mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-13 21:05:16 +00:00
75e28f74b0
These functions are no longer used, and they are easily replaced with a loop calling shouldSplitSingleBlock and splitSingleBlock. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136993 91177308-0d34-0410-b5e6-96231b3b80d8
1391 lines
49 KiB
C++
1391 lines
49 KiB
C++
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "SplitKit.h"
|
|
#include "LiveRangeEdit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFinished, "Number of splits finished");
|
|
STATISTIC(NumSimple, "Number of splits that were simple");
|
|
STATISTIC(NumCopies, "Number of copies inserted for splitting");
|
|
STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
|
|
STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
|
|
const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: MF(vrm.getMachineFunction()),
|
|
VRM(vrm),
|
|
LIS(lis),
|
|
Loops(mli),
|
|
TII(*MF.getTarget().getInstrInfo()),
|
|
CurLI(0),
|
|
LastSplitPoint(MF.getNumBlockIDs()) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
UseSlots.clear();
|
|
UseBlocks.clear();
|
|
ThroughBlocks.clear();
|
|
CurLI = 0;
|
|
DidRepairRange = false;
|
|
}
|
|
|
|
SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
|
|
const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
|
|
const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
|
|
std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
|
|
|
|
// Compute split points on the first call. The pair is independent of the
|
|
// current live interval.
|
|
if (!LSP.first.isValid()) {
|
|
MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
|
|
if (FirstTerm == MBB->end())
|
|
LSP.first = LIS.getMBBEndIdx(MBB);
|
|
else
|
|
LSP.first = LIS.getInstructionIndex(FirstTerm);
|
|
|
|
// If there is a landing pad successor, also find the call instruction.
|
|
if (!LPad)
|
|
return LSP.first;
|
|
// There may not be a call instruction (?) in which case we ignore LPad.
|
|
LSP.second = LSP.first;
|
|
for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
|
|
I != E;) {
|
|
--I;
|
|
if (I->getDesc().isCall()) {
|
|
LSP.second = LIS.getInstructionIndex(I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If CurLI is live into a landing pad successor, move the last split point
|
|
// back to the call that may throw.
|
|
if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
|
|
return LSP.second;
|
|
else
|
|
return LSP.first;
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
|
|
void SplitAnalysis::analyzeUses() {
|
|
assert(UseSlots.empty() && "Call clear first");
|
|
|
|
// First get all the defs from the interval values. This provides the correct
|
|
// slots for early clobbers.
|
|
for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
|
|
E = CurLI->vni_end(); I != E; ++I)
|
|
if (!(*I)->isPHIDef() && !(*I)->isUnused())
|
|
UseSlots.push_back((*I)->def);
|
|
|
|
// Get use slots form the use-def chain.
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
|
|
++I)
|
|
if (!I.getOperand().isUndef())
|
|
UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
|
|
|
|
array_pod_sort(UseSlots.begin(), UseSlots.end());
|
|
|
|
// Remove duplicates, keeping the smaller slot for each instruction.
|
|
// That is what we want for early clobbers.
|
|
UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
|
|
SlotIndex::isSameInstr),
|
|
UseSlots.end());
|
|
|
|
// Compute per-live block info.
|
|
if (!calcLiveBlockInfo()) {
|
|
// FIXME: calcLiveBlockInfo found inconsistencies in the live range.
|
|
// I am looking at you, RegisterCoalescer!
|
|
DidRepairRange = true;
|
|
++NumRepairs;
|
|
DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
|
|
const_cast<LiveIntervals&>(LIS)
|
|
.shrinkToUses(const_cast<LiveInterval*>(CurLI));
|
|
UseBlocks.clear();
|
|
ThroughBlocks.clear();
|
|
bool fixed = calcLiveBlockInfo();
|
|
(void)fixed;
|
|
assert(fixed && "Couldn't fix broken live interval");
|
|
}
|
|
|
|
DEBUG(dbgs() << "Analyze counted "
|
|
<< UseSlots.size() << " instrs in "
|
|
<< UseBlocks.size() << " blocks, through "
|
|
<< NumThroughBlocks << " blocks.\n");
|
|
}
|
|
|
|
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
|
|
/// where CurLI is live.
|
|
bool SplitAnalysis::calcLiveBlockInfo() {
|
|
ThroughBlocks.resize(MF.getNumBlockIDs());
|
|
NumThroughBlocks = NumGapBlocks = 0;
|
|
if (CurLI->empty())
|
|
return true;
|
|
|
|
LiveInterval::const_iterator LVI = CurLI->begin();
|
|
LiveInterval::const_iterator LVE = CurLI->end();
|
|
|
|
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
|
|
UseI = UseSlots.begin();
|
|
UseE = UseSlots.end();
|
|
|
|
// Loop over basic blocks where CurLI is live.
|
|
MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
|
|
for (;;) {
|
|
BlockInfo BI;
|
|
BI.MBB = MFI;
|
|
SlotIndex Start, Stop;
|
|
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
// If the block contains no uses, the range must be live through. At one
|
|
// point, RegisterCoalescer could create dangling ranges that ended
|
|
// mid-block.
