mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-16 11:30:51 +00:00
735afe14ee
Note that "hasDotLocAndDotFile"-style debug info was already broken; people wanting this functionality should implement it in the AsmPrinter/DwarfWriter code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89711 91177308-0d34-0410-b5e6-96231b3b80d8
4602 lines
161 KiB
TableGen
4602 lines
161 KiB
TableGen
//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Cell SPU Instructions:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO Items (not urgent today, but would be nice, low priority)
|
|
//
|
|
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
|
|
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
|
|
// in 16-bit and 32-bit constants and reduce instruction count.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pseudo instructions:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
|
|
"${:comment} ADJCALLSTACKDOWN",
|
|
[(callseq_start timm:$amt)]>;
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt),
|
|
"${:comment} ADJCALLSTACKUP",
|
|
[(callseq_end timm:$amt)]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loads:
|
|
// NB: The ordering is actually important, since the instruction selection
|
|
// will try each of the instructions in sequence, i.e., the D-form first with
|
|
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
|
|
// finally the X-form with the register-register.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let canFoldAsLoad = 1 in {
|
|
class LoadDFormVec<ValueType vectype>
|
|
: RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
|
|
"lqd\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load dform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadDForm<RegisterClass rclass>
|
|
: RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
|
|
"lqd\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load dform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadDForms
|
|
{
|
|
def v16i8: LoadDFormVec<v16i8>;
|
|
def v8i16: LoadDFormVec<v8i16>;
|
|
def v4i32: LoadDFormVec<v4i32>;
|
|
def v2i64: LoadDFormVec<v2i64>;
|
|
def v4f32: LoadDFormVec<v4f32>;
|
|
def v2f64: LoadDFormVec<v2f64>;
|
|
|
|
def v2i32: LoadDFormVec<v2i32>;
|
|
|
|
def r128: LoadDForm<GPRC>;
|
|
def r64: LoadDForm<R64C>;
|
|
def r32: LoadDForm<R32C>;
|
|
def f32: LoadDForm<R32FP>;
|
|
def f64: LoadDForm<R64FP>;
|
|
def r16: LoadDForm<R16C>;
|
|
def r8: LoadDForm<R8C>;
|
|
}
|
|
|
|
class LoadAFormVec<ValueType vectype>
|
|
: RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
|
|
"lqa\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load aform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadAForm<RegisterClass rclass>
|
|
: RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
|
|
"lqa\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load aform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadAForms
|
|
{
|
|
def v16i8: LoadAFormVec<v16i8>;
|
|
def v8i16: LoadAFormVec<v8i16>;
|
|
def v4i32: LoadAFormVec<v4i32>;
|
|
def v2i64: LoadAFormVec<v2i64>;
|
|
def v4f32: LoadAFormVec<v4f32>;
|
|
def v2f64: LoadAFormVec<v2f64>;
|
|
|
|
def v2i32: LoadAFormVec<v2i32>;
|
|
|
|
def r128: LoadAForm<GPRC>;
|
|
def r64: LoadAForm<R64C>;
|
|
def r32: LoadAForm<R32C>;
|
|
def f32: LoadAForm<R32FP>;
|
|
def f64: LoadAForm<R64FP>;
|
|
def r16: LoadAForm<R16C>;
|
|
def r8: LoadAForm<R8C>;
|
|
}
|
|
|
|
class LoadXFormVec<ValueType vectype>
|
|
: RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"lqx\t$rT, $src",
|
|
LoadStore,
|
|
[(set (vectype VECREG:$rT), (load xform_addr:$src))]>
|
|
{ }
|
|
|
|
class LoadXForm<RegisterClass rclass>
|
|
: RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
|
|
"lqx\t$rT, $src",
|
|
LoadStore,
|
|
[(set rclass:$rT, (load xform_addr:$src))]>
|
|
{ }
|
|
|
|
multiclass LoadXForms
|
|
{
|
|
def v16i8: LoadXFormVec<v16i8>;
|
|
def v8i16: LoadXFormVec<v8i16>;
|
|
def v4i32: LoadXFormVec<v4i32>;
|
|
def v2i64: LoadXFormVec<v2i64>;
|
|
def v4f32: LoadXFormVec<v4f32>;
|
|
def v2f64: LoadXFormVec<v2f64>;
|
|
|
|
def v2i32: LoadXFormVec<v2i32>;
|
|
|
|
def r128: LoadXForm<GPRC>;
|
|
def r64: LoadXForm<R64C>;
|
|
def r32: LoadXForm<R32C>;
|
|
def f32: LoadXForm<R32FP>;
|
|
def f64: LoadXForm<R64FP>;
|
|
def r16: LoadXForm<R16C>;
|
|
def r8: LoadXForm<R8C>;
|
|
}
|
|
|
|
defm LQA : LoadAForms;
|
|
defm LQD : LoadDForms;
|
|
defm LQX : LoadXForms;
|
|
|
|
/* Load quadword, PC relative: Not much use at this point in time.
|
|
Might be of use later for relocatable code. It's effectively the
|
|
same as LQA, but uses PC-relative addressing.
|
|
def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
|
|
"lqr\t$rT, $disp", LoadStore,
|
|
[(set VECREG:$rT, (load iaddr:$disp))]>;
|
|
*/
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Stores:
|
|
//===----------------------------------------------------------------------===//
|
|
class StoreDFormVec<ValueType vectype>
|
|
: RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
|
|
"stqd\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), dform_addr:$src)]>
|
|
{ }
|
|
|
|
class StoreDForm<RegisterClass rclass>
|
|
: RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
|
|
"stqd\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, dform_addr:$src)]>
|
|
{ }
|
|
|
|
multiclass StoreDForms
|
|
{
|
|
def v16i8: StoreDFormVec<v16i8>;
|
|
def v8i16: StoreDFormVec<v8i16>;
|
|
def v4i32: StoreDFormVec<v4i32>;
|
|
def v2i64: StoreDFormVec<v2i64>;
|
|
def v4f32: StoreDFormVec<v4f32>;
|
|
def v2f64: StoreDFormVec<v2f64>;
|
|
|
|
def v2i32: StoreDFormVec<v2i32>;
|
|
|
|
def r128: StoreDForm<GPRC>;
|
|
def r64: StoreDForm<R64C>;
|
|
def r32: StoreDForm<R32C>;
|
|
def f32: StoreDForm<R32FP>;
|
|
def f64: StoreDForm<R64FP>;
|
|
def r16: StoreDForm<R16C>;
|
|
def r8: StoreDForm<R8C>;
|
|
}
|
|
|
|
class StoreAFormVec<ValueType vectype>
|
|
: RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
|
|
"stqa\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), aform_addr:$src)]>;
|
|
|
|
class StoreAForm<RegisterClass rclass>
|
|
: RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
|
|
"stqa\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, aform_addr:$src)]>;
|
|
|
|
multiclass StoreAForms
|
|
{
|
|
def v16i8: StoreAFormVec<v16i8>;
|
|
def v8i16: StoreAFormVec<v8i16>;
|
|
def v4i32: StoreAFormVec<v4i32>;
|
|
def v2i64: StoreAFormVec<v2i64>;
|
|
def v4f32: StoreAFormVec<v4f32>;
|
|
def v2f64: StoreAFormVec<v2f64>;
|
|
|
|
def v2i32: StoreAFormVec<v2i32>;
|
|
|
|
def r128: StoreAForm<GPRC>;
|
|
def r64: StoreAForm<R64C>;
|
|
def r32: StoreAForm<R32C>;
|
|
def f32: StoreAForm<R32FP>;
|
|
def f64: StoreAForm<R64FP>;
|
|
def r16: StoreAForm<R16C>;
|
|
def r8: StoreAForm<R8C>;
|
|
}
|
|
|
|
class StoreXFormVec<ValueType vectype>
|
|
: RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
|
|
"stqx\t$rT, $src",
|
|
LoadStore,
|
|
[(store (vectype VECREG:$rT), xform_addr:$src)]>
|
|
{ }
|
|
|
|
class StoreXForm<RegisterClass rclass>
|
|
: RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
|
|
"stqx\t$rT, $src",
|
|
LoadStore,
|
|
[(store rclass:$rT, xform_addr:$src)]>
|
|
{ }
|
|
|
|
multiclass StoreXForms
|
|
{
|
|
def v16i8: StoreXFormVec<v16i8>;
|
|
def v8i16: StoreXFormVec<v8i16>;
|
|
def v4i32: StoreXFormVec<v4i32>;
|
|
def v2i64: StoreXFormVec<v2i64>;
|
|
def v4f32: StoreXFormVec<v4f32>;
|
|
def v2f64: StoreXFormVec<v2f64>;
|
|
|
|
def v2i32: StoreXFormVec<v2i32>;
|
|
|
|
def r128: StoreXForm<GPRC>;
|
|
def r64: StoreXForm<R64C>;
|
|
def r32: StoreXForm<R32C>;
|
|
def f32: StoreXForm<R32FP>;
|
|
def f64: StoreXForm<R64FP>;
|
|
def r16: StoreXForm<R16C>;
|
|
def r8: StoreXForm<R8C>;
|
|
}
|
|
|
|
defm STQD : StoreDForms;
|
|
defm STQA : StoreAForms;
|
|
defm STQX : StoreXForms;
|
|
|
|
/* Store quadword, PC relative: Not much use at this point in time. Might
|
|
be useful for relocatable code.
|
|
def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
|
|
"stqr\t$rT, $disp", LoadStore,
|
|
[(store VECREG:$rT, iaddr:$disp)]>;
|
|
*/
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generate Controls for Insertion:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"cbd\t$rT, $src", ShuffleOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cbx\t$rT, $src", ShuffleOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"chd\t$rT, $src", ShuffleOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"chx\t$rT, $src", ShuffleOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"cwd\t$rT, $src", ShuffleOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cwx\t$rT, $src", ShuffleOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"cwd\t$rT, $src", ShuffleOp,
|
|
[(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cwx\t$rT, $src", ShuffleOp,
|
|
[(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"cdd\t$rT, $src", ShuffleOp,
|
|
[(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cdx\t$rT, $src", ShuffleOp,
|
|
[(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
|
|
"cdd\t$rT, $src", ShuffleOp,
|
|
[(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
|
|
|
|
def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
|
|
"cdx\t$rT, $src", ShuffleOp,
|
|
[(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant formation:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ILHv8i16:
|
|
RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
|
|
|
|
def ILHr16:
|
|
RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set R16C:$rT, immSExt16:$val)]>;
|
|
|
|
// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
|
|
// the right constant")
|
|
def ILHr8:
|
|
RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
|
|
"ilh\t$rT, $val", ImmLoad,
|
|
[(set R8C:$rT, immSExt8:$val)]>;
|
|
|
|
// IL does sign extension!
|
|
|
|
class ILInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
|
|
ImmLoad, pattern>;
|
|
|
|
class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
|
|
ILInst<(outs VECREG:$rT), (ins immtype:$val),
|
|
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
|
|
|
|
class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
|
|
ILInst<(outs rclass:$rT), (ins immtype:$val),
|
|
[(set rclass:$rT, xform:$val)]>;
|
|
|
|
multiclass ImmediateLoad
|
|
{
|
|
def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
|
|
def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
|
|
|
|
// TODO: Need v2f64, v4f32
|
|
|
|
def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
|
|
def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
|
|
def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
|
|
def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
|
|
}
|
|
|
|
defm IL : ImmediateLoad;
|
|
|
|
class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
|
|
ImmLoad, pattern>;
|
|
|
|
class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
|
|
ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
|
|
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
|
|
|
|
class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
|
|
ILHUInst<(outs rclass:$rT), (ins immtype:$val),
|
|
[(set rclass:$rT, xform:$val)]>;
|
|
|
|
multiclass ImmLoadHalfwordUpper
|
|
{
|
|
def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
|
|
def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
|
|
|
|
def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
|
|
def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
|
|
|
|
// Loads the high portion of an address
|
|
def hi: ILHURegInst<R32C, symbolHi, hi16>;
|
|
|
|
// Used in custom lowering constant SFP loads:
|
|
def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
|
|
}
|
|
|
|
defm ILHU : ImmLoadHalfwordUpper;
|
|
|
|
// Immediate load address (can also be used to load 18-bit unsigned constants,
|
|
// see the zext 16->32 pattern)
|
|
|
|
class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
|
|
LoadNOP, pattern>;
|
|
|
|
class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
|
|
ILAInst<(outs VECREG:$rT), (ins immtype:$val),
|
|
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
|
|
|
|
class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
|
|
ILAInst<(outs rclass:$rT), (ins immtype:$val),
|
|
[(set rclass:$rT, xform:$val)]>;
|
|
|
|
multiclass ImmLoadAddress
|
|
{
|
|
def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
|
|
def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
|
|
|
|
def r64: ILARegInst<R64C, u18imm_i64, imm18>;
|
|
def r32: ILARegInst<R32C, u18imm, imm18>;
|
|
def f32: ILARegInst<R32FP, f18imm, fpimm18>;
|
|
def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
|
|
|
|
def hi: ILARegInst<R32C, symbolHi, imm18>;
|
|
def lo: ILARegInst<R32C, symbolLo, imm18>;
|
|
|
|
def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
|
|
[/* no pattern */]>;
|
|
}
|
|
|
|
defm ILA : ImmLoadAddress;
|
|
|
|
// Immediate OR, Halfword Lower: The "other" part of loading large constants
|
|
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
|
|
// Note that these are really two operand instructions, but they're encoded
|
|
// as three operands with the first two arguments tied-to each other.
