mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
9f1c8317a4
- Also remove LiveVariables::instructionChanged, etc. Replace all calls with cheaper calls which update VarInfo kill list. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53097 91177308-0d34-0410-b5e6-96231b3b80d8
492 lines
18 KiB
C++
492 lines
18 KiB
C++
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TwoAddress instruction pass which is used
|
|
// by most register allocators. Two-Address instructions are rewritten
|
|
// from:
|
|
//
|
|
// A = B op C
|
|
//
|
|
// to:
|
|
//
|
|
// A = B
|
|
// A op= C
|
|
//
|
|
// Note that if a register allocator chooses to use this pass, that it
|
|
// has to be capable of handling the non-SSA nature of these rewritten
|
|
// virtual registers.
|
|
//
|
|
// It is also worth noting that the duplicate operand of the two
|
|
// address instruction is removed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "twoaddrinstr"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
|
|
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
|
|
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
|
|
STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
|
|
STATISTIC(NumReMats, "Number of instructions re-materialized");
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN TwoAddressInstructionPass
|
|
: public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI;
|
|
LiveVariables *LV;
|
|
|
|
bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
|
|
unsigned Reg,
|
|
MachineBasicBlock::iterator OldPos);
|
|
|
|
bool isSafeToReMat(unsigned DstReg, MachineInstr *MI);
|
|
bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
|
|
MachineInstr *MI, MachineInstr *DefMI,
|
|
MachineBasicBlock *MBB, unsigned Loc,
|
|
DenseMap<MachineInstr*, unsigned> &DistanceMap);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
AU.addPreservedID(PHIEliminationID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// runOnMachineFunction - Pass entry point.
|
|
bool runOnMachineFunction(MachineFunction&);
|
|
};
|
|
}
|
|
|
|
char TwoAddressInstructionPass::ID = 0;
|
|
static RegisterPass<TwoAddressInstructionPass>
|
|
X("twoaddressinstruction", "Two-Address instruction pass");
|
|
|
|
const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
|
|
|
|
/// Sink3AddrInstruction - A two-address instruction has been converted to a
|
|
/// three-address instruction to avoid clobbering a register. Try to sink it
|
|
/// past the instruction that would kill the above mentioned register to reduce
|
|
/// register pressure.
|
|
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
|
|
MachineInstr *MI, unsigned SavedReg,
|
|
MachineBasicBlock::iterator OldPos) {
|
|
// Check if it's safe to move this instruction.
|
|
bool SeenStore = true; // Be conservative.
|
|
if (!MI->isSafeToMove(TII, SeenStore))
|
|
return false;
|
|
|
|
unsigned DefReg = 0;
|
|
SmallSet<unsigned, 4> UseRegs;
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isRegister())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MO.isUse() && MOReg != SavedReg)
|
|
UseRegs.insert(MO.getReg());
|
|
if (!MO.isDef())
|
|
continue;
|
|
if (MO.isImplicit())
|
|
// Don't try to move it if it implicitly defines a register.
|
|
return false;
|
|
if (DefReg)
|
|
// For now, don't move any instructions that define multiple registers.
|
|
return false;
|
|
DefReg = MO.getReg();
|
|
}
|
|
|
|
// Find the instruction that kills SavedReg.
|
|
MachineInstr *KillMI = NULL;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
if (!UseMO.isKill())
|
|
continue;
|
|
KillMI = UseMO.getParent();
|
|
break;
|
|
}
|
|
|
|
if (!KillMI || KillMI->getParent() != MBB)
|
|
return false;
|
|
|
|
// If any of the definitions are used by another instruction between the
|
|
// position and the kill use, then it's not safe to sink it.
|
|
//
|
|
// FIXME: This can be sped up if there is an easy way to query whether an
|
|
// instruction is before or after another instruction. Then we can use
|
|
// MachineRegisterInfo def / use instead.
|
|
MachineOperand *KillMO = NULL;
|
|
MachineBasicBlock::iterator KillPos = KillMI;
|
|
++KillPos;
|
|
|
|
unsigned NumVisited = 0;
|
|
for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
|
|
MachineInstr *OtherMI = I;
|
|
if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
|
|
return false;
|
|
++NumVisited;
|
|
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = OtherMI->getOperand(i);
|
|
if (!MO.isRegister())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (DefReg == MOReg)
|
|
return false;
|
|
|
|
if (MO.isKill()) {
|
|
if (OtherMI == KillMI && MOReg == SavedReg)
|
|
// Save the operand that kills the register. We want to unset the kill
|
|
// marker if we can sink MI past it.
|
|
KillMO = &MO;
|
|
else if (UseRegs.count(MOReg))
|
|
// One of the uses is killed before the destination.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update kill and LV information.
|
|
KillMO->setIsKill(false);
|
|
KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
|
|
KillMO->setIsKill(true);
|
|
|
|
if (LV)
|
|
LV->replaceKillInstruction(SavedReg, KillMI, MI);
|
|
|
|
// Move instruction to its destination.
