llvm-6502/lib/Target/XCore/XCoreInstrInfo.td
Richard Osborne d558ea5e0a Add extra SEXT pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77920 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-02 22:45:24 +00:00

1008 lines
35 KiB
TableGen

//===- XCoreInstrInfo.td - Target Description for XCore ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the XCore instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
// Uses of CP, DP are not currently reflected in the patterns, since
// having a physical register as an operand prevents loop hoisting and
// since the value of these registers never changes during the life of the
// function.
//===----------------------------------------------------------------------===//
// Instruction format superclass.
//===----------------------------------------------------------------------===//
include "XCoreInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
// HasXS1A - This predicate is true when the target processor supports XS1A
// instructions.
def HasXS1A : Predicate<"Subtarget.isXS1A()">;
// HasXS1B - This predicate is true when the target processor supports XS1B
// instructions.
def HasXS1B : Predicate<"Subtarget.isXS1B()">;
//===----------------------------------------------------------------------===//
// XCore specific DAG Nodes.
//
// Call
def SDT_XCoreBranchLink : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def XCoreBranchLink : SDNode<"XCoreISD::BL",SDT_XCoreBranchLink,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def XCoreRetsp : SDNode<"XCoreISD::RETSP", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
def SDT_XCoreAddress : SDTypeProfile<1, 1,
[SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def pcrelwrapper : SDNode<"XCoreISD::PCRelativeWrapper", SDT_XCoreAddress,
[]>;
def dprelwrapper : SDNode<"XCoreISD::DPRelativeWrapper", SDT_XCoreAddress,
[]>;
def cprelwrapper : SDNode<"XCoreISD::CPRelativeWrapper", SDT_XCoreAddress,
[]>;
def SDT_XCoreStwsp : SDTypeProfile<0, 2, [SDTCisInt<1>]>;
def XCoreStwsp : SDNode<"XCoreISD::STWSP", SDT_XCoreStwsp,
[SDNPHasChain]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_XCoreCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_XCoreCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_XCoreCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_XCoreCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def div4_xform : SDNodeXForm<imm, [{
// Transformation function: imm/4
assert(N->getZExtValue() % 4 == 0);
return getI32Imm(N->getZExtValue()/4);
}]>;
def msksize_xform : SDNodeXForm<imm, [{
// Transformation function: get the size of a mask
assert(isMask_32(N->getZExtValue()));
// look for the first non-zero bit
return getI32Imm(32 - CountLeadingZeros_32(N->getZExtValue()));
}]>;
def neg_xform : SDNodeXForm<imm, [{
// Transformation function: -imm
uint32_t value = N->getZExtValue();
return getI32Imm(-value);
}]>;
def bpwsub_xform : SDNodeXForm<imm, [{
// Transformation function: 32-imm
uint32_t value = N->getZExtValue();
return getI32Imm(32-value);
}]>;
def div4neg_xform : SDNodeXForm<imm, [{
// Transformation function: -imm/4
uint32_t value = N->getZExtValue();
assert(-value % 4 == 0);
return getI32Imm(-value/4);
}]>;
def immUs4Neg : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
return (-value)%4 == 0 && (-value)/4 <= 11;
}]>;
def immUs4 : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
return value%4 == 0 && value/4 <= 11;
}]>;
def immUsNeg : PatLeaf<(imm), [{
return -((uint32_t)N->getZExtValue()) <= 11;
}]>;
def immUs : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() <= 11;
}]>;
def immU6 : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() < (1 << 6);
}]>;
def immU10 : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() < (1 << 10);
}]>;
def immU16 : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() < (1 << 16);
}]>;
def immU20 : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() < (1 << 20);
}]>;
// FIXME check subtarget. Currently we check if the immediate
// is in the common subset of legal immediate values for both
// XS1A and XS1B.
def immMskBitp : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
if (!isMask_32(value)) {
return false;
}
int msksize = 32 - CountLeadingZeros_32(value);
return (msksize >= 1 && msksize <= 8)
|| msksize == 16
|| msksize == 24
|| msksize == 32;
}]>;
// FIXME check subtarget. Currently we check if the immediate
// is in the common subset of legal immediate values for both
// XS1A and XS1B.