|
|
|
|
class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
|
|
ImmLoad, pattern>,
|
|
RegConstraint<"$rS = $rT">,
|
|
NoEncode<"$rS">;
|
|
|
|
class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
|
|
IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
|
|
[/* no pattern */]>;
|
|
|
|
class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
|
|
IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass ImmOrHalfwordLower
|
|
{
|
|
def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
|
|
def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
|
|
|
|
def r32: IOHLRegInst<R32C, i32imm>;
|
|
def f32: IOHLRegInst<R32FP, f32imm>;
|
|
|
|
def lo: IOHLRegInst<R32C, symbolLo>;
|
|
}
|
|
|
|
defm IOHL: ImmOrHalfwordLower;
|
|
|
|
// Form select mask for bytes using immediate, used in conjunction with the
|
|
// SELB instruction:
|
|
|
|
class FSMBIVec<ValueType vectype>:
|
|
RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
|
|
"fsmbi\t$rT, $val",
|
|
SelectOp,
|
|
[(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
|
|
|
|
multiclass FormSelectMaskBytesImm
|
|
{
|
|
def v16i8: FSMBIVec<v16i8>;
|
|
def v8i16: FSMBIVec<v8i16>;
|
|
def v4i32: FSMBIVec<v4i32>;
|
|
def v2i64: FSMBIVec<v2i64>;
|
|
}
|
|
|
|
defm FSMBI : FormSelectMaskBytesImm;
|
|
|
|
// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
|
|
class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
|
|
pattern>;
|
|
|
|
class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
|
|
FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
|
|
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
|
|
|
|
class FSMBVecInst<ValueType vectype>:
|
|
FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUselmask (vectype VECREG:$rA)))]>;
|
|
|
|
multiclass FormSelectMaskBits {
|
|
def v16i8_r16: FSMBRegInst<R16C, v16i8>;
|
|
def v16i8: FSMBVecInst<v16i8>;
|
|
}
|
|
|
|
defm FSMB: FormSelectMaskBits;
|
|
|
|
// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
|
|
// only 8-bits wide (even though it's input as 16-bits here)
|
|
|
|
class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
|
|
pattern>;
|
|
|
|
class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
|
|
FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
|
|
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
|
|
|
|
class FSMHVecInst<ValueType vectype>:
|
|
FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUselmask (vectype VECREG:$rA)))]>;
|
|
|
|
multiclass FormSelectMaskHalfword {
|
|
def v8i16_r16: FSMHRegInst<R16C, v8i16>;
|
|
def v8i16: FSMHVecInst<v8i16>;
|
|
}
|
|
|
|
defm FSMH: FormSelectMaskHalfword;
|
|
|
|
// fsm: Form select mask for words. Like the other fsm* instructions,
|
|
// only the lower 4 bits of $rA are significant.
|
|
|
|
class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
|
|
pattern>;
|
|
|
|
class FSMRegInst<ValueType vectype, RegisterClass rclass>:
|
|
FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
|
|
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
|
|
|
|
class FSMVecInst<ValueType vectype>:
|
|
FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
|
|
|
|
multiclass FormSelectMaskWord {
|
|
def v4i32: FSMVecInst<v4i32>;
|
|
|
|
def r32 : FSMRegInst<v4i32, R32C>;
|
|
def r16 : FSMRegInst<v4i32, R16C>;
|
|
}
|
|
|
|
defm FSM : FormSelectMaskWord;
|
|
|
|
// Special case when used for i64 math operations
|
|
multiclass FormSelectMaskWord64 {
|
|
def r32 : FSMRegInst<v2i64, R32C>;
|
|
def r16 : FSMRegInst<v2i64, R16C>;
|
|
}
|
|
|
|
defm FSM64 : FormSelectMaskWord64;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer and Logical Operations:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def AHv8i16:
|
|
RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"ah\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
|
|
|
|
def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
|
|
(AHv8i16 VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def AHr16:
|
|
RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"ah\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
|
|
|
|
def AHIvec:
|
|
RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"ahi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
|
|
v8i16SExt10Imm:$val))]>;
|
|
|
|
def AHIr16:
|
|
RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"ahi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
|
|
|
|
// v4i32, i32 add instruction:
|
|
|
|
class AInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00000011000, OOL, IOL,
|
|
"a\t$rT, $rA, $rB", IntegerOp,
|
|
pattern>;
|
|
|
|
class AVecInst<ValueType vectype>:
|
|
AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
class ARegInst<RegisterClass rclass>:
|
|
AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
|
|
|
|
multiclass AddInstruction {
|
|
def v4i32: AVecInst<v4i32>;
|
|
def v16i8: AVecInst<v16i8>;
|
|
|
|
def r32: ARegInst<R32C>;
|
|
}
|
|
|
|
defm A : AddInstruction;
|
|
|
|
class AIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b00111000, OOL, IOL,
|
|
"ai\t$rT, $rA, $val", IntegerOp,
|
|
pattern>;
|
|
|
|
class AIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
|
|
|
|
class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
|
|
AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
|
|
AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
|
|
[(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
|
|
|
|
// This is used to add epsilons to floating point numbers in the f32 fdiv code:
|
|
class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
|
|
AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass AddImmediate {
|
|
def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
|
|
|
|
def r32: AIRegInst<R32C, i32ImmSExt10>;
|
|
|
|
def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
|
|
def f32: AIFPInst<R32FP, i32ImmSExt10>;
|
|
}
|
|
|
|
defm AI : AddImmediate;
|
|
|
|
def SFHvec:
|
|
RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"sfh\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def SFHr16:
|
|
RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"sfh\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>;
|
|
|
|
def SFHIvec:
|
|
RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"sfhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
|
|
(v8i16 VECREG:$rA)))]>;
|
|
|
|
def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"sfhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
|
|
|
|
def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB),
|
|
"sf\t$rT, $rA, $rB", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"sf\t$rT, $rA, $rB", IntegerOp,
|
|
[(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>;
|
|
|
|
def SFIvec:
|
|
RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
"sfi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
|
|
(v4i32 VECREG:$rA)))]>;
|
|
|
|
def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
|
|
(ins R32C:$rA, s10imm_i32:$val),
|
|
"sfi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
|
|
|
|
// ADDX: only available in vector form, doesn't match a pattern.
|
|
class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00000010110, OOL, IOL,
|
|
"addx\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ADDXVecInst<ValueType vectype>:
|
|
ADDXInst<(outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
|
|
[/* no pattern */]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
class ADDXRegInst<RegisterClass rclass>:
|
|
ADDXInst<(outs rclass:$rT),
|
|
(ins rclass:$rA, rclass:$rB, rclass:$rCarry),
|
|
[/* no pattern */]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
multiclass AddExtended {
|
|
def v2i64 : ADDXVecInst<v2i64>;
|
|
def v4i32 : ADDXVecInst<v4i32>;
|
|
def r64 : ADDXRegInst<R64C>;
|
|
def r32 : ADDXRegInst<R32C>;
|
|
}
|
|
|
|
defm ADDX : AddExtended;
|
|
|
|
// CG: Generate carry for add
|
|
class CGInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01000011000, OOL, IOL,
|
|
"cg\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class CGVecInst<ValueType vectype>:
|
|
CGInst<(outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class CGRegInst<RegisterClass rclass>:
|
|
CGInst<(outs rclass:$rT),
|
|
(ins rclass:$rA, rclass:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass CarryGenerate {
|
|
def v2i64 : CGVecInst<v2i64>;
|
|
def v4i32 : CGVecInst<v4i32>;
|
|
def r64 : CGRegInst<R64C>;
|
|
def r32 : CGRegInst<R32C>;
|
|
}
|
|
|
|
defm CG : CarryGenerate;
|
|
|
|
// SFX: Subract from, extended. This is used in conjunction with BG to subtract
|
|
// with carry (borrow, in this case)
|
|
class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10000010110, OOL, IOL,
|
|
"sfx\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class SFXVecInst<ValueType vectype>:
|
|
SFXInst<(outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
|
|
[/* no pattern */]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
class SFXRegInst<RegisterClass rclass>:
|
|
SFXInst<(outs rclass:$rT),
|
|
(ins rclass:$rA, rclass:$rB, rclass:$rCarry),
|
|
[/* no pattern */]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
multiclass SubtractExtended {
|
|
def v2i64 : SFXVecInst<v2i64>;
|
|
def v4i32 : SFXVecInst<v4i32>;
|
|
def r64 : SFXRegInst<R64C>;
|
|
def r32 : SFXRegInst<R32C>;
|
|
}
|
|
|
|
defm SFX : SubtractExtended;
|
|
|
|
// BG: only available in vector form, doesn't match a pattern.
|
|
class BGInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01000010000, OOL, IOL,
|
|
"bg\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class BGVecInst<ValueType vectype>:
|
|
BGInst<(outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class BGRegInst<RegisterClass rclass>:
|
|
BGInst<(outs rclass:$rT),
|
|
(ins rclass:$rA, rclass:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass BorrowGenerate {
|
|
def v4i32 : BGVecInst<v4i32>;
|
|
def v2i64 : BGVecInst<v2i64>;
|
|
def r64 : BGRegInst<R64C>;
|
|
def r32 : BGRegInst<R32C>;
|
|
}
|
|
|
|
defm BG : BorrowGenerate;
|
|
|
|
// BGX: Borrow generate, extended.
|
|
def BGXvec:
|
|
RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
|
|
VECREG:$rCarry),
|
|
"bgx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>,
|
|
RegConstraint<"$rCarry = $rT">,
|
|
NoEncode<"$rCarry">;
|
|
|
|
// Halfword multiply variants:
|
|
// N.B: These can be used to build up larger quantities (16x16 -> 32)
|
|
|
|
def MPYv8i16:
|
|
RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYr16:
|
|
RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
|
|
|
|
// Unsigned 16-bit multiply:
|
|
|
|
class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00110011110, OOL, IOL,
|
|
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
pattern>;
|
|
|
|
def MPYUv4i32:
|
|
MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def MPYUr16:
|
|
MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
|
|
|
|
def MPYUr32:
|
|
MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
// mpyi: multiply 16 x s10imm -> 32 result.
|
|
|
|
class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b00101110, OOL, IOL,
|
|
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
|
|
pattern>;
|
|
|
|
def MPYIvec:
|
|
MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
|
|
|
|
def MPYIr16:
|
|
MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
|
|
|
|
// mpyui: same issues as other multiplies, plus, this doesn't match a
|
|
// pattern... but may be used during target DAG selection or lowering
|
|
|
|
class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b10101110, OOL, IOL,
|
|
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
|
|
pattern>;
|
|
|
|
def MPYUIvec:
|
|
MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[]>;
|
|
|
|
def MPYUIr16:
|
|
MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[]>;
|
|
|
|
// mpya: 16 x 16 + 16 -> 32 bit result
|
|
class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRRForm<0b0011, OOL, IOL,
|
|
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
|
|
pattern>;
|
|
|
|
def MPYAv4i32:
|
|
MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))),
|
|
(v4i32 VECREG:$rC)))]>;
|
|
|
|
def MPYAr32:
|
|
MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
|
|
[(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
|
|
R32C:$rC))]>;
|
|
|
|
def MPYAr32_sext:
|
|
MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
|
|
[(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
|
|
R32C:$rC))]>;
|
|
|
|
def MPYAr32_sextinreg:
|
|
MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
|
|
[(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
|
|
(sext_inreg R32C:$rB, i16)),
|
|
R32C:$rC))]>;
|
|
|
|
// mpyh: multiply high, used to synthesize 32-bit multiplies
|
|
class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10100011110, OOL, IOL,
|
|
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
pattern>;
|
|
|
|
def MPYHv4i32:
|
|
MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def MPYHr32:
|
|
MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
// mpys: multiply high and shift right (returns the top half of
|
|
// a 16-bit multiply, sign extended to 32 bits.)