|
|
MBB->remove(MI);
|
|
MBB->insert(KillPos, MI);
|
|
|
|
++Num3AddrSunk;
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
|
|
/// instruction which defined the specified register instead of copying it.
|
|
bool
|
|
TwoAddressInstructionPass::isSafeToReMat(unsigned DstReg, MachineInstr *MI) {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isAsCheapAsAMove())
|
|
return false;
|
|
bool SawStore = false;
|
|
if (!MI->isSafeToMove(TII, SawStore))
|
|
return false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isRegister())
|
|
continue;
|
|
// FIXME: For now, do not remat any instruction with register operands.
|
|
// Later on, we can loosen the restriction is the register operands have
|
|
// not been modified between the def and use. Note, this is different from
|
|
// MachineSink because the code in no longer in two-address form (at least
|
|
// partially).
|
|
if (MO.isUse())
|
|
return false;
|
|
else if (!MO.isDead() && MO.getReg() != DstReg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isTwoAddrUse - Return true if the specified MI is using the specified
|
|
/// register as a two-address operand.
|
|
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
|
|
const TargetInstrDesc &TID = UseMI->getDesc();
|
|
for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = UseMI->getOperand(i);
|
|
if (MO.isRegister() && MO.getReg() == Reg &&
|
|
(MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
|
|
// Earlier use is a two-address one.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isProfitableToReMat - Return true if the heuristics determines it is likely
|
|
/// to be profitable to re-materialize the definition of Reg rather than copy
|
|
/// the register.
|
|
bool
|
|
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr *MI, MachineInstr *DefMI,
|
|
MachineBasicBlock *MBB, unsigned Loc,
|
|
DenseMap<MachineInstr*, unsigned> &DistanceMap){
|
|
bool OtherUse = false;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
if (!UseMO.isUse())
|
|
continue;
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
MachineBasicBlock *UseMBB = UseMI->getParent();
|
|
if (UseMBB == MBB) {
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
|
|
if (DI != DistanceMap.end() && DI->second == Loc)
|
|
continue; // Current use.
|
|
OtherUse = true;
|
|
// There is at least one other use in the MBB that will clobber the
|
|
// register.
|
|
if (isTwoAddrUse(UseMI, Reg))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If other uses in MBB are not two-address uses, then don't remat.
|
|
if (OtherUse)
|
|
return false;
|
|
|
|
// No other uses in the same block, remat if it's defined in the same
|
|
// block so it does not unnecessarily extend the live range.
|
|
return MBB == DefMI->getParent();
|
|
}
|
|
|
|
/// runOnMachineFunction - Reduce two-address instructions to two operands.
|
|
///
|
|
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
|
|
DOUT << "Machine Function\n";
|
|
const TargetMachine &TM = MF.getTarget();
|
|
MRI = &MF.getRegInfo();
|
|
TII = TM.getInstrInfo();
|
|
TRI = TM.getRegisterInfo();
|
|
LV = getAnalysisToUpdate<LiveVariables>();
|
|
|
|
bool MadeChange = false;
|
|
|
|
DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
|
|
DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
|
|
|
|
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
|
|
BitVector ReMatRegs;
|
|
ReMatRegs.resize(MRI->getLastVirtReg()+1);
|
|
|
|
// DistanceMap - Keep track the distance of a MI from the start of the
|
|
// current basic block.
|
|
DenseMap<MachineInstr*, unsigned> DistanceMap;
|
|
|
|
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
unsigned Dist = 0;
|
|
DistanceMap.clear();
|
|
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
|
|
mi != me; ) {
|
|
MachineBasicBlock::iterator nmi = next(mi);
|
|
const TargetInstrDesc &TID = mi->getDesc();
|
|
bool FirstTied = true;
|
|
|
|
DistanceMap.insert(std::make_pair(mi, ++Dist));
|
|
for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
|
|
int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
|
|
if (ti == -1)
|
|
continue;
|
|
|
|
if (FirstTied) {
|
|
++NumTwoAddressInstrs;
|
|
DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
|
|
FirstTied = false;
|
|
|
|
assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
|
|
mi->getOperand(si).isUse() && "two address instruction invalid");
|
|
|
|
// If the two operands are the same we just remove the use
|
|
// and mark the def as def&use, otherwise we have to insert a copy.
|
|
if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
|
|
// Rewrite:
|
|
// a = b op c
|
|
// to:
|
|
// a = b
|
|
// a = a op c
|
|
unsigned regA = mi->getOperand(ti).getReg();
|
|
unsigned regB = mi->getOperand(si).getReg();
|
|
|
|
assert(TargetRegisterInfo::isVirtualRegister(regA) &&
|
|
TargetRegisterInfo::isVirtualRegister(regB) &&
|
|
"cannot update physical register live information");
|
|
|
|
#ifndef NDEBUG
|
|
// First, verify that we don't have a use of a in the instruction (a =
|
|
// b + a for example) because our transformation will not work. This
|
|
// should never occur because we are in SSA form.