def immBitp : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
return (value >= 1 && value <= 8)
|| value == 16
|| value == 24
|| value == 32;
}]>;
def immBpwSubBitp : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
return (value >= 24 && value <= 31)
|| value == 16
|| value == 8
|| value == 0;
}]>;
def lda16f : PatFrag<(ops node:$addr, node:$offset),
(add node:$addr, (shl node:$offset, 1))>;
def lda16b : PatFrag<(ops node:$addr, node:$offset),
(sub node:$addr, (shl node:$offset, 1))>;
def ldawf : PatFrag<(ops node:$addr, node:$offset),
(add node:$addr, (shl node:$offset, 2))>;
def ldawb : PatFrag<(ops node:$addr, node:$offset),
(sub node:$addr, (shl node:$offset, 2))>;
// Instruction operand types
def calltarget : Operand<i32>;
def brtarget : Operand<OtherVT>;
def pclabel : Operand<i32>;
// Addressing modes
def ADDRspii : ComplexPattern<i32, 2, "SelectADDRspii", [add, frameindex], []>;
def ADDRdpii : ComplexPattern<i32, 2, "SelectADDRdpii", [add, dprelwrapper],
[]>;
def ADDRcpii : ComplexPattern<i32, 2, "SelectADDRcpii", [add, cprelwrapper],
[]>;
// Address operands
def MEMii : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops i32imm, i32imm);
}
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
// Three operand short
multiclass F3R_2RUS<string OpcStr, SDNode OpNode> {
def _3r: _F3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
def _2rus : _F2RUS<
(outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, immUs:$c))]>;
}
multiclass F3R_2RUS_np<string OpcStr> {
def _3r: _F3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[]>;
def _2rus : _F2RUS<
(outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[]>;
}
multiclass F3R_2RBITP<string OpcStr, SDNode OpNode> {
def _3r: _F3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
def _2rus : _F2RUS<
(outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, immBitp:$c))]>;
}
class F3R<string OpcStr, SDNode OpNode> : _F3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
class F3R_np<string OpcStr> : _F3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[]>;
// Three operand long
/// FL3R_L2RUS multiclass - Define a normal FL3R/FL2RUS pattern in one shot.
multiclass FL3R_L2RUS<string OpcStr, SDNode OpNode> {
def _l3r: _FL3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
def _l2rus : _FL2RUS<
(outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, immUs:$c))]>;
}
/// FL3R_L2RUS multiclass - Define a normal FL3R/FL2RUS pattern in one shot.
multiclass FL3R_L2RBITP<string OpcStr, SDNode OpNode> {
def _l3r: _FL3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
def _l2rus : _FL2RUS<
(outs GRRegs:$dst), (ins GRRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, immBitp:$c))]>;
}
class FL3R<string OpcStr, SDNode OpNode> : _FL3R<
(outs GRRegs:$dst), (ins GRRegs:$b, GRRegs:$c),
!strconcat(OpcStr, " $dst, $b, $c"),
[(set GRRegs:$dst, (OpNode GRRegs:$b, GRRegs:$c))]>;
// Register - U6
// Operand register - U6
multiclass FRU6_LRU6_branch<string OpcStr> {
def _ru6: _FRU6<
(outs), (ins GRRegs:$cond, brtarget:$dest),
!strconcat(OpcStr, " $cond, $dest"),
[]>;
def _lru6: _FLRU6<
(outs), (ins GRRegs:$cond, brtarget:$dest),
!strconcat(OpcStr, " $cond, $dest"),
[]>;
}
multiclass FRU6_LRU6_cp<string OpcStr> {
def _ru6: _FRU6<
(outs GRRegs:$dst), (ins i32imm:$a),
!strconcat(OpcStr, " $dst, cp[$a]"),
[]>;
def _lru6: _FLRU6<
(outs GRRegs:$dst), (ins i32imm:$a),
!strconcat(OpcStr, " $dst, cp[$a]"),
[]>;
}
// U6
multiclass FU6_LU6<string OpcStr, SDNode OpNode> {
def _u6: _FU6<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[(OpNode immU6:$b)]>;
def _lu6: _FLU6<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[(OpNode immU16:$b)]>;
}
multiclass FU6_LU6_np<string OpcStr> {
def _u6: _FU6<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[]>;
def _lu6: _FLU6<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[]>;
}
// U10
multiclass FU10_LU10_np<string OpcStr> {
def _u10: _FU10<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[]>;
def _lu10: _FLU10<
(outs), (ins i32imm:$b),
!strconcat(OpcStr, " $b"),
[]>;
}
// Two operand short
class F2R_np<string OpcStr> : _F2R<
(outs GRRegs:$dst), (ins GRRegs:$b),
!strconcat(OpcStr, " $dst, $b"),
[]>;
// Two operand long
//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : PseudoInstXCore<(outs), (ins i32imm:$amt),
"${:comment} ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : PseudoInstXCore<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"${:comment} ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
def LDWFI : PseudoInstXCore<(outs GRRegs:$dst), (ins MEMii:$addr),
"${:comment} LDWFI $dst, $addr",
[(set GRRegs:$dst, (load ADDRspii:$addr))]>;
def LDAWFI : PseudoInstXCore<(outs GRRegs:$dst), (ins MEMii:$addr),
"${:comment} LDAWFI $dst, $addr",
[(set GRRegs:$dst, ADDRspii:$addr)]>;
def STWFI : PseudoInstXCore<(outs), (ins GRRegs:$src, MEMii:$addr),
"${:comment} STWFI $src, $addr",
[(store GRRegs:$src, ADDRspii:$addr)]>;
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
// scheduler into a branch sequence.
