mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-10 01:10:48 +00:00
6fb881c036
hasConstantValue. I was leery of using SimplifyInstruction while the IR was still in a half-baked state, which is the reason for delaying the simplification until the IR is fully cooked. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119494 91177308-0d34-0410-b5e6-96231b3b80d8
671 lines
28 KiB
C++
671 lines
28 KiB
C++
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements inlining of a function into a call site, resolving
|
|
// parameters and the return value as appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Attributes.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
using namespace llvm;
|
|
|
|
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
|
|
return InlineFunction(CallSite(CI), IFI);
|
|
}
|
|
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
|
|
return InlineFunction(CallSite(II), IFI);
|
|
}
|
|
|
|
|
|
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
|
|
/// an invoke, we have to turn all of the calls that can throw into
|
|
/// invokes. This function analyze BB to see if there are any calls, and if so,
|
|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
|
|
/// nodes in that block with the values specified in InvokeDestPHIValues.
|
|
///
|
|
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
|
|
BasicBlock *InvokeDest,
|
|
const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
|
|
Instruction *I = BBI++;
|
|
|
|
// We only need to check for function calls: inlined invoke
|
|
// instructions require no special handling.
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
if (CI == 0) continue;
|
|
|
|
// If this call cannot unwind, don't convert it to an invoke.
|
|
if (CI->doesNotThrow())
|
|
continue;
|
|
|
|
// Convert this function call into an invoke instruction.
|
|
// First, split the basic block.
|
|
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
|
|
|
|
// Next, create the new invoke instruction, inserting it at the end
|
|
// of the old basic block.
|
|
ImmutableCallSite CS(CI);
|
|
SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
|
|
InvokeInst *II =
|
|
InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
|
|
InvokeArgs.begin(), InvokeArgs.end(),
|
|
CI->getName(), BB->getTerminator());
|
|
II->setCallingConv(CI->getCallingConv());
|
|
II->setAttributes(CI->getAttributes());
|
|
|
|
// Make sure that anything using the call now uses the invoke! This also
|
|
// updates the CallGraph if present, because it uses a WeakVH.
|
|
CI->replaceAllUsesWith(II);
|
|
|
|
// Delete the unconditional branch inserted by splitBasicBlock
|
|
BB->getInstList().pop_back();
|
|
Split->getInstList().pop_front(); // Delete the original call
|
|
|
|
// Update any PHI nodes in the exceptional block to indicate that
|
|
// there is now a new entry in them.
|
|
unsigned i = 0;
|
|
for (BasicBlock::iterator I = InvokeDest->begin();
|
|
isa<PHINode>(I); ++I, ++i)
|
|
cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
|
|
|
|
// This basic block is now complete, the caller will continue scanning the
|
|
// next one.
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes and turn unwind
|
|
/// instructions into branches to the invoke unwind dest.
|
|
///
|
|
/// II is the invoke instruction being inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *InvokeDest = II->getUnwindDest();
|
|
SmallVector<Value*, 8> InvokeDestPHIValues;
|
|
|
|
// If there are PHI nodes in the unwind destination block, we need to
|
|
// keep track of which values came into them from this invoke, then remove
|
|
// the entry for this block.
|
|
BasicBlock *InvokeBlock = II->getParent();
|
|
for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
// Save the value to use for this edge.
|
|
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
|
|
}
|
|
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
// The inlined code is currently at the end of the function, scan from the
|
|
// start of the inlined code to its end, checking for stuff we need to
|
|
// rewrite. If the code doesn't have calls or unwinds, we know there is
|
|
// nothing to rewrite.
|
|
if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
InvokeDest->removePredecessor(II->getParent());
|
|
return;
|
|
}
|
|
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
|
|
if (InlinedCodeInfo.ContainsCalls)
|
|
HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
|
|
InvokeDestPHIValues);
|
|
|
|
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
|
|
// An UnwindInst requires special handling when it gets inlined into an
|
|
// invoke site. Once this happens, we know that the unwind would cause
|
|
// a control transfer to the invoke exception destination, so we can
|
|
// transform it into a direct branch to the exception destination.