|
|
if (UseI == UseE || *UseI >= Stop) {
|
|
++NumThroughBlocks;
|
|
ThroughBlocks.set(BI.MBB->getNumber());
|
|
// The range shouldn't end mid-block if there are no uses. This shouldn't
|
|
// happen.
|
|
if (LVI->end < Stop)
|
|
return false;
|
|
} else {
|
|
// This block has uses. Find the first and last uses in the block.
|
|
BI.FirstInstr = *UseI;
|
|
assert(BI.FirstInstr >= Start);
|
|
do ++UseI;
|
|
while (UseI != UseE && *UseI < Stop);
|
|
BI.LastInstr = UseI[-1];
|
|
assert(BI.LastInstr < Stop);
|
|
|
|
// LVI is the first live segment overlapping MBB.
|
|
BI.LiveIn = LVI->start <= Start;
|
|
|
|
// When not live in, the first use should be a def.
|
|
if (!BI.LiveIn) {
|
|
assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
|
|
assert(LVI->start == BI.FirstInstr && "First instr should be a def");
|
|
BI.FirstDef = BI.FirstInstr;
|
|
}
|
|
|
|
// Look for gaps in the live range.
|
|
BI.LiveOut = true;
|
|
while (LVI->end < Stop) {
|
|
SlotIndex LastStop = LVI->end;
|
|
if (++LVI == LVE || LVI->start >= Stop) {
|
|
BI.LiveOut = false;
|
|
BI.LastInstr = LastStop;
|
|
break;
|
|
}
|
|
|
|
if (LastStop < LVI->start) {
|
|
// There is a gap in the live range. Create duplicate entries for the
|
|
// live-in snippet and the live-out snippet.
|
|
++NumGapBlocks;
|
|
|
|
// Push the Live-in part.
|
|
BI.LiveOut = false;
|
|
UseBlocks.push_back(BI);
|
|
UseBlocks.back().LastInstr = LastStop;
|
|
|
|
// Set up BI for the live-out part.
|
|
BI.LiveIn = false;
|
|
BI.LiveOut = true;
|
|
BI.FirstInstr = BI.FirstDef = LVI->start;
|
|
}
|
|
|
|
// A LiveRange that starts in the middle of the block must be a def.
|
|
assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
|
|
if (!BI.FirstDef)
|
|
BI.FirstDef = LVI->start;
|
|
}
|
|
|
|
UseBlocks.push_back(BI);
|
|
|
|
// LVI is now at LVE or LVI->end >= Stop.
|
|
if (LVI == LVE)
|
|
break;
|
|
}
|
|
|
|
// Live segment ends exactly at Stop. Move to the next segment.
|
|
if (LVI->end == Stop && ++LVI == LVE)
|
|
break;
|
|
|
|
// Pick the next basic block.
|
|
if (LVI->start < Stop)
|
|
++MFI;
|
|
else
|
|
MFI = LIS.getMBBFromIndex(LVI->start);
|
|
}
|
|
|
|
assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
|
|
return true;
|
|
}
|
|
|
|
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
|
|
if (cli->empty())
|
|
return 0;
|
|
LiveInterval *li = const_cast<LiveInterval*>(cli);
|
|
LiveInterval::iterator LVI = li->begin();
|
|
LiveInterval::iterator LVE = li->end();
|
|
unsigned Count = 0;
|
|
|
|
// Loop over basic blocks where li is live.
|
|
MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
|
|
SlotIndex Stop = LIS.getMBBEndIdx(MFI);
|
|
for (;;) {
|
|
++Count;
|
|
LVI = li->advanceTo(LVI, Stop);
|
|
if (LVI == LVE)
|
|
return Count;
|
|
do {
|
|
++MFI;
|
|
Stop = LIS.getMBBEndIdx(MFI);
|
|
} while (Stop <= LVI->start);
|
|
}
|
|
}
|
|
|
|
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
|
|
unsigned OrigReg = VRM.getOriginal(CurLI->reg);
|
|
const LiveInterval &Orig = LIS.getInterval(OrigReg);
|
|
assert(!Orig.empty() && "Splitting empty interval?");
|
|
LiveInterval::const_iterator I = Orig.find(Idx);
|
|
|
|
// Range containing Idx should begin at Idx.
|
|
if (I != Orig.end() && I->start <= Idx)
|
|
return I->start == Idx;
|
|
|
|
// Range does not contain Idx, previous must end at Idx.
|
|
return I != Orig.begin() && (--I)->end == Idx;
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
CurLI = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa,
|
|
LiveIntervals &lis,
|
|
VirtRegMap &vrm,
|
|
MachineDominatorTree &mdt)
|
|
: SA(sa), LIS(lis), VRM(vrm),
|
|
MRI(vrm.getMachineFunction().getRegInfo()),
|
|
MDT(mdt),
|
|
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
|
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
|
|
Edit(0),
|
|
OpenIdx(0),
|
|
RegAssign(Allocator)
|
|
{}
|
|
|
|
void SplitEditor::reset(LiveRangeEdit &lre) {
|
|
Edit = &lre;
|
|
OpenIdx = 0;
|
|
RegAssign.clear();
|
|
Values.clear();
|
|
|
|
// We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
|
|
LiveOutSeen.clear();
|
|
|
|
// We don't need an AliasAnalysis since we will only be performing
|
|
// cheap-as-a-copy remats anyway.