let usesCustomDAGSchedInserter = 1 in {
def SELECT_CC : PseudoInstXCore<(outs GRRegs:$dst),
(ins GRRegs:$cond, GRRegs:$T, GRRegs:$F),
"${:comment} SELECT_CC PSEUDO!",
[(set GRRegs:$dst,
(select GRRegs:$cond, GRRegs:$T, GRRegs:$F))]>;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Three operand short
defm ADD : F3R_2RUS<"add", add>;
defm SUB : F3R_2RUS<"sub", sub>;
let neverHasSideEffects = 1 in {
defm EQ : F3R_2RUS_np<"eq">;
def LSS_3r : F3R_np<"lss">;
def LSU_3r : F3R_np<"lsu">;
}
def AND_3r : F3R<"and", and>;
def OR_3r : F3R<"or", or>;
let mayLoad=1 in {
def LDW_3r : _F3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"ldw $dst, $addr[$offset]",
[]>;
def LDW_2rus : _F2RUS<(outs GRRegs:$dst), (ins GRRegs:$addr, i32imm:$offset),
"ldw $dst, $addr[$offset]",
[]>;
def LD16S_3r : _F3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"ld16s $dst, $addr[$offset]",
[]>;
def LD8U_3r : _F3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"ld8u $dst, $addr[$offset]",
[]>;
}
let mayStore=1 in {
def STW_3r : _F3R<(outs), (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
"stw $val, $addr[$offset]",
[]>;
def STW_2rus : _F2RUS<(outs), (ins GRRegs:$val, GRRegs:$addr, i32imm:$offset),
"stw $val, $addr[$offset]",
[]>;
}
defm SHL : F3R_2RBITP<"shl", shl>;
defm SHR : F3R_2RBITP<"shr", srl>;
// TODO tsetr
// Three operand long
def LDAWF_l3r : _FL3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"ldaw $dst, $addr[$offset]",
[(set GRRegs:$dst, (ldawf GRRegs:$addr, GRRegs:$offset))]>;
let neverHasSideEffects = 1 in
def LDAWF_l2rus : _FL2RUS<(outs GRRegs:$dst),
(ins GRRegs:$addr, i32imm:$offset),
"ldaw $dst, $addr[$offset]",
[]>;
def LDAWB_l3r : _FL3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"ldaw $dst, $addr[-$offset]",
[(set GRRegs:$dst, (ldawb GRRegs:$addr, GRRegs:$offset))]>;
let neverHasSideEffects = 1 in
def LDAWB_l2rus : _FL2RUS<(outs GRRegs:$dst),
(ins GRRegs:$addr, i32imm:$offset),
"ldaw $dst, $addr[-$offset]",
[]>;
def LDA16F_l3r : _FL3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"lda16 $dst, $addr[$offset]",
[(set GRRegs:$dst, (lda16f GRRegs:$addr, GRRegs:$offset))]>;
def LDA16B_l3r : _FL3R<(outs GRRegs:$dst), (ins GRRegs:$addr, GRRegs:$offset),
"lda16 $dst, $addr[-$offset]",
[(set GRRegs:$dst, (lda16b GRRegs:$addr, GRRegs:$offset))]>;
def MUL_l3r : FL3R<"mul", mul>;
// Instructions which may trap are marked as side effecting.