|
|
BranchInst::Create(InvokeDest, UI);
|
|
|
|
// Delete the unwind instruction!
|
|
UI->eraseFromParent();
|
|
|
|
// Update any PHI nodes in the exceptional block to indicate that
|
|
// there is now a new entry in them.
|
|
unsigned i = 0;
|
|
for (BasicBlock::iterator I = InvokeDest->begin();
|
|
isa<PHINode>(I); ++I, ++i) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
PN->addIncoming(InvokeDestPHIValues[i], BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
InvokeDest->removePredecessor(II->getParent());
|
|
}
|
|
|
|
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
|
|
/// into the caller, update the specified callgraph to reflect the changes we
|
|
/// made. Note that it's possible that not all code was copied over, so only
|
|
/// some edges of the callgraph may remain.
|
|
static void UpdateCallGraphAfterInlining(CallSite CS,
|
|
Function::iterator FirstNewBlock,
|
|
ValueToValueMapTy &VMap,
|
|
InlineFunctionInfo &IFI) {
|
|
CallGraph &CG = *IFI.CG;
|
|
const Function *Caller = CS.getInstruction()->getParent()->getParent();
|
|
const Function *Callee = CS.getCalledFunction();
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
CallGraphNode *CallerNode = CG[Caller];
|
|
|
|
// Since we inlined some uninlined call sites in the callee into the caller,
|
|
// add edges from the caller to all of the callees of the callee.
|
|
CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
|
|
|
|
// Consider the case where CalleeNode == CallerNode.
|
|
CallGraphNode::CalledFunctionsVector CallCache;
|
|
if (CalleeNode == CallerNode) {
|
|
CallCache.assign(I, E);
|
|
I = CallCache.begin();
|
|
E = CallCache.end();
|
|
}
|
|
|
|
for (; I != E; ++I) {
|
|
const Value *OrigCall = I->first;
|
|
|
|
ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
|
|
// Only copy the edge if the call was inlined!
|
|
if (VMI == VMap.end() || VMI->second == 0)
|
|
continue;
|
|
|
|
// If the call was inlined, but then constant folded, there is no edge to
|
|
// add. Check for this case.
|
|
Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
|
|
if (NewCall == 0) continue;
|
|
|
|
// Remember that this call site got inlined for the client of
|
|
// InlineFunction.
|
|
IFI.InlinedCalls.push_back(NewCall);
|
|
|
|
// It's possible that inlining the callsite will cause it to go from an
|
|
// indirect to a direct call by resolving a function pointer. If this
|
|
// happens, set the callee of the new call site to a more precise
|
|
// destination. This can also happen if the call graph node of the caller
|
|
// was just unnecessarily imprecise.
|
|
if (I->second->getFunction() == 0)
|
|
if (Function *F = CallSite(NewCall).getCalledFunction()) {
|
|
// Indirect call site resolved to direct call.
|
|
CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
|
|
|
|
continue;
|
|
}
|
|
|
|
CallerNode->addCalledFunction(CallSite(NewCall), I->second);
|
|
}
|
|
|
|
// Update the call graph by deleting the edge from Callee to Caller. We must
|
|
// do this after the loop above in case Caller and Callee are the same.
|
|
CallerNode->removeCallEdgeFor(CS);
|
|
}
|
|
|
|
// InlineFunction - This function inlines the called function into the basic
|
|
// block of the caller. This returns false if it is not possible to inline this
|
|
// call. The program is still in a well defined state if this occurs though.
|
|
//
|
|
// Note that this only does one level of inlining. For example, if the
|
|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
|
// exists in the instruction stream. Similiarly this will inline a recursive
|
|
// function by one level.