|
|
|
|
class MPYSInst<dag OOL, dag IOL>:
|
|
RRForm<0b11100011110, OOL, IOL,
|
|
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYSv4i32:
|
|
MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def MPYSr16:
|
|
MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
|
|
|
|
// mpyhh: multiply high-high (returns the 32-bit result from multiplying
|
|
// the top 16 bits of the $rA, $rB)
|
|
|
|
class MPYHHInst<dag OOL, dag IOL>:
|
|
RRForm<0b01100011110, OOL, IOL,
|
|
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYHHv8i16:
|
|
MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def MPYHHr32:
|
|
MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
|
|
|
|
// mpyhha: Multiply high-high, add to $rT:
|
|
|
|
class MPYHHAInst<dag OOL, dag IOL>:
|
|
RRForm<0b01100010110, OOL, IOL,
|
|
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYHHAvec:
|
|
MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def MPYHHAr32:
|
|
MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
|
|
|
|
// mpyhhu: Multiply high-high, unsigned, e.g.:
|
|
//
|
|
// +-------+-------+ +-------+-------+ +---------+
|
|
// | a0 . a1 | x | b0 . b1 | = | a0 x b0 |
|
|
// +-------+-------+ +-------+-------+ +---------+
|
|
//
|
|
// where a0, b0 are the upper 16 bits of the 32-bit word
|
|
|
|
class MPYHHUInst<dag OOL, dag IOL>:
|
|
RRForm<0b01110011110, OOL, IOL,
|
|
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYHHUv4i32:
|
|
MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def MPYHHUr32:
|
|
MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
|
|
|
|
// mpyhhau: Multiply high-high, unsigned
|
|
|
|
class MPYHHAUInst<dag OOL, dag IOL>:
|
|
RRForm<0b01110010110, OOL, IOL,
|
|
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
|
|
[/* no pattern */]>;
|
|
|
|
def MPYHHAUvec:
|
|
MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
|
|
|
|
def MPYHHAUr32:
|
|
MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// clz: Count leading zeroes
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
|
|
IntegerOp, pattern>;
|
|
|
|
class CLZRegInst<RegisterClass rclass>:
|
|
CLZInst<(outs rclass:$rT), (ins rclass:$rA),
|
|
[(set rclass:$rT, (ctlz rclass:$rA))]>;
|
|
|
|
class CLZVecInst<ValueType vectype>:
|
|
CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
|
|
|
|
multiclass CountLeadingZeroes {
|
|
def v4i32 : CLZVecInst<v4i32>;
|
|
def r32 : CLZRegInst<R32C>;
|
|
}
|
|
|
|
defm CLZ : CountLeadingZeroes;
|
|
|
|
// cntb: Count ones in bytes (aka "population count")
|
|
//
|
|
// NOTE: This instruction is really a vector instruction, but the custom
|
|
// lowering code uses it in unorthodox ways to support CTPOP for other
|
|
// data types!
|
|
|
|
def CNTBv16i8:
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
|
|
|
|
def CNTBv8i16 :
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
|
|
|
|
def CNTBv4i32 :
|
|
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cntb\t$rT, $rA", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
|
|
|
|
// gbb: Gather the low order bits from each byte in $rA into a single 16-bit
|
|
// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
|
|
// slots 1-3.
|
|
//
|
|
// Note: This instruction "pairs" with the fsmb instruction for all of the
|
|
// various types defined here.
|
|
//
|
|
// Note 2: The "VecInst" and "RegInst" forms refer to the result being either
|
|
// a vector or register.
|
|
|
|
class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
|
|
|
|
class GBBRegInst<RegisterClass rclass, ValueType vectype>:
|
|
GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
class GBBVecInst<ValueType vectype>:
|
|
GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass GatherBitsFromBytes {
|
|
def v16i8_r32: GBBRegInst<R32C, v16i8>;
|
|
def v16i8_r16: GBBRegInst<R16C, v16i8>;
|
|
def v16i8: GBBVecInst<v16i8>;
|
|
}
|
|
|
|
defm GBB: GatherBitsFromBytes;
|
|
|
|
// gbh: Gather all low order bits from each halfword in $rA into a single
|
|
// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
|
|
// and slots 1-3 also set to 0.
|
|
//
|
|
// See notes for GBBInst, above.
|
|
|
|
class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
|
|
pattern>;
|
|
|
|
class GBHRegInst<RegisterClass rclass, ValueType vectype>:
|
|
GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
class GBHVecInst<ValueType vectype>:
|
|
GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass GatherBitsHalfword {
|
|
def v8i16_r32: GBHRegInst<R32C, v8i16>;
|
|
def v8i16_r16: GBHRegInst<R16C, v8i16>;
|
|
def v8i16: GBHVecInst<v8i16>;
|
|
}
|
|
|
|
defm GBH: GatherBitsHalfword;
|
|
|
|
// gb: Gather all low order bits from each word in $rA into a single
|
|
// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
|
|
// as well as slots 1-3.
|
|
//
|
|
// See notes for gbb, above.
|
|
|
|
class GBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
|
|
pattern>;
|
|
|
|
class GBRegInst<RegisterClass rclass, ValueType vectype>:
|
|
GBInst<(outs rclass:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
class GBVecInst<ValueType vectype>:
|
|
GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass GatherBitsWord {
|
|
def v4i32_r32: GBRegInst<R32C, v4i32>;
|
|
def v4i32_r16: GBRegInst<R16C, v4i32>;
|
|
def v4i32: GBVecInst<v4i32>;
|
|
}
|
|
|
|
defm GB: GatherBitsWord;
|
|
|
|
// avgb: average bytes
|
|
def AVGB:
|
|
RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"avgb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// absdb: absolute difference of bytes
|
|
def ABSDB:
|
|
RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"absdb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// sumb: sum bytes into halfwords
|
|
def SUMB:
|
|
RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"sumb\t$rT, $rA, $rB", ByteOp,
|
|
[]>;
|
|
|
|
// Sign extension operations:
|
|
class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b01101101010, OOL, IOL,
|
|
"xsbh\t$rDst, $rSrc",
|
|
IntegerOp, pattern>;
|
|
|
|
class XSBHVecInst<ValueType vectype>:
|
|
XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
|
|
[(set (v8i16 VECREG:$rDst), (sext (vectype VECREG:$rSrc)))]>;
|
|
|
|
class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
|
|
XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
|
|
pattern>;
|
|
|
|
multiclass ExtendByteHalfword {
|
|
def v16i8: XSBHVecInst<v8i16>;
|
|
def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
|
|
[(set R16C:$rDst, (sext R8C:$rSrc))]>;
|
|
def r16: XSBHInRegInst<R16C,
|
|
[(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
|
|
|
|
// 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
|
|
// quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
|
|
// pattern below). Intentionally doesn't match a pattern because we want the
|
|
// sext 8->32 pattern to do the work for us, namely because we need the extra
|
|
// XSHWr32.
|
|
def r32: XSBHInRegInst<R32C, [/* no pattern */]>;
|
|
|
|
// Same as the 32-bit version, but for i64
|
|
def r64: XSBHInRegInst<R64C, [/* no pattern */]>;
|
|
}
|
|
|
|
defm XSBH : ExtendByteHalfword;
|
|
|
|
// Sign extend halfwords to words:
|
|
|
|
class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
|
|
IntegerOp, pattern>;
|
|
|
|
class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
|
|
XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
|
|
[(set (out_vectype VECREG:$rDest),
|
|
(sext (in_vectype VECREG:$rSrc)))]>;
|
|
|
|
class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
|
|
XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
|
|
pattern>;
|
|
|
|
class XSHWRegInst<RegisterClass rclass>:
|
|
XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
|
|
[(set rclass:$rDest, (sext R16C:$rSrc))]>;
|
|
|
|
multiclass ExtendHalfwordWord {
|
|
def v4i32: XSHWVecInst<v4i32, v8i16>;
|
|
|
|
def r16: XSHWRegInst<R32C>;
|
|
|
|
def r32: XSHWInRegInst<R32C,
|
|
[(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
|
|
def r64: XSHWInRegInst<R64C, [/* no pattern */]>;
|
|
}
|
|
|
|
defm XSHW : ExtendHalfwordWord;
|
|
|
|
// Sign-extend words to doublewords (32->64 bits)
|
|
|
|
class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
|
|
IntegerOp, pattern>;
|
|
|
|
class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
|
|
XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
|
|
[(set (out_vectype VECREG:$rDst),
|
|
(sext (out_vectype VECREG:$rSrc)))]>;
|
|
|
|
class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
|
|
XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
|
|
[(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
|
|
|
|
multiclass ExtendWordToDoubleWord {
|
|
def v2i64: XSWDVecInst<v4i32, v2i64>;
|
|
def r64: XSWDRegInst<R32C, R64C>;
|
|
|
|
def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
|
|
[(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
|
|
}
|
|
|
|
defm XSWD : ExtendWordToDoubleWord;
|
|
|
|
// AND operations
|
|
|
|
class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ANDVecInst<ValueType vectype>:
|
|
ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
class ANDRegInst<RegisterClass rclass>:
|
|
ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
|
|
|
|
multiclass BitwiseAnd
|
|
{
|
|
def v16i8: ANDVecInst<v16i8>;
|
|
def v8i16: ANDVecInst<v8i16>;
|
|
def v4i32: ANDVecInst<v4i32>;
|
|
def v2i64: ANDVecInst<v2i64>;
|
|
|
|
def r128: ANDRegInst<GPRC>;
|
|
def r64: ANDRegInst<R64C>;
|
|
def r32: ANDRegInst<R32C>;
|
|
def r16: ANDRegInst<R16C>;
|
|
def r8: ANDRegInst<R8C>;
|
|
|
|
//===---------------------------------------------
|
|
// Special instructions to perform the fabs instruction
|
|
def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* Intentionally does not match a pattern */]>;
|
|
|
|
//===---------------------------------------------
|
|
|
|
// Hacked form of AND to zero-extend 16-bit quantities to 32-bit
|
|
// quantities -- see 16->32 zext pattern.
|
|
//
|
|
// This pattern is somewhat artificial, since it might match some
|
|
// compiler generated pattern but it is unlikely to do so.
|
|
|
|
def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
|
|
}
|
|
|
|
defm AND : BitwiseAnd;
|
|
|
|
// N.B.: vnot_conv is one of those special target selection pattern fragments,
|
|
// in which we expect there to be a bit_convert on the constant. Bear in mind
|
|
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
|
|
// constant -1 vector.)
|
|
|
|
class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
|
|
ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(and (vectype VECREG:$rA),
|
|
(vnot_frag (vectype VECREG:$rB))))]>;
|
|
|
|
class ANDCRegInst<RegisterClass rclass>:
|
|
ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
|
|
|
|
multiclass AndComplement
|
|
{
|
|
def v16i8: ANDCVecInst<v16i8>;
|
|
def v8i16: ANDCVecInst<v8i16>;
|
|
def v4i32: ANDCVecInst<v4i32>;
|
|
def v2i64: ANDCVecInst<v2i64>;
|
|
|
|
def r128: ANDCRegInst<GPRC>;
|
|
def r64: ANDCRegInst<R64C>;
|
|
def r32: ANDCRegInst<R32C>;
|
|
def r16: ANDCRegInst<R16C>;
|
|
def r8: ANDCRegInst<R8C>;
|
|
|
|
// Sometimes, the xor pattern has a bitcast constant:
|
|
def v16i8_conv: ANDCVecInst<v16i8, vnot_conv>;
|
|
}
|
|
|
|
defm ANDC : AndComplement;
|
|
|
|
class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass AndByteImm
|
|
{
|
|
def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT),
|
|
(and (v16i8 VECREG:$rA),
|
|
(v16i8 v16i8U8Imm:$val)))]>;
|
|
|
|
def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm ANDBI : AndByteImm;
|
|
|
|
class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass AndHalfwordImm
|
|
{
|
|
def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
|
|
|
|
def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
|
|
|
|
// Zero-extend i8 to i16:
|
|
def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
|
|
}
|
|
|
|
defm ANDHI : AndHalfwordImm;
|
|
|
|
class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass AndWordImm
|
|
{
|
|
def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
|
|
|
|
def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
// Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
|
|
// pattern below.
|
|
def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT,
|
|
(and (zext R8C:$rA), i32ImmSExt10:$val))]>;
|
|
|
|
// Hacked form of ANDI to zero-extend i16 quantities to i32. See the
|
|
// zext 16->32 pattern below.
|
|
//
|
|
// Note that this pattern is somewhat artificial, since it might match
|
|
// something the compiler generates but is unlikely to occur in practice.
|
|
def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT,
|
|
(and (zext R16C:$rA), i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ANDI : AndWordImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Bitwise OR group:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
// Bitwise "or" (N.B.: These are also register-register copy instructions...)
|
|
class ORInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORVecInst<ValueType vectype>:
|
|
ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
class ORRegInst<RegisterClass rclass>:
|
|
ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
|
|
|
|
// ORCvtForm: OR conversion form
|
|
//
|
|
// This is used to "convert" the preferred slot to its vector equivalent, as
|
|
// well as convert a vector back to its preferred slot.
|
|
//
|
|
// These are effectively no-ops, but need to exist for proper type conversion
|
|
// and type coercion.