|
|
Edit->anyRematerializable(LIS, TII, 0);
|
|
}
|
|
|
|
void SplitEditor::dump() const {
|
|
if (RegAssign.empty()) {
|
|
dbgs() << " empty\n";
|
|
return;
|
|
}
|
|
|
|
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
|
|
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
VNInfo *SplitEditor::defValue(unsigned RegIdx,
|
|
const VNInfo *ParentVNI,
|
|
SlotIndex Idx) {
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
|
|
// Create a new value.
|
|
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator, bool> InsP =
|
|
Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
|
|
|
|
// This was the first time (RegIdx, ParentVNI) was mapped.
|
|
// Keep it as a simple def without any liveness.
|
|
if (InsP.second)
|
|
return VNI;
|
|
|
|
// If the previous value was a simple mapping, add liveness for it now.
|
|
if (VNInfo *OldVNI = InsP.first->second) {
|
|
SlotIndex Def = OldVNI->def;
|
|
LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
|
|
// No longer a simple mapping.
|
|
InsP.first->second = 0;
|
|
}
|
|
|
|
// This is a complex mapping, add liveness for VNI
|
|
SlotIndex Def = VNI->def;
|
|
LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
|
|
|
|
return VNI;
|
|
}
|
|
|
|
void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
|
|
|
|
// ParentVNI was either unmapped or already complex mapped. Either way.
|
|
if (!VNI)
|
|
return;
|
|
|
|
// This was previously a single mapping. Make sure the old def is represented
|
|
// by a trivial live range.
|
|
SlotIndex Def = VNI->def;
|
|
Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
|
|
VNI = 0;
|
|
}
|
|
|
|
// extendRange - Extend the live range to reach Idx.
|
|
// Potentially create phi-def values.
|
|
void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
|
|
assert(IdxMBB && "No MBB at Idx");
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
|
|
// Is there a def in the same MBB we can extend?
|
|
if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
|
|
return;
|
|
|
|
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
|
|
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
|
|
// Perform a search for all predecessor blocks where we know the dominating
|
|
// VNInfo.
|
|
VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
|
|
|
|
// When there were multiple different values, we may need new PHIs.
|
|
if (!VNI)
|
|
return updateSSA();
|
|
|
|
// Poor man's SSA update for the single-value case.
|
|
LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
|
|
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
|
|
E = LiveInBlocks.end(); I != E; ++I) {
|
|
MachineBasicBlock *MBB = I->DomNode->getBlock();
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
if (I->Kill.isValid())
|
|
LI->addRange(LiveRange(Start, I->Kill, VNI));
|
|
else {
|
|
LiveOutCache[MBB] = LOP;
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// findReachingDefs - Search the CFG for known live-out values.
|
|
/// Add required live-in blocks to LiveInBlocks.
|
|
VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
|
|
MachineBasicBlock *KillMBB,
|
|
SlotIndex Kill) {
|
|
// Initialize the live-out cache the first time it is needed.
|
|
if (LiveOutSeen.empty()) {
|
|
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
|
|
LiveOutSeen.resize(N);
|
|
LiveOutCache.resize(N);
|
|
}
|
|
|
|
// Blocks where LI should be live-in.
|
|
SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
|
|
|
|
// Remember if we have seen more than one value.
|
|
bool UniqueVNI = true;
|
|
VNInfo *TheVNI = 0;
|
|
|
|
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
|
|
for (unsigned i = 0; i != WorkList.size(); ++i) {
|
|
MachineBasicBlock *MBB = WorkList[i];
|
|
assert(!MBB->pred_empty() && "Value live-in to entry block?");
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
MachineBasicBlock *Pred = *PI;
|
|
LiveOutPair &LOP = LiveOutCache[Pred];
|
|
|
|
// Is this a known live-out block?
|
|
if (LiveOutSeen.test(Pred->getNumber())) {
|
|
if (VNInfo *VNI = LOP.first) {
|
|
if (TheVNI && TheVNI != VNI)
|
|
UniqueVNI = false;
|
|
TheVNI = VNI;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// First time. LOP is garbage and must be cleared below.
|
|
LiveOutSeen.set(Pred->getNumber());
|
|
|
|
// Does Pred provide a live-out value?
|
|
SlotIndex Start, Last;
|
|
tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
|
|
Last = Last.getPrevSlot();
|
|
VNInfo *VNI = LI->extendInBlock(Start, Last);
|
|
LOP.first = VNI;
|
|
if (VNI) {
|
|
LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
|
|
if (TheVNI && TheVNI != VNI)
|
|
UniqueVNI = false;
|
|
TheVNI = VNI;
|
|
continue;
|
|
}
|
|
LOP.second = 0;
|
|
|
|
// No, we need a live-in value for Pred as well
|
|
if (Pred != KillMBB)
|
|
WorkList.push_back(Pred);
|
|
else
|
|
// Loopback to KillMBB, so value is really live through.
|
|
Kill = SlotIndex();
|
|
}
|
|
}
|
|
|
|
// Transfer WorkList to LiveInBlocks in reverse order.
|
|
// This ordering works best with updateSSA().