|
|
//
|
|
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
|
|
Instruction *TheCall = CS.getInstruction();
|
|
LLVMContext &Context = TheCall->getContext();
|
|
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
|
|
"Instruction not in function!");
|
|
|
|
// If IFI has any state in it, zap it before we fill it in.
|
|
IFI.reset();
|
|
|
|
const Function *CalledFunc = CS.getCalledFunction();
|
|
if (CalledFunc == 0 || // Can't inline external function or indirect
|
|
CalledFunc->isDeclaration() || // call, or call to a vararg function!
|
|
CalledFunc->getFunctionType()->isVarArg()) return false;
|
|
|
|
|
|
// If the call to the callee is not a tail call, we must clear the 'tail'
|
|
// flags on any calls that we inline.
|
|
bool MustClearTailCallFlags =
|
|
!(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
|
|
|
|
// If the call to the callee cannot throw, set the 'nounwind' flag on any
|
|
// calls that we inline.
|
|
bool MarkNoUnwind = CS.doesNotThrow();
|
|
|
|
BasicBlock *OrigBB = TheCall->getParent();
|
|
Function *Caller = OrigBB->getParent();
|
|
|
|
// GC poses two hazards to inlining, which only occur when the callee has GC:
|
|
// 1. If the caller has no GC, then the callee's GC must be propagated to the
|
|
// caller.
|
|
// 2. If the caller has a differing GC, it is invalid to inline.
|
|
if (CalledFunc->hasGC()) {
|
|
if (!Caller->hasGC())
|
|
Caller->setGC(CalledFunc->getGC());
|
|
else if (CalledFunc->getGC() != Caller->getGC())
|
|
return false;
|
|
}
|
|
|
|
// Get an iterator to the last basic block in the function, which will have
|
|
// the new function inlined after it.
|
|
//
|
|
Function::iterator LastBlock = &Caller->back();
|
|
|
|
// Make sure to capture all of the return instructions from the cloned
|
|
// function.
|
|
SmallVector<ReturnInst*, 8> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
Function::iterator FirstNewBlock;
|
|
|
|
{ // Scope to destroy VMap after cloning.
|
|
ValueToValueMapTy VMap;
|
|
|
|
assert(CalledFunc->arg_size() == CS.arg_size() &&
|
|
"No varargs calls can be inlined!");
|
|
|
|
// Calculate the vector of arguments to pass into the function cloner, which
|
|
// matches up the formal to the actual argument values.
|
|
CallSite::arg_iterator AI = CS.arg_begin();
|
|
unsigned ArgNo = 0;
|
|
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
|
|
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
|
|
Value *ActualArg = *AI;
|
|
|
|
// When byval arguments actually inlined, we need to make the copy implied
|
|
// by them explicit. However, we don't do this if the callee is readonly
|
|
// or readnone, because the copy would be unneeded: the callee doesn't
|
|
// modify the struct.
|
|
if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
|
|
!CalledFunc->onlyReadsMemory()) {
|
|
const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
|
|
const Type *VoidPtrTy =
|
|
Type::getInt8PtrTy(Context);
|
|
|
|
// Create the alloca. If we have TargetData, use nice alignment.
|
|
unsigned Align = 1;
|
|
if (IFI.TD) Align = IFI.TD->getPrefTypeAlignment(AggTy);
|
|
Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
|
|
I->getName(),
|
|
&*Caller->begin()->begin());
|
|
// Emit a memcpy.
|
|
const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
|
|
Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
|
|
Intrinsic::memcpy,
|
|
Tys, 3);
|
|
Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
|
|
Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
|
|
|
|
Value *Size;
|
|
if (IFI.TD == 0)
|
|
Size = ConstantExpr::getSizeOf(AggTy);
|
|
else
|
|
Size = ConstantInt::get(Type::getInt64Ty(Context),
|
|
IFI.TD->getTypeStoreSize(AggTy));
|
|
|
|
// Always generate a memcpy of alignment 1 here because we don't know
|
|
// the alignment of the src pointer. Other optimizations can infer
|
|
// better alignment.