|
|
|
|
class ORCvtForm<dag OOL, dag IOL, list<dag> pattern = [/* no pattern */]>
|
|
: SPUInstr<OOL, IOL, "or\t$rT, $rA, $rA", IntegerOp> {
|
|
bits<7> RA;
|
|
bits<7> RT;
|
|
|
|
let Pattern = pattern;
|
|
|
|
let Inst{0-10} = 0b10000010000;
|
|
let Inst{11-17} = RA;
|
|
let Inst{18-24} = RA;
|
|
let Inst{25-31} = RT;
|
|
}
|
|
|
|
class ORPromoteScalar<RegisterClass rclass>:
|
|
ORCvtForm<(outs VECREG:$rT), (ins rclass:$rA)>;
|
|
|
|
class ORExtractElt<RegisterClass rclass>:
|
|
ORCvtForm<(outs rclass:$rT), (ins VECREG:$rA)>;
|
|
|
|
/* class ORCvtRegGPRC<RegisterClass rclass>:
|
|
ORCvtForm<(outs GPRC:$rT), (ins rclass:$rA)>; */
|
|
|
|
/* class ORCvtGPRCReg<RegisterClass rclass>:
|
|
ORCvtForm<(outs rclass:$rT), (ins GPRC:$rA)>; */
|
|
|
|
class ORCvtFormR32Reg<RegisterClass rclass, list<dag> pattern = [ ]>:
|
|
ORCvtForm<(outs rclass:$rT), (ins R32C:$rA), pattern>;
|
|
|
|
class ORCvtFormRegR32<RegisterClass rclass, list<dag> pattern = [ ]>:
|
|
ORCvtForm<(outs R32C:$rT), (ins rclass:$rA), pattern>;
|
|
|
|
class ORCvtFormR64Reg<RegisterClass rclass, list<dag> pattern = [ ]>:
|
|
ORCvtForm<(outs rclass:$rT), (ins R64C:$rA), pattern>;
|
|
|
|
class ORCvtFormRegR64<RegisterClass rclass, list<dag> pattern = [ ]>:
|
|
ORCvtForm<(outs R64C:$rT), (ins rclass:$rA), pattern>;
|
|
|
|
class ORCvtGPRCVec:
|
|
ORCvtForm<(outs VECREG:$rT), (ins GPRC:$rA)>;
|
|
|
|
class ORCvtVecGPRC:
|
|
ORCvtForm<(outs GPRC:$rT), (ins VECREG:$rA)>;
|
|
|
|
multiclass BitwiseOr
|
|
{
|
|
def v16i8: ORVecInst<v16i8>;
|
|
def v8i16: ORVecInst<v8i16>;
|
|
def v4i32: ORVecInst<v4i32>;
|
|
def v2i64: ORVecInst<v2i64>;
|
|
|
|
def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4f32 VECREG:$rT),
|
|
(v4f32 (bitconvert (or (v4i32 VECREG:$rA),
|
|
(v4i32 VECREG:$rB)))))]>;
|
|
|
|
def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v2f64 VECREG:$rT),
|
|
(v2f64 (bitconvert (or (v2i64 VECREG:$rA),
|
|
(v2i64 VECREG:$rB)))))]>;
|
|
|
|
def r128: ORRegInst<GPRC>;
|
|
def r64: ORRegInst<R64C>;
|
|
def r32: ORRegInst<R32C>;
|
|
def r16: ORRegInst<R16C>;
|
|
def r8: ORRegInst<R8C>;
|
|
|
|
// OR instructions used to copy f32 and f64 registers.
|
|
def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
// scalar->vector promotion, prefslot2vec:
|
|
def v16i8_i8: ORPromoteScalar<R8C>;
|
|
def v8i16_i16: ORPromoteScalar<R16C>;
|
|
def v4i32_i32: ORPromoteScalar<R32C>;
|
|
def v2i64_i64: ORPromoteScalar<R64C>;
|
|
def v4f32_f32: ORPromoteScalar<R32FP>;
|
|
def v2f64_f64: ORPromoteScalar<R64FP>;
|
|
|
|
// vector->scalar demotion, vec2prefslot:
|
|
def i8_v16i8: ORExtractElt<R8C>;
|
|
def i16_v8i16: ORExtractElt<R16C>;
|
|
def i32_v4i32: ORExtractElt<R32C>;
|
|
def i64_v2i64: ORExtractElt<R64C>;
|
|
def f32_v4f32: ORExtractElt<R32FP>;
|
|
def f64_v2f64: ORExtractElt<R64FP>;
|
|
|
|
// Conversion from vector to GPRC
|
|
def i128_vec: ORCvtVecGPRC;
|
|
|
|
// Conversion from GPRC to vector
|
|
def vec_i128: ORCvtGPRCVec;
|
|
|
|
/*
|
|
// Conversion from register to GPRC
|
|
def i128_r64: ORCvtRegGPRC<R64C>;
|
|
def i128_f64: ORCvtRegGPRC<R64FP>;
|
|
def i128_r32: ORCvtRegGPRC<R32C>;
|
|
def i128_f32: ORCvtRegGPRC<R32FP>;
|
|
def i128_r16: ORCvtRegGPRC<R16C>;
|
|
def i128_r8: ORCvtRegGPRC<R8C>;
|
|
|
|
// Conversion from GPRC to register
|
|
def r64_i128: ORCvtGPRCReg<R64C>;
|
|
def f64_i128: ORCvtGPRCReg<R64FP>;
|
|
def r32_i128: ORCvtGPRCReg<R32C>;
|
|
def f32_i128: ORCvtGPRCReg<R32FP>;
|
|
def r16_i128: ORCvtGPRCReg<R16C>;
|
|
def r8_i128: ORCvtGPRCReg<R8C>;
|
|
*/
|
|
/*
|
|
// Conversion from register to R32C:
|
|
def r32_r16: ORCvtFormRegR32<R16C>;
|
|
def r32_r8: ORCvtFormRegR32<R8C>;
|
|
|
|
// Conversion from R32C to register
|
|
def r32_r16: ORCvtFormR32Reg<R16C>;
|
|
def r32_r8: ORCvtFormR32Reg<R8C>;
|
|
*/
|
|
|
|
// Conversion from R64C to register:
|
|
def r32_r64: ORCvtFormR64Reg<R32C>;
|
|
// def r16_r64: ORCvtFormR64Reg<R16C>;
|
|
// def r8_r64: ORCvtFormR64Reg<R8C>;
|
|
|
|
// Conversion to R64C from register:
|
|
def r64_r32: ORCvtFormRegR64<R32C>;
|
|
// def r64_r16: ORCvtFormRegR64<R16C>;
|
|
// def r64_r8: ORCvtFormRegR64<R8C>;
|
|
|
|
// bitconvert patterns:
|
|
def r32_f32: ORCvtFormR32Reg<R32FP,
|
|
[(set R32FP:$rT, (bitconvert R32C:$rA))]>;
|
|
def f32_r32: ORCvtFormRegR32<R32FP,
|
|
[(set R32C:$rT, (bitconvert R32FP:$rA))]>;
|
|
|
|
def r64_f64: ORCvtFormR64Reg<R64FP,
|
|
[(set R64FP:$rT, (bitconvert R64C:$rA))]>;
|
|
def f64_r64: ORCvtFormRegR64<R64FP,
|
|
[(set R64C:$rT, (bitconvert R64FP:$rA))]>;
|
|
}
|
|
|
|
defm OR : BitwiseOr;
|
|
|
|
// scalar->vector promotion patterns (preferred slot to vector):
|
|
def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
|
|
(ORv16i8_i8 R8C:$rA)>;
|
|
|
|
def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
|
|
(ORv8i16_i16 R16C:$rA)>;
|
|
|
|
def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
|
|
(ORv4i32_i32 R32C:$rA)>;
|
|
|
|
def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
|
|
(ORv2i64_i64 R64C:$rA)>;
|
|
|
|
def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
|
|
(ORv4f32_f32 R32FP:$rA)>;
|
|
|
|
def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
|
|
(ORv2f64_f64 R64FP:$rA)>;
|
|
|
|
// ORi*_v*: Used to extract vector element 0 (the preferred slot), otherwise
|
|
// known as converting the vector back to its preferred slot
|
|
|
|
def : Pat<(SPUvec2prefslot (v16i8 VECREG:$rA)),
|
|
(ORi8_v16i8 VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUvec2prefslot (v8i16 VECREG:$rA)),
|
|
(ORi16_v8i16 VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUvec2prefslot (v4i32 VECREG:$rA)),
|
|
(ORi32_v4i32 VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUvec2prefslot (v2i64 VECREG:$rA)),
|
|
(ORi64_v2i64 VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUvec2prefslot (v4f32 VECREG:$rA)),
|
|
(ORf32_v4f32 VECREG:$rA)>;
|
|
|
|
def : Pat<(SPUvec2prefslot (v2f64 VECREG:$rA)),
|
|
(ORf64_v2f64 VECREG:$rA)>;
|
|
|
|
// Load Register: This is an assembler alias for a bitwise OR of a register
|
|
// against itself. It's here because it brings some clarity to assembly
|
|
// language output.
|
|
|
|
let hasCtrlDep = 1 in {
|
|
class LRInst<dag OOL, dag IOL>
|
|
: SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
|
|
bits<7> RA;
|
|
bits<7> RT;
|
|
|
|
let Pattern = [/*no pattern*/];
|
|
|
|
let Inst{0-10} = 0b10000010000; /* It's an OR operation */
|
|
let Inst{11-17} = RA;
|
|
let Inst{18-24} = RA;
|
|
let Inst{25-31} = RT;
|
|
}
|
|
|
|
class LRVecInst<ValueType vectype>:
|
|
LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
|
|
|
|
class LRRegInst<RegisterClass rclass>:
|
|
LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
|
|
|
|
multiclass LoadRegister {
|
|
def v2i64: LRVecInst<v2i64>;
|
|
def v2f64: LRVecInst<v2f64>;
|
|
def v4i32: LRVecInst<v4i32>;
|
|
def v4f32: LRVecInst<v4f32>;
|
|
def v8i16: LRVecInst<v8i16>;
|
|
def v16i8: LRVecInst<v16i8>;
|
|
|
|
def r128: LRRegInst<GPRC>;
|
|
def r64: LRRegInst<R64C>;
|
|
def f64: LRRegInst<R64FP>;
|
|
def r32: LRRegInst<R32C>;
|
|
def f32: LRRegInst<R32FP>;
|
|
def r16: LRRegInst<R16C>;
|
|
def r8: LRRegInst<R8C>;
|
|
}
|
|
|
|
defm LR: LoadRegister;
|
|
}
|
|
|
|
// ORC: Bitwise "or" with complement (c = a | ~b)
|
|
|
|
class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORCVecInst<ValueType vectype>:
|
|
ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vnot (vectype VECREG:$rB))))]>;
|
|
|
|
class ORCRegInst<RegisterClass rclass>:
|
|
ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
|
|
|
|
multiclass BitwiseOrComplement
|
|
{
|
|
def v16i8: ORCVecInst<v16i8>;
|
|
def v8i16: ORCVecInst<v8i16>;
|
|
def v4i32: ORCVecInst<v4i32>;
|
|
def v2i64: ORCVecInst<v2i64>;
|
|
|
|
def r128: ORCRegInst<GPRC>;
|
|
def r64: ORCRegInst<R64C>;
|
|
def r32: ORCRegInst<R32C>;
|
|
def r16: ORCRegInst<R16C>;
|
|
def r8: ORCRegInst<R8C>;
|
|
}
|
|
|
|
defm ORC : BitwiseOrComplement;
|
|
|
|
// OR byte immediate
|
|
class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
|
|
(vectype immpred:$val)))]>;
|
|
|
|
multiclass BitwiseOrByteImm
|
|
{
|
|
def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
|
|
|
|
def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm ORBI : BitwiseOrByteImm;
|
|
|
|
// OR halfword immediate
|
|
class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
immpred:$val))]>;
|
|
|
|
multiclass BitwiseOrHalfwordImm
|
|
{
|
|
def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
|
|
|
|
def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
|
|
[(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
|
|
|
|
// Specialized ORHI form used to promote 8-bit registers to 16-bit
|
|
def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (or (anyext R8C:$rA),
|
|
i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ORHI : BitwiseOrHalfwordImm;
|
|
|
|
class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
class ORIVecInst<ValueType vectype, PatLeaf immpred>:
|
|
ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
|
|
immpred:$val))]>;
|
|
|
|
// Bitwise "or" with immediate
|
|
multiclass BitwiseOrImm
|
|
{
|
|
def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
|
|
|
|
def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val),
|
|
[(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>;
|
|
|
|
// i16i32: hacked version of the ori instruction to extend 16-bit quantities
|
|
// to 32-bit quantities. used exclusively to match "anyext" conversions (vide
|
|
// infra "anyext 16->32" pattern.)
|
|
def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (or (anyext R16C:$rA),
|
|
i32ImmSExt10:$val))]>;
|
|
|
|
// i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
|
|
// to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
|
|
// infra "anyext 16->32" pattern.)
|
|
def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (or (anyext R8C:$rA),
|
|
i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm ORI : BitwiseOrImm;
|
|
|
|
// ORX: "or" across the vector: or's $rA's word slots leaving the result in
|
|
// $rT[0], slots 1-3 are zeroed.
|
|
//
|
|
// FIXME: Needs to match an intrinsic pattern.
|
|
def ORXv4i32:
|
|
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"orx\t$rT, $rA, $rB", IntegerOp,
|
|
[]>;
|
|
|
|
// XOR:
|
|
|
|
class XORInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class XORVecInst<ValueType vectype>:
|
|
XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB)))]>;
|
|
|
|
class XORRegInst<RegisterClass rclass>:
|
|
XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
|
|
|
|
multiclass BitwiseExclusiveOr
|
|
{
|
|
def v16i8: XORVecInst<v16i8>;
|
|
def v8i16: XORVecInst<v8i16>;
|
|
def v4i32: XORVecInst<v4i32>;
|
|
def v2i64: XORVecInst<v2i64>;
|
|
|
|
def r128: XORRegInst<GPRC>;
|
|
def r64: XORRegInst<R64C>;
|
|
def r32: XORRegInst<R32C>;
|
|
def r16: XORRegInst<R16C>;
|
|
def r8: XORRegInst<R8C>;
|
|
|
|
// XOR instructions used to negate f32 and f64 quantities.