|
|
LiveInBlocks.clear();
|
|
LiveInBlocks.reserve(WorkList.size());
|
|
while(!WorkList.empty())
|
|
LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
|
|
|
|
// The kill block may not be live-through.
|
|
assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
|
|
LiveInBlocks.back().Kill = Kill;
|
|
|
|
return UniqueVNI ? TheVNI : 0;
|
|
}
|
|
|
|
void SplitEditor::updateSSA() {
|
|
// This is essentially the same iterative algorithm that SSAUpdater uses,
|
|
// except we already have a dominator tree, so we don't have to recompute it.
|
|
unsigned Changes;
|
|
do {
|
|
Changes = 0;
|
|
// Propagate live-out values down the dominator tree, inserting phi-defs
|
|
// when necessary.
|
|
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
|
|
E = LiveInBlocks.end(); I != E; ++I) {
|
|
MachineDomTreeNode *Node = I->DomNode;
|
|
// Skip block if the live-in value has already been determined.
|
|
if (!Node)
|
|
continue;
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
MachineDomTreeNode *IDom = Node->getIDom();
|
|
LiveOutPair IDomValue;
|
|
|
|
// We need a live-in value to a block with no immediate dominator?
|
|
// This is probably an unreachable block that has survived somehow.
|
|
bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
|
|
|
|
// IDom dominates all of our predecessors, but it may not be their
|
|
// immediate dominator. Check if any of them have live-out values that are
|
|
// properly dominated by IDom. If so, we need a phi-def here.
|
|
if (!needPHI) {
|
|
IDomValue = LiveOutCache[IDom->getBlock()];
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
LiveOutPair Value = LiveOutCache[*PI];
|
|
if (!Value.first || Value.first == IDomValue.first)
|
|
continue;
|
|
// This predecessor is carrying something other than IDomValue.
|
|
// It could be because IDomValue hasn't propagated yet, or it could be
|
|
// because MBB is in the dominance frontier of that value.
|
|
if (MDT.dominates(IDom, Value.second)) {
|
|
needPHI = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The value may be live-through even if Kill is set, as can happen when
|
|
// we are called from extendRange. In that case LiveOutSeen is true, and
|
|
// LiveOutCache indicates a foreign or missing value.
|
|
LiveOutPair &LOP = LiveOutCache[MBB];
|
|
|
|
// Create a phi-def if required.
|
|
if (needPHI) {
|
|
++Changes;
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
unsigned RegIdx = RegAssign.lookup(Start);
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
|
|
VNI->setIsPHIDef(true);
|
|
I->Value = VNI;
|
|
// This block is done, we know the final value.
|
|
I->DomNode = 0;
|
|
if (I->Kill.isValid())
|
|
LI->addRange(LiveRange(Start, I->Kill, VNI));
|
|
else {
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
LOP = LiveOutPair(VNI, Node);
|
|
}
|
|
} else if (IDomValue.first) {
|
|
// No phi-def here. Remember incoming value.
|
|
I->Value = IDomValue.first;
|
|
if (I->Kill.isValid())
|
|
continue;
|
|
// Propagate IDomValue if needed:
|
|
// MBB is live-out and doesn't define its own value.
|
|
if (LOP.second != Node && LOP.first != IDomValue.first) {
|
|
++Changes;
|
|
LOP = IDomValue;
|
|
}
|
|
}
|
|
}
|
|
} while (Changes);
|
|
|
|
// The values in LiveInBlocks are now accurate. No more phi-defs are needed
|
|
// for these blocks, so we can color the live ranges.
|
|
for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
|
|
E = LiveInBlocks.end(); I != E; ++I) {
|
|
if (!I->DomNode)
|
|
continue;
|
|
assert(I->Value && "No live-in value found");
|
|
MachineBasicBlock *MBB = I->DomNode->getBlock();
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
unsigned RegIdx = RegAssign.lookup(Start);
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
LI->addRange(LiveRange(Start, I->Kill.isValid() ?
|
|
I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
|
|
}
|
|
}
|
|
|
|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
|
|
VNInfo *ParentVNI,
|
|
SlotIndex UseIdx,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
MachineInstr *CopyMI = 0;
|
|
SlotIndex Def;
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
|
|
// We may be trying to avoid interference that ends at a deleted instruction,
|
|
// so always begin RegIdx 0 early and all others late.
|
|
bool Late = RegIdx != 0;
|
|
|
|
// Attempt cheap-as-a-copy rematerialization.
|
|
LiveRangeEdit::Remat RM(ParentVNI);
|
|
if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
|
|
Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
|
|
++NumRemats;
|
|
} else {
|
|
// Can't remat, just insert a copy from parent.
|
|
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
|
|
.addReg(Edit->getReg());
|
|
Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
|
|
.getDefIndex();
|
|
++NumCopies;
|
|
}
|
|
|
|
// Define the value in Reg.
|
|
VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
|
|
VNI->setCopy(CopyMI);
|
|
return VNI;
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
unsigned SplitEditor::openIntv() {
|
|
// Create the complement as index 0.
|
|
if (Edit->empty())
|
|
Edit->create(LIS, VRM);
|
|
|
|
// Create the open interval.