|
|
Value *CallArgs[] = {
|
|
DestCast, SrcCast, Size,
|
|
ConstantInt::get(Type::getInt32Ty(Context), 1),
|
|
ConstantInt::get(Type::getInt1Ty(Context), 0)
|
|
};
|
|
CallInst *TheMemCpy =
|
|
CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
|
|
|
|
// If we have a call graph, update it.
|
|
if (CallGraph *CG = IFI.CG) {
|
|
CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
|
|
CallGraphNode *CallerNode = (*CG)[Caller];
|
|
CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
|
|
}
|
|
|
|
// Uses of the argument in the function should use our new alloca
|
|
// instead.
|
|
ActualArg = NewAlloca;
|
|
|
|
// Calls that we inline may use the new alloca, so we need to clear
|
|
// their 'tail' flags.
|
|
MustClearTailCallFlags = true;
|
|
}
|
|
|
|
VMap[I] = ActualArg;
|
|
}
|
|
|
|
// We want the inliner to prune the code as it copies. We would LOVE to
|
|
// have no dead or constant instructions leftover after inlining occurs
|
|
// (which can happen, e.g., because an argument was constant), but we'll be
|
|
// happy with whatever the cloner can do.
|
|
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, ".i",
|
|
&InlinedFunctionInfo, IFI.TD, TheCall);
|
|
|
|
// Remember the first block that is newly cloned over.
|
|
FirstNewBlock = LastBlock; ++FirstNewBlock;
|
|
|
|
// Update the callgraph if requested.
|
|
if (IFI.CG)
|
|
UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
|
|
}
|
|
|
|
// If there are any alloca instructions in the block that used to be the entry
|
|
// block for the callee, move them to the entry block of the caller. First
|
|
// calculate which instruction they should be inserted before. We insert the
|
|
// instructions at the end of the current alloca list.
|
|
//
|
|
{
|
|
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
|
|
for (BasicBlock::iterator I = FirstNewBlock->begin(),
|
|
E = FirstNewBlock->end(); I != E; ) {
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
|
|
if (AI == 0) continue;
|
|
|
|
// If the alloca is now dead, remove it. This often occurs due to code
|
|
// specialization.
|
|
if (AI->use_empty()) {
|
|
AI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (!isa<Constant>(AI->getArraySize()))
|
|
continue;
|
|
|
|
// Keep track of the static allocas that we inline into the caller if the
|
|
// StaticAllocas pointer is non-null.
|
|
IFI.StaticAllocas.push_back(AI);
|
|
|
|
// Scan for the block of allocas that we can move over, and move them
|
|
// all at once.
|
|
while (isa<AllocaInst>(I) &&
|
|
isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
|
|
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
|
|
++I;
|
|
}
|
|
|
|
// Transfer all of the allocas over in a block. Using splice means
|
|
// that the instructions aren't removed from the symbol table, then
|
|
// reinserted.
|
|
Caller->getEntryBlock().getInstList().splice(InsertPoint,
|
|
FirstNewBlock->getInstList(),
|
|
AI, I);
|
|
}
|
|
}
|
|
|
|
// If the inlined code contained dynamic alloca instructions, wrap the inlined
|
|
// code with llvm.stacksave/llvm.stackrestore intrinsics.
|
|
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
|
|
Module *M = Caller->getParent();
|
|
// Get the two intrinsics we care about.
|
|
Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
|
|
Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
|
|
|
|
// If we are preserving the callgraph, add edges to the stacksave/restore
|
|
// functions for the calls we insert.
|
|
CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
|
|
if (CallGraph *CG = IFI.CG) {
|
|
StackSaveCGN = CG->getOrInsertFunction(StackSave);
|
|
StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
|
|
CallerNode = (*CG)[Caller];
|
|
}
|
|
|
|
// Insert the llvm.stacksave.
|
|
CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
|
|
FirstNewBlock->begin());
|
|
if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
|
|
|
|
// Insert a call to llvm.stackrestore before any return instructions in the
|
|
// inlined function.