let hasSideEffects = 1 in {
def DIVS_l3r : FL3R<"divs", sdiv>;
def DIVU_l3r : FL3R<"divu", udiv>;
def REMS_l3r : FL3R<"rems", srem>;
def REMU_l3r : FL3R<"remu", urem>;
}
def XOR_l3r : FL3R<"xor", xor>;
defm ASHR : FL3R_L2RBITP<"ashr", sra>;
// TODO crc32, crc8, inpw, outpw
let mayStore=1 in {
def ST16_l3r : _FL3R<(outs), (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
"st16 $val, $addr[$offset]",
[]>;
def ST8_l3r : _FL3R<(outs), (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
"st8 $val, $addr[$offset]",
[]>;
}
// Four operand long
let Predicates = [HasXS1B], Constraints = "$src1 = $dst1,$src2 = $dst2" in {
def MACCU_l4r : _L4R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
GRRegs:$src4),
"maccu $dst1, $dst2, $src3, $src4",
[]>;
def MACCS_l4r : _L4R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
GRRegs:$src4),
"maccs $dst1, $dst2, $src3, $src4",
[]>;
}
// Five operand long
let Predicates = [HasXS1B] in {
def LADD_l5r : _L5R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
"ladd $dst1, $dst2, $src1, $src2, $src3",
[]>;
def LSUB_l5r : _L5R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
"lsub $dst1, $dst2, $src1, $src2, $src3",
[]>;
def LDIV_l5r : _L5R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
"ldiv $dst1, $dst2, $src1, $src2, $src3",
[]>;
}
// Six operand long
def LMUL_l6r : _L6R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
GRRegs:$src4),
"lmul $dst1, $dst2, $src1, $src2, $src3, $src4",
[]>;
let Predicates = [HasXS1A] in
def MACC_l6r : _L6R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
GRRegs:$src4),
"macc $dst1, $dst2, $src1, $src2, $src3, $src4",
[]>;
// Register - U6
//let Uses = [DP] in ...
let neverHasSideEffects = 1, isReMaterializable = 1 in
def LDAWDP_ru6: _FRU6<(outs GRRegs:$dst), (ins MEMii:$a),
"ldaw $dst, dp[$a]",
[]>;
let isReMaterializable = 1 in
def LDAWDP_lru6: _FLRU6<
(outs GRRegs:$dst), (ins MEMii:$a),
"ldaw $dst, dp[$a]",
[(set GRRegs:$dst, ADDRdpii:$a)]>;
let mayLoad=1 in
def LDWDP_ru6: _FRU6<(outs GRRegs:$dst), (ins MEMii:$a),
"ldw $dst, dp[$a]",
[]>;
def LDWDP_lru6: _FLRU6<
(outs GRRegs:$dst), (ins MEMii:$a),
"ldw $dst, dp[$a]",
[(set GRRegs:$dst, (load ADDRdpii:$a))]>;
let mayStore=1 in
def STWDP_ru6 : _FRU6<(outs), (ins GRRegs:$val, MEMii:$addr),
"stw $val, dp[$addr]",
[]>;
def STWDP_lru6 : _FLRU6<(outs), (ins GRRegs:$val, MEMii:$addr),
"stw $val, dp[$addr]",
[(store GRRegs:$val, ADDRdpii:$addr)]>;
//let Uses = [CP] in ..