|
|
|
|
def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[/* no pattern, see fneg{32,64} */]>;
|
|
}
|
|
|
|
defm XOR : BitwiseExclusiveOr;
|
|
|
|
//==----------------------------------------------------------
|
|
|
|
class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
|
|
IntegerOp, pattern>;
|
|
|
|
multiclass XorByteImm
|
|
{
|
|
def v16i8:
|
|
XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
|
|
|
|
def r8:
|
|
XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
|
|
[(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
|
|
}
|
|
|
|
defm XORBI : XorByteImm;
|
|
|
|
def XORHIv8i16:
|
|
RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
|
|
"xorhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
|
|
v8i16SExt10Imm:$val))]>;
|
|
|
|
def XORHIr16:
|
|
RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
"xorhi\t$rT, $rA, $val", IntegerOp,
|
|
[(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
|
|
|
|
def XORIv4i32:
|
|
RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
|
|
"xori\t$rT, $rA, $val", IntegerOp,
|
|
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
|
|
v4i32SExt10Imm:$val))]>;
|
|
|
|
def XORIr32:
|
|
RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
"xori\t$rT, $rA, $val", IntegerOp,
|
|
[(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
// NAND:
|
|
|
|
class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class NANDVecInst<ValueType vectype>:
|
|
NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB))))]>;
|
|
class NANDRegInst<RegisterClass rclass>:
|
|
NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
|
|
|
|
multiclass BitwiseNand
|
|
{
|
|
def v16i8: NANDVecInst<v16i8>;
|
|
def v8i16: NANDVecInst<v8i16>;
|
|
def v4i32: NANDVecInst<v4i32>;
|
|
def v2i64: NANDVecInst<v2i64>;
|
|
|
|
def r128: NANDRegInst<GPRC>;
|
|
def r64: NANDRegInst<R64C>;
|
|
def r32: NANDRegInst<R32C>;
|
|
def r16: NANDRegInst<R16C>;
|
|
def r8: NANDRegInst<R8C>;
|
|
}
|
|
|
|
defm NAND : BitwiseNand;
|
|
|
|
// NOR:
|
|
|
|
class NORInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class NORVecInst<ValueType vectype>:
|
|
NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
|
|
(vectype VECREG:$rB))))]>;
|
|
class NORRegInst<RegisterClass rclass>:
|
|
NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
|
|
|
|
multiclass BitwiseNor
|
|
{
|
|
def v16i8: NORVecInst<v16i8>;
|
|
def v8i16: NORVecInst<v8i16>;
|
|
def v4i32: NORVecInst<v4i32>;
|
|
def v2i64: NORVecInst<v2i64>;
|
|
|
|
def r128: NORRegInst<GPRC>;
|
|
def r64: NORRegInst<R64C>;
|
|
def r32: NORRegInst<R32C>;
|
|
def r16: NORRegInst<R16C>;
|
|
def r8: NORRegInst<R8C>;
|
|
}
|
|
|
|
defm NOR : BitwiseNor;
|
|
|
|
// Select bits:
|
|
class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
|
|
IntegerOp, pattern>;
|
|
|
|
class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
|
|
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (vectype VECREG:$rT),
|
|
(or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
|
|
(and (vnot_frag (vectype VECREG:$rC)),
|
|
(vectype VECREG:$rA))))]>;
|
|
|
|
class SELBVecVCondInst<ValueType vectype>:
|
|
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (vectype VECREG:$rT),
|
|
(select (vectype VECREG:$rC),
|
|
(vectype VECREG:$rB),
|
|
(vectype VECREG:$rA)))]>;
|
|
|
|
class SELBVecCondInst<ValueType vectype>:
|
|
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
|
|
[(set (vectype VECREG:$rT),
|
|
(select R32C:$rC,
|
|
(vectype VECREG:$rB),
|
|
(vectype VECREG:$rA)))]>;
|
|
|
|
class SELBRegInst<RegisterClass rclass>:
|
|
SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
|
|
[(set rclass:$rT,
|
|
(or (and rclass:$rB, rclass:$rC),
|
|
(and rclass:$rA, (not rclass:$rC))))]>;
|
|
|
|
class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
|
|
SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
|
|
[(set rclass:$rT,
|
|
(select rcond:$rC, rclass:$rB, rclass:$rA))]>;
|
|
|
|
multiclass SelectBits
|
|
{
|
|
def v16i8: SELBVecInst<v16i8>;
|
|
def v8i16: SELBVecInst<v8i16>;
|
|
def v4i32: SELBVecInst<v4i32>;
|
|
def v2i64: SELBVecInst<v2i64, vnot_conv>;
|
|
|
|
def r128: SELBRegInst<GPRC>;
|
|
def r64: SELBRegInst<R64C>;
|
|
def r32: SELBRegInst<R32C>;
|
|
def r16: SELBRegInst<R16C>;
|
|
def r8: SELBRegInst<R8C>;
|
|
|
|
def v16i8_cond: SELBVecCondInst<v16i8>;
|
|
def v8i16_cond: SELBVecCondInst<v8i16>;
|
|
def v4i32_cond: SELBVecCondInst<v4i32>;
|
|
def v2i64_cond: SELBVecCondInst<v2i64>;
|
|
|
|
def v16i8_vcond: SELBVecCondInst<v16i8>;
|
|
def v8i16_vcond: SELBVecCondInst<v8i16>;
|
|
def v4i32_vcond: SELBVecCondInst<v4i32>;
|
|
def v2i64_vcond: SELBVecCondInst<v2i64>;
|
|
|
|
def v4f32_cond:
|
|
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (v4f32 VECREG:$rT),
|
|
(select (v4i32 VECREG:$rC),
|
|
(v4f32 VECREG:$rB),
|
|
(v4f32 VECREG:$rA)))]>;
|
|
|
|
// SELBr64_cond is defined in SPU64InstrInfo.td
|
|
def r32_cond: SELBRegCondInst<R32C, R32C>;
|
|
def f32_cond: SELBRegCondInst<R32C, R32FP>;
|
|
def r16_cond: SELBRegCondInst<R16C, R16C>;
|
|
def r8_cond: SELBRegCondInst<R8C, R8C>;
|
|
}
|
|
|
|
defm SELB : SelectBits;
|
|
|
|
class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
|
|
Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
|
|
(inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
|
|
|
|
def : SPUselbPatVec<v16i8, SELBv16i8>;
|
|
def : SPUselbPatVec<v8i16, SELBv8i16>;
|
|
def : SPUselbPatVec<v4i32, SELBv4i32>;
|
|
def : SPUselbPatVec<v2i64, SELBv2i64>;
|
|
|
|
class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
|
|
Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
|
|
(inst rclass:$rA, rclass:$rB, rclass:$rC)>;
|
|
|
|
def : SPUselbPatReg<R8C, SELBr8>;
|
|
def : SPUselbPatReg<R16C, SELBr16>;
|
|
def : SPUselbPatReg<R32C, SELBr32>;
|
|
def : SPUselbPatReg<R64C, SELBr64>;
|
|
|
|
// EQV: Equivalence (1 for each same bit, otherwise 0)
|
|
//
|
|
// Note: There are a lot of ways to match this bit operator and these patterns
|
|
// attempt to be as exhaustive as possible.
|
|
|
|
class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
|
|
IntegerOp, pattern>;
|
|
|
|
class EQVVecInst<ValueType vectype>:
|
|
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
|
|
(and (vnot (vectype VECREG:$rA)),
|
|
(vnot (vectype VECREG:$rB)))))]>;
|
|
|
|
class EQVRegInst<RegisterClass rclass>:
|
|
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
|
|
(and (not rclass:$rA), (not rclass:$rB))))]>;
|
|
|
|
class EQVVecPattern1<ValueType vectype>:
|
|
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
|
|
|
|
class EQVRegPattern1<RegisterClass rclass>:
|
|
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
|
|
|
|
class EQVVecPattern2<ValueType vectype>:
|
|
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
|
|
(vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
|
|
|
|
class EQVRegPattern2<RegisterClass rclass>:
|
|
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT,
|
|
(or (and rclass:$rA, rclass:$rB),
|
|
(not (or rclass:$rA, rclass:$rB))))]>;
|
|
|
|
class EQVVecPattern3<ValueType vectype>:
|
|
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
|
|
|
|
class EQVRegPattern3<RegisterClass rclass>:
|
|
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
|
|
|
|
multiclass BitEquivalence
|
|
{
|
|
def v16i8: EQVVecInst<v16i8>;
|
|
def v8i16: EQVVecInst<v8i16>;
|
|
def v4i32: EQVVecInst<v4i32>;
|
|
def v2i64: EQVVecInst<v2i64>;
|
|
|
|
def v16i8_1: EQVVecPattern1<v16i8>;
|
|
def v8i16_1: EQVVecPattern1<v8i16>;
|
|
def v4i32_1: EQVVecPattern1<v4i32>;
|
|
def v2i64_1: EQVVecPattern1<v2i64>;
|
|
|
|
def v16i8_2: EQVVecPattern2<v16i8>;
|
|
def v8i16_2: EQVVecPattern2<v8i16>;
|
|
def v4i32_2: EQVVecPattern2<v4i32>;
|
|
def v2i64_2: EQVVecPattern2<v2i64>;
|
|
|
|
def v16i8_3: EQVVecPattern3<v16i8>;
|
|
def v8i16_3: EQVVecPattern3<v8i16>;
|
|
def v4i32_3: EQVVecPattern3<v4i32>;
|
|
def v2i64_3: EQVVecPattern3<v2i64>;
|
|
|
|
def r128: EQVRegInst<GPRC>;
|
|
def r64: EQVRegInst<R64C>;
|
|
def r32: EQVRegInst<R32C>;
|
|
def r16: EQVRegInst<R16C>;
|
|
def r8: EQVRegInst<R8C>;
|
|
|
|
def r128_1: EQVRegPattern1<GPRC>;
|
|
def r64_1: EQVRegPattern1<R64C>;
|
|
def r32_1: EQVRegPattern1<R32C>;
|
|
def r16_1: EQVRegPattern1<R16C>;
|
|
def r8_1: EQVRegPattern1<R8C>;
|
|
|
|
def r128_2: EQVRegPattern2<GPRC>;
|
|
def r64_2: EQVRegPattern2<R64C>;
|
|
def r32_2: EQVRegPattern2<R32C>;
|
|
def r16_2: EQVRegPattern2<R16C>;
|
|
def r8_2: EQVRegPattern2<R8C>;
|
|
|
|
def r128_3: EQVRegPattern3<GPRC>;
|
|
def r64_3: EQVRegPattern3<R64C>;
|
|
def r32_3: EQVRegPattern3<R32C>;
|
|
def r16_3: EQVRegPattern3<R16C>;
|
|
def r8_3: EQVRegPattern3<R8C>;
|
|
}
|
|
|
|
defm EQV: BitEquivalence;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector shuffle...
|
|
//===----------------------------------------------------------------------===//
|
|
// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
|
|
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
|
|
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
|
|
// the SPUISD::SHUFB opcode.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
|
|
IntegerOp, pattern>;
|
|
|
|
class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
|
|
SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
[(set (resultvec VECREG:$rT),
|
|
(SPUshuffle (resultvec VECREG:$rA),
|
|
(resultvec VECREG:$rB),
|
|
(maskvec VECREG:$rC)))]>;
|
|
|
|
class SHUFBGPRCInst:
|
|
SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass ShuffleBytes
|
|
{
|
|
def v16i8 : SHUFBVecInst<v16i8, v16i8>;
|
|
def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
|
|
def v8i16 : SHUFBVecInst<v8i16, v16i8>;
|
|
def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
|
|
def v4i32 : SHUFBVecInst<v4i32, v16i8>;
|
|
def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
|
|
def v2i64 : SHUFBVecInst<v2i64, v16i8>;
|
|
def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
|
|
|
|
def v4f32 : SHUFBVecInst<v4f32, v16i8>;
|
|
def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
|
|
|
|
def v2f64 : SHUFBVecInst<v2f64, v16i8>;
|
|
def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
|
|
|
|
def gprc : SHUFBGPRCInst;
|
|
}
|
|
|
|
defm SHUFB : ShuffleBytes;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Shift and rotate group:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLHVecInst<ValueType vectype>:
|
|
SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>;
|
|
|
|
multiclass ShiftLeftHalfword
|
|
{
|
|
def v8i16: SHLHVecInst<v8i16>;
|
|
def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
|
|
def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHLH : ShiftLeftHalfword;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLHIVecInst<ValueType vectype>:
|
|
SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
|
|
|
|
multiclass ShiftLeftHalfwordImm
|
|
{
|
|
def v8i16: SHLHIVecInst<v8i16>;
|
|
def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
|
|
[(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLHI : ShiftLeftHalfwordImm;
|
|
|
|
def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
|
|
(SHLHIv8i16 VECREG:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
|
|
(SHLHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
multiclass ShiftLeftWord
|
|
{
|
|
def v4i32:
|
|
SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>;
|
|
def r32:
|
|
SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHL: ShiftLeftWord;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
multiclass ShiftLeftWordImm
|
|
{
|
|
def v4i32:
|
|
SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
def r32:
|
|
SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
|
|
[(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLI : ShiftLeftWordImm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
|
|
// register) to the left. Vector form is here to ensure type correctness.
|
|
//
|
|
// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
|
|
// of 7 bits is actually possible.
|
|
//
|
|
// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
|
|
// to shift i64 and i128. SHLQBI is the residual left over after shifting by
|
|
// bytes with SHLQBY.