|
|
OpenIdx = Edit->size();
|
|
Edit->create(LIS, VRM);
|
|
return OpenIdx;
|
|
}
|
|
|
|
void SplitEditor::selectIntv(unsigned Idx) {
|
|
assert(Idx != 0 && "Cannot select the complement interval");
|
|
assert(Idx < Edit->size() && "Can only select previously opened interval");
|
|
DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
|
|
OpenIdx = Idx;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvBefore");
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAfter");
|
|
DEBUG(dbgs() << " enterIntvAfter " << Idx);
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvAfter called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
|
|
llvm::next(MachineBasicBlock::iterator(MI)));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = LIS.getMBBEndIdx(&MBB);
|
|
SlotIndex Last = End.getPrevSlot();
|
|
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return End;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
|
|
LIS.getLastSplitPoint(Edit->getParent(), &MBB));
|
|
RegAssign.insert(VNI->def, End, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before useIntv");
|
|
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
DEBUG(dump());
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "No instruction at index");
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
|
|
llvm::next(MachineBasicBlock::iterator(MI)));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
|
|
DEBUG(dbgs() << " leaveIntvBefore " << Idx);
|
|
|
|
// The interval must be live into the instruction at Idx.
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "No instruction at index");
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
|
|
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
|
|
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
|
|
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Start;
|
|
}
|
|
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
|
|
MBB.SkipPHIsAndLabels(MBB.begin()));
|
|
RegAssign.insert(Start, VNI->def, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before overlapIntv");
|
|
const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
|
|
assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
|
|
"Parent changes value in extended range");
|
|
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
|
|
"Range cannot span basic blocks");
|
|
|
|
// The complement interval will be extended as needed by extendRange().
|
|
if (ParentVNI)
|
|
markComplexMapped(0, ParentVNI);
|
|
DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
DEBUG(dump());
|
|
}
|
|
|
|
/// transferValues - Transfer all possible values to the new live ranges.
|
|
/// Values that were rematerialized are left alone, they need extendRange().
|
|
bool SplitEditor::transferValues() {
|
|
bool Skipped = false;
|
|
LiveInBlocks.clear();
|
|
RegAssignMap::const_iterator AssignI = RegAssign.begin();
|
|
for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
|
|
ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
|
|
DEBUG(dbgs() << " blit " << *ParentI << ':');
|
|
VNInfo *ParentVNI = ParentI->valno;
|
|
// RegAssign has holes where RegIdx 0 should be used.
|
|
SlotIndex Start = ParentI->start;
|
|
AssignI.advanceTo(Start);
|
|
do {
|
|
unsigned RegIdx;
|
|
SlotIndex End = ParentI->end;
|
|
if (!AssignI.valid()) {
|
|
RegIdx = 0;
|
|
} else if (AssignI.start() <= Start) {
|
|
RegIdx = AssignI.value();
|
|
if (AssignI.stop() < End) {
|
|
End = AssignI.stop();
|
|
++AssignI;
|
|
}
|
|
} else {
|
|
RegIdx = 0;
|
|
End = std::min(End, AssignI.start());
|
|
}
|
|
|
|
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
|
|
DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
|
|
LiveInterval *LI = Edit->get(RegIdx);
|
|
|
|
// Check for a simply defined value that can be blitted directly.
|
|
if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
|
|
DEBUG(dbgs() << ':' << VNI->id);
|
|
LI->addRange(LiveRange(Start, End, VNI));
|
|
Start = End;
|
|
continue;
|
|
}
|
|
|
|
// Skip rematerialized values, we need to use extendRange() and
|
|
// extendPHIKillRanges() to completely recompute the live ranges.
|
|
if (Edit->didRematerialize(ParentVNI)) {
|
|
DEBUG(dbgs() << "(remat)");
|
|
Skipped = true;
|
|
Start = End;
|
|
continue;
|
|
}
|
|
|
|
// Initialize the live-out cache the first time it is needed.
|
|
if (LiveOutSeen.empty()) {
|
|
unsigned N = VRM.getMachineFunction().getNumBlockIDs();
|
|
LiveOutSeen.resize(N);
|
|
LiveOutCache.resize(N);
|
|
}
|
|
|
|
// This value has multiple defs in RegIdx, but it wasn't rematerialized,
|
|
// so the live range is accurate. Add live-in blocks in [Start;End) to the
|
|
// LiveInBlocks.
|
|
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
|
|
SlotIndex BlockStart, BlockEnd;
|
|
tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
|
|
|
|
// The first block may be live-in, or it may have its own def.
|
|
if (Start != BlockStart) {
|
|
VNInfo *VNI = LI->extendInBlock(BlockStart,
|
|
std::min(BlockEnd, End).getPrevSlot());
|
|
assert(VNI && "Missing def for complex mapped value");
|
|
DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
|
|
// MBB has its own def. Is it also live-out?
|
|
if (BlockEnd <= End) {
|
|
LiveOutSeen.set(MBB->getNumber());
|
|
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
|
|
}
|
|
// Skip to the next block for live-in.
|
|
++MBB;
|
|
BlockStart = BlockEnd;
|
|
}
|
|
|
|
// Handle the live-in blocks covered by [Start;End).
