llvm-6502/test/CodeGen/SystemZ/vec-const-10.ll
Ulrich Weigand aa5c996eda [SystemZ] Add CodeGen support for integer vector types
This the first of a series of patches to add CodeGen support exploiting
the instructions of the z13 vector facility.  This patch adds support
for the native integer vector types (v16i8, v8i16, v4i32, v2i64).

When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
  (except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.

The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.

However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.

These alignment rules are not only implemented at the C language level
(implemented in clang), but also at the LLVM IR level.  This is done
by selecting a different DataLayout string depending on whether the
vector ABI is in effect or not.

Based on a patch by Richard Sandiford.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236521 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-05 19:25:42 +00:00

170 lines
4.3 KiB
LLVM

; Test vector replicates, v2i64 version.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z13 | FileCheck %s
; Test a byte-granularity replicate with the lowest useful value.
define <2 x i64> @f1() {
; CHECK-LABEL: f1:
; CHECK: vrepib %v24, 1
; CHECK: br %r14
ret <2 x i64> <i64 72340172838076673, i64 72340172838076673>
}
; Test a byte-granularity replicate with an arbitrary value.
define <2 x i64> @f2() {
; CHECK-LABEL: f2:
; CHECK: vrepib %v24, -55
; CHECK: br %r14
ret <2 x i64> <i64 -3906369333256140343, i64 -3906369333256140343>
}
; Test a byte-granularity replicate with the highest useful value.
define <2 x i64> @f3() {
; CHECK-LABEL: f3:
; CHECK: vrepib %v24, -2
; CHECK: br %r14
ret <2 x i64> <i64 -72340172838076674, i64 -72340172838076674>
}
; Test a halfword-granularity replicate with the lowest useful value.
define <2 x i64> @f4() {
; CHECK-LABEL: f4:
; CHECK: vrepih %v24, 1
; CHECK: br %r14
ret <2 x i64> <i64 281479271743489, i64 281479271743489>
}
; Test a halfword-granularity replicate with an arbitrary value.
define <2 x i64> @f5() {
; CHECK-LABEL: f5:
; CHECK: vrepih %v24, 25650
; CHECK: br %r14
ret <2 x i64> <i64 7219943320220492850, i64 7219943320220492850>
}
; Test a halfword-granularity replicate with the highest useful value.
define <2 x i64> @f6() {
; CHECK-LABEL: f6:
; CHECK: vrepih %v24, -2
; CHECK: br %r14
ret <2 x i64> <i64 -281479271743490, i64 -281479271743490>
}
; Test a word-granularity replicate with the lowest useful positive value.
define <2 x i64> @f7() {
; CHECK-LABEL: f7:
; CHECK: vrepif %v24, 1
; CHECK: br %r14
ret <2 x i64> <i64 4294967297, i64 4294967297>
}
; Test a word-granularity replicate with the highest in-range value.
define <2 x i64> @f8() {
; CHECK-LABEL: f8:
; CHECK: vrepif %v24, 32767
; CHECK: br %r14
ret <2 x i64> <i64 140733193420799, i64 140733193420799>
}
; Test a word-granularity replicate with the next highest value.
; This cannot use VREPIF.
define <2 x i64> @f9() {
; CHECK-LABEL: f9:
; CHECK-NOT: vrepif
; CHECK: br %r14
ret <2 x i64> <i64 140737488388096, i64 140737488388096>
}
; Test a word-granularity replicate with the lowest in-range value.
define <2 x i64> @f10() {
; CHECK-LABEL: f10:
; CHECK: vrepif %v24, -32768
; CHECK: br %r14
ret <2 x i64> <i64 -140733193420800, i64 -140733193420800>
}
; Test a word-granularity replicate with the next lowest value.
; This cannot use VREPIF.
define <2 x i64> @f11() {
; CHECK-LABEL: f11:
; CHECK-NOT: vrepif
; CHECK: br %r14
ret <2 x i64> <i64 -140737488388097, i64 -140737488388097>
}
; Test a word-granularity replicate with the highest useful negative value.
define <2 x i64> @f12() {
; CHECK-LABEL: f12:
; CHECK: vrepif %v24, -2
; CHECK: br %r14
ret <2 x i64> <i64 -4294967298, i64 -4294967298>
}
; Test a doubleword-granularity replicate with the lowest useful positive
; value.
define <2 x i64> @f13() {
; CHECK-LABEL: f13:
; CHECK: vrepig %v24, 1
; CHECK: br %r14
ret <2 x i64> <i64 1, i64 1>
}
; Test a doubleword-granularity replicate with the highest in-range value.
define <2 x i64> @f14() {
; CHECK-LABEL: f14:
; CHECK: vrepig %v24, 32767
; CHECK: br %r14
ret <2 x i64> <i64 32767, i64 32767>
}
; Test a doubleword-granularity replicate with the next highest value.
; This cannot use VREPIG.
define <2 x i64> @f15() {
; CHECK-LABEL: f15:
; CHECK-NOT: vrepig
; CHECK: br %r14
ret <2 x i64> <i64 32768, i64 32768>
}
; Test a doubleword-granularity replicate with the lowest in-range value.
define <2 x i64> @f16() {
; CHECK-LABEL: f16:
; CHECK: vrepig %v24, -32768
; CHECK: br %r14
ret <2 x i64> <i64 -32768, i64 -32768>
}
; Test a doubleword-granularity replicate with the next lowest value.
; This cannot use VREPIG.
define <2 x i64> @f17() {
; CHECK-LABEL: f17:
; CHECK-NOT: vrepig
; CHECK: br %r14
ret <2 x i64> <i64 -32769, i64 -32769>
}
; Test a doubleword-granularity replicate with the highest useful negative
; value.
define <2 x i64> @f18() {
; CHECK-LABEL: f18:
; CHECK: vrepig %v24, -2
; CHECK: br %r14
ret <2 x i64> <i64 -2, i64 -2>
}
; Repeat f14 with undefs optimistically treated as 32767.
define <2 x i64> @f19() {
; CHECK-LABEL: f19:
; CHECK: vrepig %v24, 32767
; CHECK: br %r14
ret <2 x i64> <i64 undef, i64 32767>
}
; Repeat f18 with undefs optimistically treated as -2.
define <2 x i64> @f20() {
; CHECK-LABEL: f20:
; CHECK: vrepig %v24, -2
; CHECK: br %r14
ret <2 x i64> <i64 undef, i64 -2>
}