|
|
|
|
class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBIVecInst<ValueType vectype>:
|
|
SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
class SHLQBIRegInst<RegisterClass rclass>:
|
|
SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass ShiftLeftQuadByBits
|
|
{
|
|
def v16i8: SHLQBIVecInst<v16i8>;
|
|
def v8i16: SHLQBIVecInst<v8i16>;
|
|
def v4i32: SHLQBIVecInst<v4i32>;
|
|
def v4f32: SHLQBIVecInst<v4f32>;
|
|
def v2i64: SHLQBIVecInst<v2i64>;
|
|
def v2f64: SHLQBIVecInst<v2f64>;
|
|
|
|
def r128: SHLQBIRegInst<GPRC>;
|
|
}
|
|
|
|
defm SHLQBI : ShiftLeftQuadByBits;
|
|
|
|
// See note above on SHLQBI. In this case, the predicate actually does then
|
|
// enforcement, whereas with SHLQBI, we have to "take it on faith."
|
|
class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBIIVecInst<ValueType vectype>:
|
|
SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
|
|
|
|
multiclass ShiftLeftQuadByBitsImm
|
|
{
|
|
def v16i8 : SHLQBIIVecInst<v16i8>;
|
|
def v8i16 : SHLQBIIVecInst<v8i16>;
|
|
def v4i32 : SHLQBIIVecInst<v4i32>;
|
|
def v4f32 : SHLQBIIVecInst<v4f32>;
|
|
def v2i64 : SHLQBIIVecInst<v2i64>;
|
|
def v2f64 : SHLQBIIVecInst<v2f64>;
|
|
}
|
|
|
|
defm SHLQBII : ShiftLeftQuadByBitsImm;
|
|
|
|
// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
|
|
// not by bits. See notes above on SHLQBI.
|
|
|
|
class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBYVecInst<ValueType vectype>:
|
|
SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
multiclass ShiftLeftQuadBytes
|
|
{
|
|
def v16i8: SHLQBYVecInst<v16i8>;
|
|
def v8i16: SHLQBYVecInst<v8i16>;
|
|
def v4i32: SHLQBYVecInst<v4i32>;
|
|
def v4f32: SHLQBYVecInst<v4f32>;
|
|
def v2i64: SHLQBYVecInst<v2i64>;
|
|
def v2f64: SHLQBYVecInst<v2f64>;
|
|
def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
|
|
[(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
defm SHLQBY: ShiftLeftQuadBytes;
|
|
|
|
class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBYIVecInst<ValueType vectype>:
|
|
SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
multiclass ShiftLeftQuadBytesImm
|
|
{
|
|
def v16i8: SHLQBYIVecInst<v16i8>;
|
|
def v8i16: SHLQBYIVecInst<v8i16>;
|
|
def v4i32: SHLQBYIVecInst<v4i32>;
|
|
def v4f32: SHLQBYIVecInst<v4f32>;
|
|
def v2i64: SHLQBYIVecInst<v2i64>;
|
|
def v2f64: SHLQBYIVecInst<v2f64>;
|
|
def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
|
|
[(set GPRC:$rT,
|
|
(SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm SHLQBYI : ShiftLeftQuadBytesImm;
|
|
|
|
class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class SHLQBYBIVecInst<ValueType vectype>:
|
|
SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class SHLQBYBIRegInst<RegisterClass rclass>:
|
|
SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass ShiftLeftQuadBytesBitCount
|
|
{
|
|
def v16i8: SHLQBYBIVecInst<v16i8>;
|
|
def v8i16: SHLQBYBIVecInst<v8i16>;
|
|
def v4i32: SHLQBYBIVecInst<v4i32>;
|
|
def v4f32: SHLQBYBIVecInst<v4f32>;
|
|
def v2i64: SHLQBYBIVecInst<v2i64>;
|
|
def v2f64: SHLQBYBIVecInst<v2f64>;
|
|
|
|
def r128: SHLQBYBIRegInst<GPRC>;
|
|
}
|
|
|
|
defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate halfword:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTHVecInst<ValueType vectype>:
|
|
ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl VECREG:$rA, VECREG:$rB))]>;
|
|
|
|
class ROTHRegInst<RegisterClass rclass>:
|
|
ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
|
|
[(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
|
|
|
|
multiclass RotateLeftHalfword
|
|
{
|
|
def v8i16: ROTHVecInst<v8i16>;
|
|
def r16: ROTHRegInst<R16C>;
|
|
}
|
|
|
|
defm ROTH: RotateLeftHalfword;
|
|
|
|
def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate halfword, immediate:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTHIVecInst<ValueType vectype>:
|
|
ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
|
|
|
|
multiclass RotateLeftHalfwordImm
|
|
{
|
|
def v8i16: ROTHIVecInst<v8i16>;
|
|
def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
|
|
[(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
|
|
def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
|
|
[(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
|
|
}
|
|
|
|
defm ROTHI: RotateLeftHalfwordImm;
|
|
|
|
def : Pat<(SPUvec_rotl VECREG:$rA, (i32 uimm7:$val)),
|
|
(ROTHIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate word:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTVecInst<ValueType vectype>:
|
|
ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
class ROTRegInst<RegisterClass rclass>:
|
|
ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[(set rclass:$rT,
|
|
(rotl rclass:$rA, R32C:$rB))]>;
|
|
|
|
multiclass RotateLeftWord
|
|
{
|
|
def v4i32: ROTVecInst<v4i32>;
|
|
def r32: ROTRegInst<R32C>;
|
|
}
|
|
|
|
defm ROT: RotateLeftWord;
|
|
|
|
// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
|
|
// 32-bit register
|
|
def ROTr32_r16_anyext:
|
|
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
|
|
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
|
|
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
|
|
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
|
|
|
|
def ROTr32_r8_anyext:
|
|
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
|
|
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
|
|
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
|
|
|
|
def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
|
|
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate word, immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
|
|
ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
|
|
|
|
class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
|
|
ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
|
|
|
|
multiclass RotateLeftWordImm
|
|
{
|
|
def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
|
|
def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
|
|
def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
|
|
|
|
def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
|
|
def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>;
|
|
def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
|
|
}
|
|
|
|
defm ROTI : RotateLeftWordImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad by byte (count)
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBYVecInst<ValueType vectype>:
|
|
ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>;
|
|
|
|
multiclass RotateQuadLeftByBytes
|
|
{
|
|
def v16i8: ROTQBYVecInst<v16i8>;
|
|
def v8i16: ROTQBYVecInst<v8i16>;
|
|
def v4i32: ROTQBYVecInst<v4i32>;
|
|
def v4f32: ROTQBYVecInst<v4f32>;
|
|
def v2i64: ROTQBYVecInst<v2i64>;
|
|
def v2f64: ROTQBYVecInst<v2f64>;
|
|
}
|
|
|
|
defm ROTQBY: RotateQuadLeftByBytes;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad by byte (count), immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBYIVecInst<ValueType vectype>:
|
|
ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
|
|
|
|
multiclass RotateQuadByBytesImm
|
|
{
|
|
def v16i8: ROTQBYIVecInst<v16i8>;
|
|
def v8i16: ROTQBYIVecInst<v8i16>;
|
|
def v4i32: ROTQBYIVecInst<v4i32>;
|
|
def v4f32: ROTQBYIVecInst<v4f32>;
|
|
def v2i64: ROTQBYIVecInst<v2i64>;
|
|
def vfi64: ROTQBYIVecInst<v2f64>;
|
|
}
|
|
|
|
defm ROTQBYI: RotateQuadByBytesImm;
|
|
|
|
// See ROTQBY note above.
|
|
class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00110011100, OOL, IOL,
|
|
"rotqbybi\t$rT, $rA, $shift",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
|
|
ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
|
|
|
|
multiclass RotateQuadByBytesByBitshift {
|
|
def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
|
|
def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
|
|
def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
|
|
def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
|
|
}
|
|
|
|
defm ROTQBYBI : RotateQuadByBytesByBitshift;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// See ROTQBY note above.
|
|
//
|
|
// Assume that the user of this instruction knows to shift the rotate count
|
|
// into bit 29
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBIVecInst<ValueType vectype>:
|
|
ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern yet */]>;
|
|
|
|
class ROTQBIRegInst<RegisterClass rclass>:
|
|
ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern yet */]>;
|
|
|
|
multiclass RotateQuadByBitCount
|
|
{
|
|
def v16i8: ROTQBIVecInst<v16i8>;
|
|
def v8i16: ROTQBIVecInst<v8i16>;
|
|
def v4i32: ROTQBIVecInst<v4i32>;
|
|
def v2i64: ROTQBIVecInst<v2i64>;
|
|
|
|
def r128: ROTQBIRegInst<GPRC>;
|
|
def r64: ROTQBIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQBI: RotateQuadByBitCount;
|
|
|
|
class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
|
|
PatLeaf pred>:
|
|
ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
|
|
[/* no pattern yet */]>;
|
|
|
|
class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
|
|
PatLeaf pred>:
|
|
ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[/* no pattern yet */]>;
|
|
|
|
multiclass RotateQuadByBitCountImm
|
|
{
|
|
def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
|
|
def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
|
|
def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
|
|
def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
|
|
|
|
def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
|
|
def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
|
|
}
|
|
|
|
defm ROTQBII : RotateQuadByBitCountImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// ROTHM v8i16 form:
|
|
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
|
|
// so this only matches a synthetically generated/lowered code
|
|
// fragment.
|
|
// NOTE(2): $rB must be negated before the right rotate!
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTHMv8i16:
|
|
ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB),
|
|
(ROTHMv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
|
|
|
|
// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
|
|
// Note: This instruction doesn't match a pattern because rB must be negated
|
|
// for the instruction to work. Thus, the pattern below the instruction!
|
|
|
|
def ROTHMr16:
|
|
ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated! */]>;
|
|
|
|
def : Pat<(srl R16C:$rA, R32C:$rB),
|
|
(ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(srl R16C:$rA, R16C:$rB),
|
|
(ROTHMr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(srl R16C:$rA, R8C:$rB),
|
|
(ROTHMr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
|
|
|
|
// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
|
|
// that the immediate can be complemented, so that the user doesn't have to
|
|
// worry about it.
|
|
|
|
class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTHMIv8i16:
|
|
ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
|
|
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
|
|
|
|
def ROTHMIr16:
|
|
ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
|
|
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
// ROTM v4i32 form: See the ROTHM v8i16 comments.
|
|
class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
def ROTMv4i32:
|
|
ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R32C:$rB),
|
|
(ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R16C:$rB),
|
|
(ROTMv4i32 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, R8C:$rB),
|
|
(ROTMv4i32 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMr32:
|
|
ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(srl R32C:$rA, R32C:$rB),
|
|
(ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(srl R32C:$rA, R16C:$rB),
|
|
(ROTMr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(srl R32C:$rA, R8C:$rB),
|
|
(ROTMr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
// ROTMI v4i32 form: See the comment for ROTHM v8i16.
|
|
def ROTMIv4i32:
|
|
RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
"rotmi\t$rT, $rA, $val", RotateShift,
|
|
[(set (v4i32 VECREG:$rT),
|
|
(SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, (i16 uimm7:$val)),
|
|
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(SPUvec_srl VECREG:$rA, (i8 uimm7:$val)),
|
|
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
|
|
|
|
// ROTMI r32 form: know how to complement the immediate value.
|
|
def ROTMIr32:
|
|
RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
|
|
"rotmi\t$rT, $rA, $val", RotateShift,
|
|
[(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(srl R32C:$rA, (i16 imm:$val)),
|
|
(ROTMIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(srl R32C:$rA, (i8 imm:$val)),
|
|
(ROTMIr32 R32C:$rA, uimm7:$val)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// ROTQMBY: This is a vector form merely so that when used in an
|
|
// instruction pattern, type checking will succeed. This instruction assumes
|
|
// that the user knew to negate $rB.