|
|
assert(Start <= BlockStart && "Expected live-in block");
|
|
while (BlockStart < End) {
|
|
DEBUG(dbgs() << ">BB#" << MBB->getNumber());
|
|
BlockEnd = LIS.getMBBEndIdx(MBB);
|
|
if (BlockStart == ParentVNI->def) {
|
|
// This block has the def of a parent PHI, so it isn't live-in.
|
|
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
|
|
VNInfo *VNI = LI->extendInBlock(BlockStart,
|
|
std::min(BlockEnd, End).getPrevSlot());
|
|
assert(VNI && "Missing def for complex mapped parent PHI");
|
|
if (End >= BlockEnd) {
|
|
// Live-out as well.
|
|
LiveOutSeen.set(MBB->getNumber());
|
|
LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
|
|
}
|
|
} else {
|
|
// This block needs a live-in value.
|
|
LiveInBlocks.push_back(MDT[MBB]);
|
|
// The last block covered may not be live-out.
|
|
if (End < BlockEnd)
|
|
LiveInBlocks.back().Kill = End;
|
|
else {
|
|
// Live-out, but we need updateSSA to tell us the value.
|
|
LiveOutSeen.set(MBB->getNumber());
|
|
LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
|
|
(MachineDomTreeNode*)0);
|
|
}
|
|
}
|
|
BlockStart = BlockEnd;
|
|
++MBB;
|
|
}
|
|
Start = End;
|
|
} while (Start != ParentI->end);
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
if (!LiveInBlocks.empty())
|
|
updateSSA();
|
|
|
|
return Skipped;
|
|
}
|
|
|
|
void SplitEditor::extendPHIKillRanges() {
|
|
// Extend live ranges to be live-out for successor PHI values.
|
|
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
|
|
E = Edit->getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *PHIVNI = *I;
|
|
if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
|
|
// The predecessor may not have a live-out value. That is OK, like an
|
|
// undef PHI operand.
|
|
if (Edit->getParent().liveAt(End)) {
|
|
assert(RegAssign.lookup(End) == RegIdx &&
|
|
"Different register assignment in phi predecessor");
|
|
extendRange(RegIdx, End);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
|
|
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
// LiveDebugVariables should have handled all DBG_VALUE instructions.
|
|
if (MI->isDebugValue()) {
|
|
DEBUG(dbgs() << "Zapping " << *MI);
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
|
|
// <undef> operands don't really read the register, so it doesn't matter
|
|
// which register we choose. When the use operand is tied to a def, we must
|
|
// use the same register as the def, so just do that always.
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
if (MO.isDef() || MO.isUndef())
|
|
Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
|
|
// Rewrite to the mapped register at Idx.
|
|
unsigned RegIdx = RegAssign.lookup(Idx);
|
|
MO.setReg(Edit->get(RegIdx)->reg);
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
|
|
<< Idx << ':' << RegIdx << '\t' << *MI);
|
|
|
|
// Extend liveness to Idx if the instruction reads reg.
|
|
if (!ExtendRanges || MO.isUndef())
|
|
continue;
|
|
|
|
// Skip instructions that don't read Reg.
|
|
if (MO.isDef()) {
|
|
if (!MO.getSubReg() && !MO.isEarlyClobber())
|
|
continue;
|
|
// We may wan't to extend a live range for a partial redef, or for a use
|
|
// tied to an early clobber.
|
|
Idx = Idx.getPrevSlot();
|
|
if (!Edit->getParent().liveAt(Idx))
|
|
continue;
|
|
} else
|
|
Idx = Idx.getUseIndex();
|
|
|
|
extendRange(RegIdx, Idx);
|
|
}
|
|
}
|
|
|
|
void SplitEditor::deleteRematVictims() {
|
|
SmallVector<MachineInstr*, 8> Dead;
|
|
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
|
|
LiveInterval *LI = *I;
|
|
for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
|
|
LII != LIE; ++LII) {
|
|
// Dead defs end at the store slot.
|
|
if (LII->end != LII->valno->def.getNextSlot())
|
|
continue;
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
|
|
assert(MI && "Missing instruction for dead def");
|
|
MI->addRegisterDead(LI->reg, &TRI);
|
|
|
|
if (!MI->allDefsAreDead())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "All defs dead: " << *MI);
|
|
Dead.push_back(MI);
|
|
}
|
|
}
|
|
|
|
if (Dead.empty())
|
|
return;
|
|
|
|
Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
|
|
}
|
|
|
|
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
|
|
++NumFinished;
|
|
|
|
// At this point, the live intervals in Edit contain VNInfos corresponding to
|
|
// the inserted copies.
|
|
|
|
// Add the original defs from the parent interval.
|
|
for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
|
|
E = Edit->getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *ParentVNI = *I;
|
|
if (ParentVNI->isUnused())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
|
|
VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
|
|
VNI->setIsPHIDef(ParentVNI->isPHIDef());
|
|
VNI->setCopy(ParentVNI->getCopy());
|
|
|
|
// Mark rematted values as complex everywhere to force liveness computation.
|
|
// The new live ranges may be truncated.
|
|
if (Edit->didRematerialize(ParentVNI))
|
|
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
|
|
markComplexMapped(i, ParentVNI);
|
|
}
|
|
|
|
// Transfer the simply mapped values, check if any are skipped.