let mayLoad = 1, isReMaterializable = 1 in
defm LDWCP : FRU6_LRU6_cp<"ldw">;
let Uses = [SP] in {
let mayStore=1 in {
def STWSP_ru6 : _FRU6<
(outs), (ins GRRegs:$val, i32imm:$index),
"stw $val, sp[$index]",
[(XCoreStwsp GRRegs:$val, immU6:$index)]>;
def STWSP_lru6 : _FLRU6<
(outs), (ins GRRegs:$val, i32imm:$index),
"stw $val, sp[$index]",
[(XCoreStwsp GRRegs:$val, immU16:$index)]>;
}
let mayLoad=1 in {
def LDWSP_ru6 : _FRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldw $dst, sp[$b]",
[]>;
def LDWSP_lru6 : _FLRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldw $dst, sp[$b]",
[]>;
}
let neverHasSideEffects = 1 in {
def LDAWSP_ru6 : _FRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldaw $dst, sp[$b]",
[]>;
def LDAWSP_lru6 : _FLRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldaw $dst, sp[$b]",
[]>;
def LDAWSP_ru6_RRegs : _FRU6<
(outs RRegs:$dst), (ins i32imm:$b),
"ldaw $dst, sp[$b]",
[]>;
def LDAWSP_lru6_RRegs : _FLRU6<
(outs RRegs:$dst), (ins i32imm:$b),
"ldaw $dst, sp[$b]",
[]>;
}
}
let isReMaterializable = 1 in {
def LDC_ru6 : _FRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldc $dst, $b",
[(set GRRegs:$dst, immU6:$b)]>;
def LDC_lru6 : _FLRU6<
(outs GRRegs:$dst), (ins i32imm:$b),
"ldc $dst, $b",
[(set GRRegs:$dst, immU16:$b)]>;
}
// Operand register - U6
// TODO setc
let isBranch = 1, isTerminator = 1 in {
defm BRFT: FRU6_LRU6_branch<"bt">;
defm BRBT: FRU6_LRU6_branch<"bt">;
defm BRFF: FRU6_LRU6_branch<"bf">;
defm BRBF: FRU6_LRU6_branch<"bf">;
}
// U6
let Defs = [SP], Uses = [SP] in {
let neverHasSideEffects = 1 in
defm EXTSP : FU6_LU6_np<"extsp">;
let mayStore = 1 in
defm ENTSP : FU6_LU6_np<"entsp">;
let isReturn = 1, isTerminator = 1, mayLoad = 1 in {
defm RETSP : FU6_LU6<"retsp", XCoreRetsp>;
}
}
// TODO extdp, kentsp, krestsp, blat, setsr
// clrsr, getsr, kalli
let isBranch = 1, isTerminator = 1 in {
def BRBU_u6 : _FU6<
(outs),
(ins brtarget:$target),
"bu $target",
[]>;
def BRBU_lu6 : _FLU6<
(outs),
(ins brtarget:$target),
"bu $target",
[]>;
def BRFU_u6 : _FU6<
(outs),
(ins brtarget:$target),
"bu $target",
[]>;
def BRFU_lu6 : _FLU6<
(outs),
(ins brtarget:$target),
"bu $target",
[]>;
}
//let Uses = [CP] in ...
let Predicates = [HasXS1B], Defs = [R11], neverHasSideEffects = 1,
isReMaterializable = 1 in
def LDAWCP_u6: _FRU6<(outs), (ins MEMii:$a),
"ldaw r11, cp[$a]",
[]>;
let Predicates = [HasXS1B], Defs = [R11], isReMaterializable = 1 in
def LDAWCP_lu6: _FLRU6<
(outs), (ins MEMii:$a),
"ldaw r11, cp[$a]",
[(set R11, ADDRcpii:$a)]>;
// U10
// TODO ldwcpl, blacp
let Defs = [R11], isReMaterializable = 1, neverHasSideEffects = 1 in
def LDAP_u10 : _FU10<
(outs),
(ins i32imm:$addr),
"ldap r11, $addr",
[]>;
let Defs = [R11], isReMaterializable = 1 in
def LDAP_lu10 : _FLU10<
(outs),
(ins i32imm:$addr),
"ldap r11, $addr",
[(set R11, (pcrelwrapper tglobaladdr:$addr))]>;
let isCall=1,
// All calls clobber the the link register and the non-callee-saved registers:
Defs = [R0, R1, R2, R3, R11, LR] in {
def BL_u10 : _FU10<
(outs),
(ins calltarget:$target, variable_ops),
"bl $target",
[(XCoreBranchLink immU10:$target)]>;
def BL_lu10 : _FLU10<
(outs),
(ins calltarget:$target, variable_ops),
"bl $target",
[(XCoreBranchLink immU20:$target)]>;
}
// Two operand short
// TODO getr, getst