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYVecInst<ValueType vectype>:
|
|
ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern, $rB must be negated */]>;
|
|
|
|
class ROTQMBYRegInst<RegisterClass rclass>:
|
|
ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass RotateQuadBytes
|
|
{
|
|
def v16i8: ROTQMBYVecInst<v16i8>;
|
|
def v8i16: ROTQMBYVecInst<v8i16>;
|
|
def v4i32: ROTQMBYVecInst<v4i32>;
|
|
def v2i64: ROTQMBYVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBYRegInst<GPRC>;
|
|
def r64: ROTQMBYRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBY : RotateQuadBytes;
|
|
|
|
class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYIVecInst<ValueType vectype>:
|
|
ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
|
|
PatLeaf pred>:
|
|
ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
|
|
[/* no pattern */]>;
|
|
|
|
// 128-bit zero extension form:
|
|
class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
|
|
ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass RotateQuadBytesImm
|
|
{
|
|
def v16i8: ROTQMBYIVecInst<v16i8>;
|
|
def v8i16: ROTQMBYIVecInst<v8i16>;
|
|
def v4i32: ROTQMBYIVecInst<v4i32>;
|
|
def v2i64: ROTQMBYIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
|
|
def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
|
|
|
|
def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
|
|
def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
|
|
def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
|
|
def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
|
|
}
|
|
|
|
defm ROTQMBYI : RotateQuadBytesImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate right and mask by bit count
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBYBIVecInst<ValueType vectype>:
|
|
ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern, */]>;
|
|
|
|
multiclass RotateMaskQuadByBitCount
|
|
{
|
|
def v16i8: ROTQMBYBIVecInst<v16i8>;
|
|
def v8i16: ROTQMBYBIVecInst<v8i16>;
|
|
def v4i32: ROTQMBYBIVecInst<v4i32>;
|
|
def v2i64: ROTQMBYBIVecInst<v2i64>;
|
|
}
|
|
|
|
defm ROTQMBYBI: RotateMaskQuadByBitCount;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad and mask by bits
|
|
// Note that the rotate amount has to be negated
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBIVecInst<ValueType vectype>:
|
|
ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
class ROTQMBIRegInst<RegisterClass rclass>:
|
|
ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass RotateMaskQuadByBits
|
|
{
|
|
def v16i8: ROTQMBIVecInst<v16i8>;
|
|
def v8i16: ROTQMBIVecInst<v8i16>;
|
|
def v4i32: ROTQMBIVecInst<v4i32>;
|
|
def v2i64: ROTQMBIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBIRegInst<GPRC>;
|
|
def r64: ROTQMBIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBI: RotateMaskQuadByBits;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Rotate quad and mask by bits, immediate
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTQMBIIVecInst<ValueType vectype>:
|
|
ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
class ROTQMBIIRegInst<RegisterClass rclass>:
|
|
ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
|
|
[/* no pattern */]>;
|
|
|
|
multiclass RotateMaskQuadByBitsImm
|
|
{
|
|
def v16i8: ROTQMBIIVecInst<v16i8>;
|
|
def v8i16: ROTQMBIIVecInst<v8i16>;
|
|
def v4i32: ROTQMBIIVecInst<v4i32>;
|
|
def v2i64: ROTQMBIIVecInst<v2i64>;
|
|
|
|
def r128: ROTQMBIIRegInst<GPRC>;
|
|
def r64: ROTQMBIIRegInst<R64C>;
|
|
}
|
|
|
|
defm ROTQMBII: RotateMaskQuadByBitsImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
def ROTMAHv8i16:
|
|
RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
"rotmah\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
|
|
(ROTMAHv8i16 VECREG:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAHr16:
|
|
RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
|
|
"rotmah\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(sra R16C:$rA, R32C:$rB),
|
|
(ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(sra R16C:$rA, R16C:$rB),
|
|
(ROTMAHr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(sra R16C:$rA, R8C:$rB),
|
|
(ROTMAHr16 R16C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAHIv8i16:
|
|
RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
|
|
"rotmahi\t$rT, $rA, $val", RotateShift,
|
|
[(set (v8i16 VECREG:$rT),
|
|
(SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
|
|
|
|
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
|
|
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
|
|
|
|
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
|
|
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
|
|
|
|
def ROTMAHIr16:
|
|
RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
|
|
"rotmahi\t$rT, $rA, $val", RotateShift,
|
|
[(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
|
|
|
|
def : Pat<(sra R16C:$rA, (i32 imm:$val)),
|
|
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def : Pat<(sra R16C:$rA, (i8 imm:$val)),
|
|
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
|
|
|
|
def ROTMAv4i32:
|
|
RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
|
|
"rotma\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA),
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
|
|
(ROTMAv4i32 (v4i32 VECREG:$rA),
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
def ROTMAr32:
|
|
RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
"rotma\t$rT, $rA, $rB", RotateShift,
|
|
[/* see patterns below - $rB must be negated */]>;
|
|
|
|
def : Pat<(sra R32C:$rA, R32C:$rB),
|
|
(ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
|
|
|
|
def : Pat<(sra R32C:$rA, R16C:$rB),
|
|
(ROTMAr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
|
|
|
|
def : Pat<(sra R32C:$rA, R8C:$rB),
|
|
(ROTMAr32 R32C:$rA,
|
|
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
|
|
|
|
class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01011110000, OOL, IOL,
|
|
"rotmai\t$rT, $rA, $val",
|
|
RotateShift, pattern>;
|
|
|
|
class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
|
|
ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
|
|
[(set (vectype VECREG:$rT),
|
|
(SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
|
|
|
|
class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
|
|
ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
|
|
[(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
|
|
|
|
multiclass RotateMaskAlgebraicImm {
|
|
def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
|
|
def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
|
|
def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
|
|
def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
|
|
}
|
|
|
|
defm ROTMAI : RotateMaskAlgebraicImm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch and conditionals:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isTerminator = 1, isBarrier = 1 in {
|
|
// Halt If Equal (r32 preferred slot only, no vector form)
|
|
def HEQr32:
|
|
RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"heq\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HEQIr32 :
|
|
RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"heqi\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
// HGT/HGTI: These instructions use signed arithmetic for the comparison,
|
|
// contrasting with HLGT/HLGTI, which use unsigned comparison:
|
|
def HGTr32:
|
|
RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"hgt\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HGTIr32:
|
|
RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"hgti\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HLGTr32:
|
|
RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
|
|
"hlgt\t$rA, $rB", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
|
|
def HLGTIr32:
|
|
RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
|
|
"hlgti\t$rA, $val", BranchResolv,
|
|
[/* no pattern to match */]>;
|
|
}
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// Comparison operators for i8, i16 and i32:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualByte
|
|
{
|
|
def v16i8 :
|
|
CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualByteImm
|
|
{
|
|
def v16i8 :
|
|
CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualHalfword
|
|
{
|
|
def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualHalfwordImm
|
|
{
|
|
def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(seteq (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualWord
|
|
{
|
|
def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpEqualWordImm
|
|
{
|
|
def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(seteq (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrByte
|
|
{
|
|
def v16i8 :
|
|
CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrByteImm
|
|
{
|
|
def v16i8 :
|
|
CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrHalfword
|
|
{
|
|
def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrHalfwordImm
|
|
{
|
|
def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(setgt (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrWord
|
|
{
|
|
def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpGtrWordImm
|
|
{
|
|
def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setgt (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
|
|
|
|
// CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
|
|
def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
|
|
[/* no pattern */]>;
|
|
}
|
|
|
|
class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrByte
|
|
{
|
|
def v16i8 :
|
|
CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r8 :
|
|
CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
|
|
[(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
|
|
}
|
|
|
|
class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrByteImm
|
|
{
|
|
def v16i8 :
|
|
CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
|
|
[(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
|
|
v16i8SExt8Imm:$val))]>;
|
|
def r8:
|
|
CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
|
|
[(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
|
|
}
|
|
|
|
class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrHalfword
|
|
{
|
|
def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
|
|
(v8i16 VECREG:$rB)))]>;
|
|
|
|
def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
|
|
[(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
|
|
}
|
|
|
|
class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrHalfwordImm
|
|
{
|
|
def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v8i16 VECREG:$rT),
|
|
(setugt (v8i16 VECREG:$rA),
|
|
(v8i16 v8i16SExt10Imm:$val)))]>;
|
|
def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
|
|
[(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
|
|
}
|
|
|
|
class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrWord
|
|
{
|
|
def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
|
|
|
|
def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
|
|
[(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
|
|
}
|
|
|
|
class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
|
|
RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
|
|
ByteOp, pattern>;
|
|
|
|
multiclass CmpLGtrWordImm
|
|
{
|
|
def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
|
|
[(set (v4i32 VECREG:$rT),
|
|
(setugt (v4i32 VECREG:$rA),
|
|
(v4i32 v4i32SExt16Imm:$val)))]>;
|
|
|
|
def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
|
|
[(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
|
|
}
|
|
|
|
defm CEQB : CmpEqualByte;
|
|
defm CEQBI : CmpEqualByteImm;
|
|
defm CEQH : CmpEqualHalfword;
|
|
defm CEQHI : CmpEqualHalfwordImm;
|
|
defm CEQ : CmpEqualWord;
|
|
defm CEQI : CmpEqualWordImm;
|
|
defm CGTB : CmpGtrByte;
|
|
defm CGTBI : CmpGtrByteImm;
|
|
defm CGTH : CmpGtrHalfword;
|
|
defm CGTHI : CmpGtrHalfwordImm;
|
|
defm CGT : CmpGtrWord;
|
|
defm CGTI : CmpGtrWordImm;
|
|
defm CLGTB : CmpLGtrByte;
|
|
defm CLGTBI : CmpLGtrByteImm;
|
|
defm CLGTH : CmpLGtrHalfword;
|
|
defm CLGTHI : CmpLGtrHalfwordImm;
|
|
defm CLGT : CmpLGtrWord;
|
|
defm CLGTI : CmpLGtrWordImm;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// For SETCC primitives not supported above (setlt, setle, setge, etc.)
|
|
// define a pattern to generate the right code, as a binary operator
|
|
// (in a manner of speaking.)
|
|
//
|
|
// Notes:
|
|
// 1. This only matches the setcc set of conditionals. Special pattern
|
|
// matching is used for select conditionals.
|
|
//
|
|
// 2. The "DAG" versions of these classes is almost exclusively used for
|
|
// i64 comparisons. See the tblgen fundamentals documentation for what
|
|
// ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
|
|
// class for where ResultInstrs originates.
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
|
|
SPUInstr xorinst, SPUInstr cmpare>:
|
|
Pat<(cond rclass:$rA, rclass:$rB),
|
|
(xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
|
|
|
|
class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
|
|
PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
|
|
Pat<(cond rclass:$rA, (inttype immpred:$imm)),
|
|
(xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
|
|
|
|
def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>;
|
|
def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
|
|
|
|
def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>;
|
|
def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
|
|
|
|
def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
|
|
def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
|
|
|
|
class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
|
|
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
|
|
Pat<(cond rclass:$rA, rclass:$rB),
|
|
(binop (cmpOp1 rclass:$rA, rclass:$rB),
|
|
(cmpOp2 rclass:$rA, rclass:$rB))>;
|
|
|
|
class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
|
|
ValueType immtype,
|
|
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
|
|
Pat<(cond rclass:$rA, (immtype immpred:$imm)),
|
|
(binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
|
|
(cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
|
|
|
|
def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
|
|
def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
|
|
def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
|
|
def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
|
|
def : Pat<(setle R8C:$rA, R8C:$rB),
|
|
(XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
|
|
def : Pat<(setle R8C:$rA, immU8:$imm),
|
|
(XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
|
|
|
|
def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
|
|
def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
|
|
ORr16, CGTHIr16, CEQHIr16>;
|
|
def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
|
|
def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
|
|
def : Pat<(setle R16C:$rA, R16C:$rB),
|
|
(XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
|
|
def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
|
|
(XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
|
|
|
|
def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
|
|
def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
|
|
ORr32, CGTIr32, CEQIr32>;
|
|
def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
|
|
def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
|
|
def : Pat<(setle R32C:$rA, R32C:$rB),
|
|
(XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
|
|
def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
|
|
(XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
|
|
|
|
def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
|
|
def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
|
|
def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
|
|
def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
|
|
def : Pat<(setule R8C:$rA, R8C:$rB),
|
|
(XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
|
|
def : Pat<(setule R8C:$rA, immU8:$imm),
|
|
(XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
|
|
|
|
def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
|
|
def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
|
|
ORr16, CLGTHIr16, CEQHIr16>;
|
|
def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
|
|
def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
|
|
CLGTHIr16, CEQHIr16>;
|
|
def : Pat<(setule R16C:$rA, R16C:$rB),
|
|
(XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
|
|
def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
|
|
(XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
|
|
|
|
def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
|
|
def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
|
|
ORr32, CLGTIr32, CEQIr32>;
|
|
def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
|
|
def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
|
|
def : Pat<(setule R32C:$rA, R32C:$rB),
|
|
(XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
|
|
def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
|
|
(XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
// select conditional patterns:
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
|
|
SPUInstr selinstr, SPUInstr cmpare>:
|
|
Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
|
|
rclass:$rTrue, rclass:$rFalse),
|