|
|
bool Skipped = transferValues();
|
|
if (Skipped)
|
|
extendPHIKillRanges();
|
|
else
|
|
++NumSimple;
|
|
|
|
// Rewrite virtual registers, possibly extending ranges.
|
|
rewriteAssigned(Skipped);
|
|
|
|
// Delete defs that were rematted everywhere.
|
|
if (Skipped)
|
|
deleteRematVictims();
|
|
|
|
// Get rid of unused values and set phi-kill flags.
|
|
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
|
|
(*I)->RenumberValues(LIS);
|
|
|
|
// Provide a reverse mapping from original indices to Edit ranges.
|
|
if (LRMap) {
|
|
LRMap->clear();
|
|
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
|
|
LRMap->push_back(i);
|
|
}
|
|
|
|
// Now check if any registers were separated into multiple components.
|
|
ConnectedVNInfoEqClasses ConEQ(LIS);
|
|
for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
|
|
// Don't use iterators, they are invalidated by create() below.
|
|
LiveInterval *li = Edit->get(i);
|
|
unsigned NumComp = ConEQ.Classify(li);
|
|
if (NumComp <= 1)
|
|
continue;
|
|
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
|
|
SmallVector<LiveInterval*, 8> dups;
|
|
dups.push_back(li);
|
|
for (unsigned j = 1; j != NumComp; ++j)
|
|
dups.push_back(&Edit->create(LIS, VRM));
|
|
ConEQ.Distribute(&dups[0], MRI);
|
|
// The new intervals all map back to i.
|
|
if (LRMap)
|
|
LRMap->resize(Edit->size(), i);
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
|
|
|
|
assert(!LRMap || LRMap->size() == Edit->size());
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
|
|
bool SingleInstrs) const {
|
|
// Always split for multiple instructions.
|
|
if (!BI.isOneInstr())
|
|
return true;
|
|
// Don't split for single instructions unless explicitly requested.
|
|
if (!SingleInstrs)
|
|
return false;
|
|
// Splitting a live-through range always makes progress.
|
|
if (BI.LiveIn && BI.LiveOut)
|
|
return true;
|
|
// No point in isolating a copy. It has no register class constraints.
|
|
if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
|
|
return false;
|
|
// Finally, don't isolate an end point that was created by earlier splits.
|
|
return isOriginalEndpoint(BI.FirstInstr);
|
|
}
|
|
|
|
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
|
|
openIntv();
|
|
SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
|
|
LastSplitPoint));
|
|
if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
|
|
useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
|
|
} else {
|
|
// The last use is after the last valid split point.
|
|
SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
|
|
useIntv(SegStart, SegStop);
|
|
overlapIntv(SegStop, BI.LastInstr);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Global Live Range Splitting Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// These methods support a method of global live range splitting that uses a
|
|
// global algorithm to decide intervals for CFG edges. They will insert split
|
|
// points and color intervals in basic blocks while avoiding interference.
|
|
//
|
|
// Note that splitSingleBlock is also useful for blocks where both CFG edges
|
|
// are on the stack.
|
|
|
|
void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
|
|
unsigned IntvIn, SlotIndex LeaveBefore,
|
|
unsigned IntvOut, SlotIndex EnterAfter){
|
|
SlotIndex Start, Stop;
|
|
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
|
|
|
|
DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
|
|
<< ") intf " << LeaveBefore << '-' << EnterAfter
|
|
<< ", live-through " << IntvIn << " -> " << IntvOut);
|
|
|
|
assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
|
|
|
|
assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
|
|
assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
|
|
assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
|
|
|
|
MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
|
|
|
|
if (!IntvOut) {
|
|
DEBUG(dbgs() << ", spill on entry.\n");
|
|
//
|
|
// <<<<<<<<< Possible LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// -____________ Spill on entry.
|
|
//
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvAtTop(*MBB);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
(void)Idx;
|
|
return;
|
|
}
|
|
|
|
if (!IntvIn) {
|
|
DEBUG(dbgs() << ", reload on exit.\n");
|
|
//
|
|
// >>>>>>> Possible EnterAfter interference.
|
|
// |-----------| Live through.
|
|
// ___________-- Reload on exit.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAtEnd(*MBB);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
(void)Idx;
|
|
return;
|
|
}
|
|
|
|
if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
|
|
DEBUG(dbgs() << ", straight through.\n");
|
|
//
|
|
// |-----------| Live through.
|
|
// ------------- Straight through, same intv, no interference.
|
|
//
|
|
selectIntv(IntvOut);
|
|
useIntv(Start, Stop);
|
|
return;
|
|
}
|
|
|
|
// We cannot legally insert splits after LSP.
|
|
SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
|
|
assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
|
|
|
|
if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
|
|
LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
|
|
DEBUG(dbgs() << ", switch avoiding interference.\n");
|
|
//
|
|
// >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// ------======= Switch intervals between interference.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx;
|
|
if (LeaveBefore && LeaveBefore < LSP) {
|
|
Idx = enterIntvBefore(LeaveBefore);
|
|
useIntv(Idx, Stop);
|
|
} else {
|
|
Idx = enterIntvAtEnd(*MBB);
|
|
}
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
return;
|
|
}
|
|
|
|
DEBUG(dbgs() << ", create local intv for interference.\n");
|
|
//
|
|
// >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// ==---------== Switch intervals before/after interference.