def NOT : _F2R<(outs GRRegs:$dst), (ins GRRegs:$b),
"not $dst, $b",
[(set GRRegs:$dst, (not GRRegs:$b))]>;
def NEG : _F2R<(outs GRRegs:$dst), (ins GRRegs:$b),
"neg $dst, $b",
[(set GRRegs:$dst, (ineg GRRegs:$b))]>;
// TODO setd, eet, eef, getts, setpt, outct, inct, chkct, outt, intt, out,
// in, outshr, inshr, testct, testwct, tinitpc, tinitdp, tinitsp, tinitcp,
// tsetmr, sext (reg), zext (reg)
let isTwoAddress = 1 in {
let neverHasSideEffects = 1 in
def SEXT_rus : _FRUS<(outs GRRegs:$dst), (ins GRRegs:$src1, i32imm:$src2),
"sext $dst, $src2",
[]>;
let neverHasSideEffects = 1 in
def ZEXT_rus : _FRUS<(outs GRRegs:$dst), (ins GRRegs:$src1, i32imm:$src2),
"zext $dst, $src2",
[]>;
def ANDNOT_2r : _F2R<(outs GRRegs:$dst), (ins GRRegs:$src1, GRRegs:$src2),
"andnot $dst, $src2",
[(set GRRegs:$dst, (and GRRegs:$src1, (not GRRegs:$src2)))]>;
}
let isReMaterializable = 1, neverHasSideEffects = 1 in
def MKMSK_rus : _FRUS<(outs GRRegs:$dst), (ins i32imm:$size),
"mkmsk $dst, $size",
[]>;
def MKMSK_2r : _FRUS<(outs GRRegs:$dst), (ins GRRegs:$size),
"mkmsk $dst, $size",
[(set GRRegs:$dst, (add (shl 1, GRRegs:$size), 0xffffffff))]>;
// Two operand long
// TODO settw, setclk, setrdy, setpsc, endin, peek,
// getd, testlcl, tinitlr, getps, setps
def BITREV_l2r : _FL2R<(outs GRRegs:$dst), (ins GRRegs:$src),
"bitrev $dst, $src",
[(set GRRegs:$dst, (int_xcore_bitrev GRRegs:$src))]>;
def BYTEREV_l2r : _FL2R<(outs GRRegs:$dst), (ins GRRegs:$src),
"byterev $dst, $src",
[(set GRRegs:$dst, (bswap GRRegs:$src))]>;
def CLZ_l2r : _FL2R<(outs GRRegs:$dst), (ins GRRegs:$src),
"clz $dst, $src",
[(set GRRegs:$dst, (ctlz GRRegs:$src))]>;
// One operand short
// TODO edu, eeu, waitet, waitef, freer, tstart, msync, mjoin, syncr, clrtp
// bru, setdp, setcp, setv, setev, kcall
// dgetreg
let isBranch=1, isIndirectBranch=1, isTerminator=1 in
def BAU_1r : _F1R<(outs), (ins GRRegs:$addr),
"bau $addr",
[(brind GRRegs:$addr)]>;
let Defs=[SP], neverHasSideEffects=1 in
def SETSP_1r : _F1R<(outs), (ins GRRegs:$src),
"set sp, $src",
[]>;
let isBarrier = 1, hasCtrlDep = 1 in
def ECALLT_1r : _F1R<(outs), (ins GRRegs:$src),
"ecallt $src",
[]>;
let isBarrier = 1, hasCtrlDep = 1 in
def ECALLF_1r : _F1R<(outs), (ins GRRegs:$src),
"ecallf $src",
[]>;
let isCall=1,
// All calls clobber the the link register and the non-callee-saved registers:
Defs = [R0, R1, R2, R3, R11, LR] in {
def BLA_1r : _F1R<(outs), (ins GRRegs:$addr, variable_ops),
"bla $addr",
[(XCoreBranchLink GRRegs:$addr)]>;
}
// Zero operand short
// TODO waiteu, clre, ssync, freet, ldspc, stspc, ldssr, stssr, ldsed, stsed,
// stet, geted, getet, getkep, getksp, setkep, getid, kret, dcall, dret,
// dentsp, drestsp
let Defs = [R11] in
def GETID_0R : _F0R<(outs), (ins),
"get r11, id",
[(set R11, (int_xcore_getid))]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
def : Pat<(XCoreBranchLink tglobaladdr:$addr), (BL_lu10 tglobaladdr:$addr)>;
def : Pat<(XCoreBranchLink texternalsym:$addr), (BL_lu10 texternalsym:$addr)>;
/// sext_inreg
def : Pat<(sext_inreg GRRegs:$b, i1), (SEXT_rus GRRegs:$b, 1)>;
def : Pat<(sext_inreg GRRegs:$b, i8), (SEXT_rus GRRegs:$b, 8)>;
def : Pat<(sext_inreg GRRegs:$b, i16), (SEXT_rus GRRegs:$b, 16)>;
/// loads
def : Pat<(zextloadi8 (add GRRegs:$addr, GRRegs:$offset)),
