// Allocate - assign the topological index to the node n.
|
|
void Allocate(int n, int index);
|
|
|
|
public:
|
|
explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
|
|
|
|
/// InitDAGTopologicalSorting - create the initial topological
|
|
/// ordering from the DAG to be scheduled.
|
|
void InitDAGTopologicalSorting();
|
|
|
|
/// IsReachable - Checks if SU is reachable from TargetSU.
|
|
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
|
|
|
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
|
|
/// will create a cycle.
|
|
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
|
|
|
|
/// AddPred - Updates the topological ordering to accomodate an edge
|
|
/// to be added from SUnit X to SUnit Y.
|
|
void AddPred(SUnit *Y, SUnit *X);
|
|
|
|
/// RemovePred - Updates the topological ordering to accomodate an
|
|
/// an edge to be removed from the specified node N from the predecessors
|
|
/// of the current node M.
|
|
void RemovePred(SUnit *M, SUnit *N);
|
|
|
|
typedef std::vector<int>::iterator iterator;
|
|
typedef std::vector<int>::const_iterator const_iterator;
|
|
iterator begin() { return Index2Node.begin(); }
|
|
const_iterator begin() const { return Index2Node.begin(); }
|
|
iterator end() { return Index2Node.end(); }
|
|
const_iterator end() const { return Index2Node.end(); }
|
|
|
|
typedef std::vector<int>::reverse_iterator reverse_iterator;
|
|
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
|
|
reverse_iterator rbegin() { return Index2Node.rbegin(); }
|
|
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
|
|
reverse_iterator rend() { return Index2Node.rend(); }
|
|
const_reverse_iterator rend() const { return Index2Node.rend(); }
|
|
};
|
|
}
|
|
|
|
#endif
|