|
|
//
|
|
assert(LeaveBefore <= EnterAfter && "Missed case");
|
|
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAfter(EnterAfter);
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
|
|
selectIntv(IntvIn);
|
|
Idx = leaveIntvBefore(LeaveBefore);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
}
|
|
|
|
|
|
void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
|
|
unsigned IntvIn, SlotIndex LeaveBefore) {
|
|
SlotIndex Start, Stop;
|
|
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
|
|
<< "), uses " << BI.FirstInstr << '-' << BI.LastInstr
|
|
<< ", reg-in " << IntvIn << ", leave before " << LeaveBefore
|
|
<< (BI.LiveOut ? ", stack-out" : ", killed in block"));
|
|
|
|
assert(IntvIn && "Must have register in");
|
|
assert(BI.LiveIn && "Must be live-in");
|
|
assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
|
|
|
|
if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
|
|
DEBUG(dbgs() << " before interference.\n");
|
|
//
|
|
// <<< Interference after kill.
|
|
// |---o---x | Killed in block.
|
|
// ========= Use IntvIn everywhere.
|
|
//
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, BI.LastInstr);
|
|
return;
|
|
}
|
|
|
|
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
|
|
if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
|
|
//
|
|
// <<< Possible interference after last use.
|
|
// |---o---o---| Live-out on stack.
|
|
// =========____ Leave IntvIn after last use.
|
|
//
|
|
// < Interference after last use.
|
|
// |---o---o--o| Live-out on stack, late last use.
|
|
// ============ Copy to stack after LSP, overlap IntvIn.
|
|
// \_____ Stack interval is live-out.
|
|
//
|
|
if (BI.LastInstr < LSP) {
|
|
DEBUG(dbgs() << ", spill after last use before interference.\n");
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
} else {
|
|
DEBUG(dbgs() << ", spill before last split point.\n");
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvBefore(LSP);
|
|
overlapIntv(Idx, BI.LastInstr);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The interference is overlapping somewhere we wanted to use IntvIn. That
|
|
// means we need to create a local interval that can be allocated a
|
|
// different register.
|
|
unsigned LocalIntv = openIntv();
|
|
(void)LocalIntv;
|
|
DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
|
|
|
|
if (!BI.LiveOut || BI.LastInstr < LSP) {
|
|
//
|
|
// <<<<<<< Interference overlapping uses.
|
|
// |---o---o---| Live-out on stack.
|
|
// =====----____ Leave IntvIn before interference, then spill.
|
|
//
|
|
SlotIndex To = leaveIntvAfter(BI.LastInstr);
|
|
SlotIndex From = enterIntvBefore(LeaveBefore);
|
|
useIntv(From, To);
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, From);
|
|
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
|
|
return;
|
|
}
|
|
|
|
// <<<<<<< Interference overlapping uses.
|
|
// |---o---o--o| Live-out on stack, late last use.
|
|
// =====------- Copy to stack before LSP, overlap LocalIntv.
|
|
// \_____ Stack interval is live-out.
|
|
//
|
|
SlotIndex To = leaveIntvBefore(LSP);
|
|
overlapIntv(To, BI.LastInstr);
|
|
SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
|
|
useIntv(From, To);
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, From);
|
|
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
|
|
}
|
|
|
|
void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
|
|
unsigned IntvOut, SlotIndex EnterAfter) {
|
|
SlotIndex Start, Stop;
|
|
tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
|
|
<< "), uses " << BI.FirstInstr << '-' << BI.LastInstr
|
|
<< ", reg-out " << IntvOut << ", enter after " << EnterAfter
|
|
<< (BI.LiveIn ? ", stack-in" : ", defined in block"));
|
|
|
|
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
|
|
assert(IntvOut && "Must have register out");
|
|
assert(BI.LiveOut && "Must be live-out");
|
|
assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
|
|
|
|
if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
|
|
DEBUG(dbgs() << " after interference.\n");
|
|
//
|
|
// >>>> Interference before def.
|
|
// | o---o---| Defined in block.
|
|
// ========= Use IntvOut everywhere.
|
|
//
|
|
selectIntv(IntvOut);
|
|
useIntv(BI.FirstInstr, Stop);
|
|
return;
|
|
}
|
|
|
|
if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
|
|
DEBUG(dbgs() << ", reload after interference.\n");
|
|
//
|
|
// >>>> Interference before def.
|
|
// |---o---o---| Live-through, stack-in.
|
|
// ____========= Enter IntvOut before first use.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
return;
|
|
}
|
|
|
|
// The interference is overlapping somewhere we wanted to use IntvOut. That
|
|
// means we need to create a local interval that can be allocated a
|
|
// different register.
|
|
DEBUG(dbgs() << ", interference overlaps uses.\n");
|
|
//
|
|
// >>>>>>> Interference overlapping uses.
|
|
// |---o---o---| Live-through, stack-in.
|
|
// ____---====== Create local interval for interference range.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAfter(EnterAfter);
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
|
|
openIntv();
|
|
SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
|
|
useIntv(From, Idx);
|
|
}
|