(LD8U_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(zextloadi8 GRRegs:$addr), (LD8U_3r GRRegs:$addr, (LDC_ru6 0))>;
def : Pat<(sextloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
(LD16S_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(sextloadi16 GRRegs:$addr), (LD16S_3r GRRegs:$addr, (LDC_ru6 0))>;
def : Pat<(load (ldawf GRRegs:$addr, GRRegs:$offset)),
(LDW_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(load (add GRRegs:$addr, immUs4:$offset)),
(LDW_2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
def : Pat<(load GRRegs:$addr), (LDW_2rus GRRegs:$addr, 0)>;
/// anyext
def : Pat<(extloadi8 (add GRRegs:$addr, GRRegs:$offset)),
(LD8U_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(extloadi8 GRRegs:$addr), (LD8U_3r GRRegs:$addr, (LDC_ru6 0))>;
def : Pat<(extloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
(LD16S_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(extloadi16 GRRegs:$addr), (LD16S_3r GRRegs:$addr, (LDC_ru6 0))>;
/// stores
def : Pat<(truncstorei8 GRRegs:$val, (add GRRegs:$addr, GRRegs:$offset)),
(ST8_l3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(truncstorei8 GRRegs:$val, GRRegs:$addr),
(ST8_l3r GRRegs:$val, GRRegs:$addr, (LDC_ru6 0))>;
def : Pat<(truncstorei16 GRRegs:$val, (lda16f GRRegs:$addr, GRRegs:$offset)),
(ST16_l3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(truncstorei16 GRRegs:$val, GRRegs:$addr),
(ST16_l3r GRRegs:$val, GRRegs:$addr, (LDC_ru6 0))>;
def : Pat<(store GRRegs:$val, (ldawf GRRegs:$addr, GRRegs:$offset)),
(STW_3r GRRegs:$val, GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(store GRRegs:$val, (add GRRegs:$addr, immUs4:$offset)),
(STW_2rus GRRegs:$val, GRRegs:$addr, (div4_xform immUs4:$offset))>;
def : Pat<(store GRRegs:$val, GRRegs:$addr),
(STW_2rus GRRegs:$val, GRRegs:$addr, 0)>;
/// cttz
def : Pat<(cttz GRRegs:$src), (CLZ_l2r (BITREV_l2r GRRegs:$src))>;
/// trap
def : Pat<(trap), (ECALLF_1r (LDC_ru6 0))>;
///
/// branch patterns
///
// unconditional branch
def : Pat<(br bb:$addr), (BRFU_lu6 bb:$addr)>;
// direct match equal/notequal zero brcond
def : Pat<(brcond (setne GRRegs:$lhs, 0), bb:$dst),
(BRFT_lru6 GRRegs:$lhs, bb:$dst)>;
def : Pat<(brcond (seteq GRRegs:$lhs, 0), bb:$dst),
(BRFF_lru6 GRRegs:$lhs, bb:$dst)>;
def : Pat<(brcond (setle GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
(BRFF_lru6 (LSS_3r GRRegs:$rhs, GRRegs:$lhs), bb:$dst)>;
def : Pat<(brcond (setule GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
(BRFF_lru6 (LSU_3r GRRegs:$rhs, GRRegs:$lhs), bb:$dst)>;
def : Pat<(brcond (setge GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
(BRFF_lru6 (LSS_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setuge GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
(BRFF_lru6 (LSU_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setne GRRegs:$lhs, GRRegs:$rhs), bb:$dst),
(BRFF_lru6 (EQ_3r GRRegs:$lhs, GRRegs:$rhs), bb:$dst)>;
def : Pat<(brcond (setne GRRegs:$lhs, immUs:$rhs), bb:$dst),
(BRFF_lru6 (EQ_2rus GRRegs:$lhs, immUs:$rhs), bb:$dst)>;
// generic brcond pattern
def : Pat<(brcond GRRegs:$cond, bb:$addr), (BRFT_lru6 GRRegs:$cond, bb:$addr)>;
///
/// Select patterns
///
// direct match equal/notequal zero select
def : Pat<(select (setne GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
(SELECT_CC GRRegs:$lhs, GRRegs:$T, GRRegs:$F)>;