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
|
|
if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
|
|
}
|
|
|
|
// Count the number of StackRestore calls we insert.
|
|
unsigned NumStackRestores = Returns.size();
|
|
|
|
// If we are inlining an invoke instruction, insert restores before each
|
|
// unwind. These unwinds will be rewritten into branches later.
|
|
if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB)
|
|
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
|
|
CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
|
|
if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
|
|
++NumStackRestores;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are inlining tail call instruction through a call site that isn't
|
|
// marked 'tail', we must remove the tail marker for any calls in the inlined
|
|
// code. Also, calls inlined through a 'nounwind' call site should be marked
|
|
// 'nounwind'.
|
|
if (InlinedFunctionInfo.ContainsCalls &&
|
|
(MustClearTailCallFlags || MarkNoUnwind)) {
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (MustClearTailCallFlags)
|
|
CI->setTailCall(false);
|
|
if (MarkNoUnwind)
|
|
CI->setDoesNotThrow();
|
|
}
|
|
}
|
|
|
|
// If we are inlining through a 'nounwind' call site then any inlined 'unwind'
|
|
// instructions are unreachable.
|
|
if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
|
|
BB != E; ++BB) {
|
|
TerminatorInst *Term = BB->getTerminator();
|
|
if (isa<UnwindInst>(Term)) {
|
|
new UnreachableInst(Context, Term);
|
|
BB->getInstList().erase(Term);
|
|
}
|
|
}
|
|
|
|
// If we are inlining for an invoke instruction, we must make sure to rewrite
|
|
// any inlined 'unwind' instructions into branches to the invoke exception
|
|
// destination, and call instructions into invoke instructions.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
|
|
HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
|
|
|
|
// If we cloned in _exactly one_ basic block, and if that block ends in a
|
|
// return instruction, we splice the body of the inlined callee directly into
|
|
// the calling basic block.
|
|
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
|
|
// Move all of the instructions right before the call.
|
|
OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
|
|
FirstNewBlock->begin(), FirstNewBlock->end());
|
|
// Remove the cloned basic block.
|
|
Caller->getBasicBlockList().pop_back();
|
|
|
|
// If the call site was an invoke instruction, add a branch to the normal
|
|
// destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
|
|
BranchInst::Create(II->getNormalDest(), TheCall);
|
|
|
|
// If the return instruction returned a value, replace uses of the call with
|
|
// uses of the returned value.
|
|
if (!TheCall->use_empty()) {
|
|
ReturnInst *R = Returns[0];
|
|
if (TheCall == R->getReturnValue())
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
else
|
|
TheCall->replaceAllUsesWith(R->getReturnValue());
|
|
}
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->eraseFromParent();
|
|
|
|
// Since we are now done with the return instruction, delete it also.
|
|
Returns[0]->eraseFromParent();
|
|
|
|
// We are now done with the inlining.
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have the normal case, of more than one block to inline or
|
|
// multiple return sites.
|
|
|
|
// We want to clone the entire callee function into the hole between the
|
|
// "starter" and "ender" blocks. How we accomplish this depends on whether
|
|
// this is an invoke instruction or a call instruction.
|
|
BasicBlock *AfterCallBB;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
|
|
// Add an unconditional branch to make this look like the CallInst case...
|
|
BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
|
|
|
|
// Split the basic block. This guarantees that no PHI nodes will have to be
|
|
// updated due to new incoming edges, and make the invoke case more
|
|
// symmetric to the call case.
|
|
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
|
|
CalledFunc->getName()+".exit");
|
|
|
|
} else { // It's a call
|
|
// If this is a call instruction, we need to split the basic block that
|
|
// the call lives in.