|
|
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
|
|
assert((int)i == ti ||
|
|
!mi->getOperand(i).isRegister() ||
|
|
mi->getOperand(i).getReg() != regA);
|
|
#endif
|
|
|
|
// If this instruction is not the killing user of B, see if we can
|
|
// rearrange the code to make it so. Making it the killing user will
|
|
// allow us to coalesce A and B together, eliminating the copy we are
|
|
// about to insert.
|
|
if (!mi->killsRegister(regB)) {
|
|
// If this instruction is commutative, check to see if C dies. If
|
|
// so, swap the B and C operands. This makes the live ranges of A
|
|
// and C joinable.
|
|
// FIXME: This code also works for A := B op C instructions.
|
|
if (TID.isCommutable() && mi->getNumOperands() >= 3) {
|
|
assert(mi->getOperand(3-si).isRegister() &&
|
|
"Not a proper commutative instruction!");
|
|
unsigned regC = mi->getOperand(3-si).getReg();
|
|
|
|
if (mi->killsRegister(regC)) {
|
|
DOUT << "2addr: COMMUTING : " << *mi;
|
|
MachineInstr *NewMI = TII->commuteInstruction(mi);
|
|
|
|
if (NewMI == 0) {
|
|
DOUT << "2addr: COMMUTING FAILED!\n";
|
|
} else {
|
|
DOUT << "2addr: COMMUTED TO: " << *NewMI;
|
|
// If the instruction changed to commute it, update livevar.
|
|
if (NewMI != mi) {
|
|
if (LV)
|
|
// Update live variables
|
|
LV->replaceKillInstruction(regC, mi, NewMI);
|
|
|
|
mbbi->insert(mi, NewMI); // Insert the new inst
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
mi = NewMI;
|
|
DistanceMap.insert(std::make_pair(NewMI, Dist));
|
|
}
|
|
|
|
++NumCommuted;
|
|
regB = regC;
|
|
goto InstructionRearranged;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this instruction is potentially convertible to a true
|
|
// three-address instruction,
|
|
if (TID.isConvertibleTo3Addr()) {
|
|
// FIXME: This assumes there are no more operands which are tied
|
|
// to another register.
|
|
#ifndef NDEBUG
|
|
for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
|
|
assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
|
|
#endif
|
|
|
|
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
|
|
if (NewMI) {
|
|
DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
|
|
DOUT << "2addr: TO 3-ADDR: " << *NewMI;
|
|
bool Sunk = false;
|
|
|
|
if (NewMI->findRegisterUseOperand(regB, false, TRI))
|
|
// FIXME: Temporary workaround. If the new instruction doesn't
|
|
// uses regB, convertToThreeAddress must have created more
|
|
// then one instruction.
|
|
Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
|
|
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
|
|
if (!Sunk) {
|
|
DistanceMap.insert(std::make_pair(NewMI, Dist));
|
|
mi = NewMI;
|
|
nmi = next(mi);
|
|
}
|
|
|
|
++NumConvertedTo3Addr;
|
|
break; // Done with this instruction.
|
|
}
|
|
}
|
|
}
|
|
|
|
InstructionRearranged:
|
|
const TargetRegisterClass* rc = MRI->getRegClass(regA);
|
|
MachineInstr *DefMI = MRI->getVRegDef(regB);
|
|
// If it's safe and profitable, remat the definition instead of
|
|
// copying it.
|
|
if (DefMI &&
|
|
isSafeToReMat(regB, DefMI) &&
|
|
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
|
|
DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
|
|
TII->reMaterialize(*mbbi, mi, regA, DefMI);
|
|
ReMatRegs.set(regB);
|
|
++NumReMats;
|
|
} else {
|
|
TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
|
|
}
|
|
|
|
MachineBasicBlock::iterator prevMi = prior(mi);
|
|
DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
|
|
|
|
// Update live variables for regB.
|
|
if (LV) {
|
|
LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
|
|
|
|
// regB is used in this BB.
|
|
varInfoB.UsedBlocks[mbbi->getNumber()] = true;
|
|
|
|
if (LV->removeVirtualRegisterKilled(regB, mi))
|
|
LV->addVirtualRegisterKilled(regB, prevMi);
|
|
|
|
if (LV->removeVirtualRegisterDead(regB, mi))
|
|
LV->addVirtualRegisterDead(regB, prevMi);
|
|
}
|
|
|
|
// Replace all occurences of regB with regA.
|
|
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
|
|
if (mi->getOperand(i).isRegister() &&
|
|
mi->getOperand(i).getReg() == regB)
|
|
mi->getOperand(i).setReg(regA);
|
|
}
|
|
}
|
|
|
|
assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
|
|
mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
|
|
MadeChange = true;
|
|
|
|
DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
|
|
mi = nmi;
|
|
}
|
|
}
|
|
|
|
// Some remat'ed instructions are dead.
|
|
int VReg = ReMatRegs.find_first();
|
|
while (VReg != -1) {
|
|
if (MRI->use_empty(VReg)) {
|
|
MachineInstr *DefMI = MRI->getVRegDef(VReg);
|
|
DefMI->eraseFromParent();
|
|
}
|
|
VReg = ReMatRegs.find_next(VReg);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|