def : Pat<(select (seteq GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
(SELECT_CC GRRegs:$lhs, GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setle GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (LSS_3r GRRegs:$rhs, GRRegs:$lhs), GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setule GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (LSU_3r GRRegs:$rhs, GRRegs:$lhs), GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setge GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (LSS_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setuge GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (LSU_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setne GRRegs:$lhs, GRRegs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (EQ_3r GRRegs:$lhs, GRRegs:$rhs), GRRegs:$F, GRRegs:$T)>;
def : Pat<(select (setne GRRegs:$lhs, immUs:$rhs), GRRegs:$T, GRRegs:$F),
(SELECT_CC (EQ_2rus GRRegs:$lhs, immUs:$rhs), GRRegs:$F, GRRegs:$T)>;
///
/// setcc patterns, only matched when none of the above brcond
/// patterns match
///
// setcc 2 register operands
def : Pat<(setle GRRegs:$lhs, GRRegs:$rhs),
(EQ_2rus (LSS_3r GRRegs:$rhs, GRRegs:$lhs), 0)>;
def : Pat<(setule GRRegs:$lhs, GRRegs:$rhs),
(EQ_2rus (LSU_3r GRRegs:$rhs, GRRegs:$lhs), 0)>;
def : Pat<(setgt GRRegs:$lhs, GRRegs:$rhs),
(LSS_3r GRRegs:$rhs, GRRegs:$lhs)>;
def : Pat<(setugt GRRegs:$lhs, GRRegs:$rhs),
(LSU_3r GRRegs:$rhs, GRRegs:$lhs)>;
def : Pat<(setge GRRegs:$lhs, GRRegs:$rhs),
(EQ_2rus (LSS_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
def : Pat<(setuge GRRegs:$lhs, GRRegs:$rhs),
(EQ_2rus (LSU_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
def : Pat<(setlt GRRegs:$lhs, GRRegs:$rhs),
(LSS_3r GRRegs:$lhs, GRRegs:$rhs)>;
def : Pat<(setult GRRegs:$lhs, GRRegs:$rhs),
(LSU_3r GRRegs:$lhs, GRRegs:$rhs)>;
def : Pat<(setne GRRegs:$lhs, GRRegs:$rhs),
(EQ_2rus (EQ_3r GRRegs:$lhs, GRRegs:$rhs), 0)>;
def : Pat<(seteq GRRegs:$lhs, GRRegs:$rhs),
(EQ_3r GRRegs:$lhs, GRRegs:$rhs)>;
// setcc reg/imm operands
def : Pat<(seteq GRRegs:$lhs, immUs:$rhs),
(EQ_2rus GRRegs:$lhs, immUs:$rhs)>;
def : Pat<(setne GRRegs:$lhs, immUs:$rhs),
(EQ_2rus (EQ_2rus GRRegs:$lhs, immUs:$rhs), 0)>;
// misc
def : Pat<(add GRRegs:$addr, immUs4:$offset),
(LDAWF_l2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
def : Pat<(sub GRRegs:$addr, immUs4:$offset),
(LDAWB_l2rus GRRegs:$addr, (div4_xform immUs4:$offset))>;
def : Pat<(and GRRegs:$val, immMskBitp:$mask),
(ZEXT_rus GRRegs:$val, (msksize_xform immMskBitp:$mask))>;
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
def : Pat<(add GRRegs:$src1, immUsNeg:$src2),
(SUB_2rus GRRegs:$src1, (neg_xform immUsNeg:$src2))>;
def : Pat<(add GRRegs:$src1, immUs4Neg:$src2),
(LDAWB_l2rus GRRegs:$src1, (div4neg_xform immUs4Neg:$src2))>;
///
/// Some peepholes
///
def : Pat<(mul GRRegs:$src, 3),
(LDA16F_l3r GRRegs:$src, GRRegs:$src)>;
def : Pat<(mul GRRegs:$src, 5),
(LDAWF_l3r GRRegs:$src, GRRegs:$src)>;
def : Pat<(mul GRRegs:$src, -3),
(LDAWB_l3r GRRegs:$src, GRRegs:$src)>;
// ashr X, 32 is equivalent to ashr X, 31 on the XCore.
def : Pat<(sra GRRegs:$src, 31),
(ASHR_l2rus GRRegs:$src, 32)>;
def : Pat<(sra (shl GRRegs:$src, immBpwSubBitp:$imm), immBpwSubBitp:$imm),
(SEXT_rus GRRegs:$src, (bpwsub_xform immBpwSubBitp:$imm))>;