|
|
//
|
|
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
|
|
CalledFunc->getName()+".exit");
|
|
}
|
|
|
|
// Change the branch that used to go to AfterCallBB to branch to the first
|
|
// basic block of the inlined function.
|
|
//
|
|
TerminatorInst *Br = OrigBB->getTerminator();
|
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
|
"splitBasicBlock broken!");
|
|
Br->setOperand(0, FirstNewBlock);
|
|
|
|
|
|
// Now that the function is correct, make it a little bit nicer. In
|
|
// particular, move the basic blocks inserted from the end of the function
|
|
// into the space made by splitting the source basic block.
|
|
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
|
|
FirstNewBlock, Caller->end());
|
|
|
|
// Handle all of the return instructions that we just cloned in, and eliminate
|
|
// any users of the original call/invoke instruction.
|
|
const Type *RTy = CalledFunc->getReturnType();
|
|
|
|
PHINode *PHI = 0;
|
|
if (Returns.size() > 1) {
|
|
// The PHI node should go at the front of the new basic block to merge all
|
|
// possible incoming values.
|
|
if (!TheCall->use_empty()) {
|
|
PHI = PHINode::Create(RTy, TheCall->getName(),
|
|
AfterCallBB->begin());
|
|
// Anything that used the result of the function call should now use the
|
|
// PHI node as their operand.
|
|
TheCall->replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
// Loop over all of the return instructions adding entries to the PHI node
|
|
// as appropriate.
|
|
if (PHI) {
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
ReturnInst *RI = Returns[i];
|
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
|
"Ret value not consistent in function!");
|
|
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
|
|
}
|
|
}
|
|
|
|
|
|
// Add a branch to the merge points and remove return instructions.
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
ReturnInst *RI = Returns[i];
|
|
BranchInst::Create(AfterCallBB, RI);
|
|
RI->eraseFromParent();
|
|
}
|
|
} else if (!Returns.empty()) {
|
|
// Otherwise, if there is exactly one return value, just replace anything
|
|
// using the return value of the call with the computed value.
|
|
if (!TheCall->use_empty()) {
|
|
if (TheCall == Returns[0]->getReturnValue())
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
else
|
|
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
|
|
}
|
|
|
|
// Splice the code from the return block into the block that it will return
|
|
// to, which contains the code that was after the call.
|
|
BasicBlock *ReturnBB = Returns[0]->getParent();
|
|
AfterCallBB->getInstList().splice(AfterCallBB->begin(),
|
|
ReturnBB->getInstList());
|
|
|
|
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
|
|
ReturnBB->replaceAllUsesWith(AfterCallBB);
|
|
|
|
// Delete the return instruction now and empty ReturnBB now.
|
|
Returns[0]->eraseFromParent();
|
|
ReturnBB->eraseFromParent();
|
|
} else if (!TheCall->use_empty()) {
|
|
// No returns, but something is using the return value of the call. Just
|
|
// nuke the result.
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
}
|
|
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->eraseFromParent();
|
|
|
|
// We should always be able to fold the entry block of the function into the
|
|
// single predecessor of the block...
|
|
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
|
|
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
|
|
|
|
// Splice the code entry block into calling block, right before the
|
|
// unconditional branch.
|
|
OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
|
|
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
|
|
|
|
// Remove the unconditional branch.
|
|
OrigBB->getInstList().erase(Br);
|
|
|
|
// Now we can remove the CalleeEntry block, which is now empty.
|
|
Caller->getBasicBlockList().erase(CalleeEntry);
|
|
|
|
// If we inserted a phi node, check to see if it has a single value (e.g. all
|
|
// the entries are the same or undef). If so, remove the PHI so it doesn't
|
|
// block other optimizations.
|
|
if (PHI)
|
|
if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
|
|
PHI->replaceAllUsesWith(V);
|
|
PHI->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|