|
(selinstr rclass:$rTrue, rclass:$rFalse,
|
|
(cmpare rclass:$rA, rclass:$rB))>;
|
|
|
|
class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
|
|
PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
|
|
Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
|
|
rclass:$rTrue, rclass:$rFalse),
|
|
(selinstr rclass:$rTrue, rclass:$rFalse,
|
|
(cmpare rclass:$rA, immpred:$imm))>;
|
|
|
|
def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
|
|
def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
|
|
def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
|
|
def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
|
|
def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
|
|
def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
|
|
|
|
def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
|
|
def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
|
|
def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
|
|
def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
|
|
def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
|
|
def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
|
|
|
|
def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
|
|
def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
|
|
def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
|
|
def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
|
|
def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
|
|
def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
|
|
|
|
class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
|
|
SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
|
|
SPUInstr cmpOp2>:
|
|
Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
|
|
rclass:$rTrue, rclass:$rFalse),
|
|
(selinstr rclass:$rFalse, rclass:$rTrue,
|
|
(binop (cmpOp1 rclass:$rA, rclass:$rB),
|
|
(cmpOp2 rclass:$rA, rclass:$rB)))>;
|
|
|
|
class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
|
|
ValueType inttype,
|
|
SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
|
|
SPUInstr cmpOp2>:
|
|
Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
|
|
rclass:$rTrue, rclass:$rFalse),
|
|
(selinstr rclass:$rFalse, rclass:$rTrue,
|
|
(binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
|
|
(cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
|
|
|
|
def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
|
|
def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
|
|
SELBr8, ORr8, CGTBIr8, CEQBIr8>;
|
|
|
|
def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
|
|
def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
|
|
SELBr16, ORr16, CGTHIr16, CEQHIr16>;
|
|
|
|
def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
|
|
def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
|
|
SELBr32, ORr32, CGTIr32, CEQIr32>;
|
|
|
|
def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
|
|
def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
|
|
SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
|
|
|
|
def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
|
|
def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
|
|
SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
|
|
|
|
def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
|
|
def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
|
|
SELBr32, ORr32, CLGTIr32, CEQIr32>;
|
|
|
|
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
|
|
|
|
let isCall = 1,
|
|
// All calls clobber the non-callee-saved registers:
|
|
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
|
|
R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
|
|
R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
|
|
R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
|
|
R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
|
|
R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
|
|
R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
|
|
R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
|
|
// All of these instructions use $lr (aka $0)
|
|
Uses = [R0] in {
|
|
// Branch relative and set link: Used if we actually know that the target
|
|
// is within [-32768, 32767] bytes of the target
|
|
def BRSL:
|
|
BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
|
|
"brsl\t$$lr, $func",
|
|
[(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
|
|
|
|
// Branch absolute and set link: Used if we actually know that the target
|
|
// is an absolute address
|
|
def BRASL:
|
|
BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
|
|
"brasl\t$$lr, $func",
|
|
[(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
|
|
|
|
// Branch indirect and set link if external data. These instructions are not
|
|
// actually generated, matched by an intrinsic:
|
|
def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
|
|
|
|
// Branch indirect and set link. This is the "X-form" address version of a
|
|
// function call
|
|
def BISL:
|
|
BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
|
|
}
|
|
|
|
// Support calls to external symbols:
|
|
def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
|
|
(BRSL texternalsym:$func)>;
|
|
|
|
def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
|
|
(BRASL texternalsym:$func)>;
|
|
|
|
// Unconditional branches:
|
|
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
|
|
let isBarrier = 1 in {
|
|
def BR :
|
|
UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
|
|
"br\t$dest",
|
|
[(br bb:$dest)]>;
|
|
|
|
// Unconditional, absolute address branch
|
|
def BRA:
|
|
UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
|
|
"bra\t$dest",
|
|
[/* no pattern */]>;
|
|
|
|
// Indirect branch
|
|
def BI:
|
|
BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
|
|
}
|
|
|
|
// Conditional branches:
|
|
class BRNZInst<dag IOL, list<dag> pattern>:
|
|
RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
|
|
BranchResolv, pattern>;
|
|
|
|
class BRNZRegInst<RegisterClass rclass>:
|
|
BRNZInst<(ins rclass:$rCond, brtarget:$dest),
|
|
[(brcond rclass:$rCond, bb:$dest)]>;
|
|
|
|
class BRNZVecInst<ValueType vectype>:
|
|
BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
|
|
[(brcond (vectype VECREG:$rCond), bb:$dest)]>;
|
|
|
|
multiclass BranchNotZero {
|
|
def v4i32 : BRNZVecInst<v4i32>;
|
|
def r32 : BRNZRegInst<R32C>;
|
|
}
|
|
|
|
defm BRNZ : BranchNotZero;
|
|
|
|
class BRZInst<dag IOL, list<dag> pattern>:
|
|
RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
|
|
BranchResolv, pattern>;
|
|
|
|
class BRZRegInst<RegisterClass rclass>:
|
|
BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
|
|
|
|
class BRZVecInst<ValueType vectype>:
|
|
BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
|
|
|
|
multiclass BranchZero {
|
|
def v4i32: BRZVecInst<v4i32>;
|
|
def r32: BRZRegInst<R32C>;
|
|
}
|
|
|
|
defm BRZ: BranchZero;
|
|
|
|
// Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
|
|
// be useful:
|
|
/*
|
|
class BINZInst<dag IOL, list<dag> pattern>:
|
|
BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
|
|
|
|
class BINZRegInst<RegisterClass rclass>:
|
|
BINZInst<(ins rclass:$rA, brtarget:$dest),
|
|
[(brcond rclass:$rA, R32C:$dest)]>;
|
|
|
|
class BINZVecInst<ValueType vectype>:
|
|
BINZInst<(ins VECREG:$rA, R32C:$dest),
|
|
[(brcond (vectype VECREG:$rA), R32C:$dest)]>;
|
|
|
|
multiclass BranchNotZeroIndirect {
|
|
def v4i32: BINZVecInst<v4i32>;
|
|
def r32: BINZRegInst<R32C>;
|
|
}
|
|
|
|
defm BINZ: BranchNotZeroIndirect;
|
|
|
|
class BIZInst<dag IOL, list<dag> pattern>:
|
|
BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
|
|
|
|
class BIZRegInst<RegisterClass rclass>:
|
|
BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
|
|
|
|
class BIZVecInst<ValueType vectype>:
|
|
BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
|
|
|
|
multiclass BranchZeroIndirect {
|
|
def v4i32: BIZVecInst<v4i32>;
|
|
def r32: BIZRegInst<R32C>;
|
|
}
|
|
|
|
defm BIZ: BranchZeroIndirect;
|
|
*/
|
|
|
|
class BRHNZInst<dag IOL, list<dag> pattern>:
|
|
RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
|
|
pattern>;
|
|
|
|
class BRHNZRegInst<RegisterClass rclass>:
|
|
BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
|
|
[(brcond rclass:$rCond, bb:$dest)]>;
|
|
|
|
class BRHNZVecInst<ValueType vectype>:
|
|
BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
|
|
|
|
multiclass BranchNotZeroHalfword {
|
|
def v8i16: BRHNZVecInst<v8i16>;
|
|
def r16: BRHNZRegInst<R16C>;
|
|
}
|
|
|
|
defm BRHNZ: BranchNotZeroHalfword;
|
|
|
|
class BRHZInst<dag IOL, list<dag> pattern>:
|
|
RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
|
|
pattern>;
|
|
|
|
class BRHZRegInst<RegisterClass rclass>:
|
|
BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
|
|
|
|
class BRHZVecInst<ValueType vectype>:
|
|
BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
|
|
|
|
multiclass BranchZeroHalfword {
|
|
def v8i16: BRHZVecInst<v8i16>;
|
|
def r16: BRHZRegInst<R16C>;
|
|
}
|
|
|
|
defm BRHZ: BranchZeroHalfword;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// setcc and brcond patterns:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
|
|
(BRHZr16 R16C:$rA, bb:$dest)>;
|
|
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
|
|
(BRHNZr16 R16C:$rA, bb:$dest)>;
|
|
|
|
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
|
|
(BRZr32 R32C:$rA, bb:$dest)>;
|
|
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
|
|
(BRNZr32 R32C:$rA, bb:$dest)>;
|
|
|
|
multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
|
|
defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
|
|
|
|
multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
|
|
defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
|
|
|
|
multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
|
|
SPUInstr orinst32, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
|
|
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
|
|
(CEQHr16 R16C:$rA, R16:$rB)),
|
|
bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
|
|
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
|
|
(CEQr32 R32C:$rA, R32C:$rB)),
|
|
bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
|
|
defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
|
|
|
|
multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
|
|
{
|
|
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
|
|
defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
|
|
|
|
multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
|
|
SPUInstr orinst32, SPUInstr brinst32>
|
|
{
|
|
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
|
|
(brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
|
|
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
|
|
(brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
|
|
(CEQHr16 R16C:$rA, R16:$rB)),
|
|
bb:$dest)>;
|
|
|
|
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
|
|
(brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
|
|
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
|
|
bb:$dest)>;
|
|
|
|
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
|
|
(brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
|
|
(CEQr32 R32C:$rA, R32C:$rB)),
|
|
bb:$dest)>;
|
|
}
|
|
|
|
defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
|
|
defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
|
|
|
|
let isTerminator = 1, isBarrier = 1 in {
|
|
let isReturn = 1 in {
|
|
def RET:
|
|
RETForm<"bi\t$$lr", [(retflag)]>;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single precision floating point instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class FAInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
|
|
SPrecFP, pattern>;
|
|
|
|
class FAVecInst<ValueType vectype>:
|
|
FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
|
|
|
|
multiclass SFPAdd
|
|
{
|
|
def v4f32: FAVecInst<v4f32>;
|
|
def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
[(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
|
|
}
|
|
|
|
defm FA : SFPAdd;
|
|
|
|
class FSInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
|
|
SPrecFP, pattern>;
|
|
|
|
class FSVecInst<ValueType vectype>:
|
|
FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
[(set (vectype VECREG:$rT),
|
|
(fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
|
|
|
|
multiclass SFPSub
|
|
{
|
|
def v4f32: FSVecInst<v4f32>;
|
|
def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
[(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
|
|
}
|
|
|
|
defm FS : SFPSub;
|
|
|
|
// Floating point reciprocal estimate
|
|
|
|
class FRESTInst<dag OOL, dag IOL>:
|
|
RRForm_1<0b00110111000, OOL, IOL,
|
|
"frest\t$rT, $rA", SPrecFP,
|
|
[/* no pattern */]>;
|
|
|
|
def FRESTv4f32 :
|
|
FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
|
|
|
|
def FRESTf32 :
|
|
FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
|
|
|
|
// Floating point interpolate (used in conjunction with reciprocal estimate)
|
|
def FIv4f32 :
|
|
RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fi\t$rT, $rA, $rB", SPrecFP,
|
|
[/* no pattern */]>;
|
|
|
|
def FIf32 :
|
|
RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fi\t$rT, $rA, $rB", SPrecFP,
|
|
[/* no pattern */]>;
|
|
|
|
//--------------------------------------------------------------------------
|
|
// Basic single precision floating point comparisons:
|
|
//
|
|
// Note: There is no support on SPU for single precision NaN. Consequently,
|
|
// ordered and unordered comparisons are the same.
|
|
//--------------------------------------------------------------------------
|
|
|
|
def FCEQf32 :
|
|
RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fceq\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
|
|
(FCEQf32 R32FP:$rA, R32FP:$rB)>;
|
|
|
|
def FCMEQf32 :
|
|
RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcmeq\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
|
|
|
|
def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
|
|
(FCMEQf32 R32FP:$rA, R32FP:$rB)>;
|
|
|
|
def FCGTf32 :
|
|
RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcgt\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
def : Pat<(setugt R32FP:$rA, R32FP:$rB),
|
|
(FCGTf32 R32FP:$rA, R32FP:$rB)>;
|
|
|
|
def FCMGTf32 :
|
|
RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fcmgt\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
|
|
|
|
def : Pat<(setugt (fabs R32FP:$rA), (fabs R32FP:$rB)),
|
|
(FCMGTf32 R32FP:$rA, R32FP:$rB)>;
|
|
|
|
//--------------------------------------------------------------------------
|
|
// Single precision floating point comparisons and SETCC equivalents:
|
|
//--------------------------------------------------------------------------
|
|
|
|
def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
|
|
def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
|
|
|
|
def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
|
|
def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
|
|
|
|
def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
|
|
def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
|
|
|
|
def : Pat<(setule R32FP:$rA, R32FP:$rB),
|
|
(XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
|
|
def : Pat<(setole R32FP:$rA, R32FP:$rB),
|
|
(XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
|
|
|
|
// FP Status and Control Register Write
|
|
// Why isn't rT a don't care in the ISA?
|
|
// Should we create a special RRForm_3 for this guy and zero out the rT?
|
|
def FSCRWf32 :
|
|
RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
|
|
"fscrwr\t$rA", SPrecFP,
|
|
[/* This instruction requires an intrinsic. Note: rT is unused. */]>;
|
|
|
|
// FP Status and Control Register Read
|
|
def FSCRRf32 :
|
|
RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
|
|
"fscrrd\t$rT", SPrecFP,
|
|
[/* This instruction requires an intrinsic */]>;
|
|
|
|
// llvm instruction space
|
|
// How do these map onto cell instructions?
|
|
// fdiv rA rB
|
|
// frest rC rB # c = 1/b (both lines)
|
|
// fi rC rB rC
|
|
// fm rD rA rC # d = a * 1/b
|
|
// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
|
|
// fma rB rB rC rD # b = b * c + d
|
|
// = -(d *b -a) * c + d
|
|
// = a * c - c ( a *b *c - a)
|
|
|
|
// fcopysign (???)
|
|
|
|
// Library calls:
|
|
// These llvm instructions will actually map to library calls.
|
|
// All that's needed, then, is to check that the appropriate library is
|
|
// imported and do a brsl to the proper function name.
|
|
// frem # fmod(x, y): x - (x/y) * y
|
|
// (Note: fmod(double, double), fmodf(float,float)
|
|
// fsqrt?
|
|
// fsin?
|
|
// fcos?
|
|
// Unimplemented SPU instruction space
|
|
// floating reciprocal absolute square root estimate (frsqest)
|
|
|
|
// The following are probably just intrinsics
|
|
// status and control register write
|
|
// status and control register read
|
|
|
|
//--------------------------------------
|
|
// Floating point multiply instructions
|
|
//--------------------------------------
|
|
|
|
def FMv4f32:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"fm\t$rT, $rA, $rB", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA),
|
|
(v4f32 VECREG:$rB)))]>;
|
|
|
|
def FMf32 :
|
|
RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
|
|
"fm\t$rT, $rA, $rB", SPrecFP,
|
|
[(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
|
|
|
|
// Floating point multiply and add
|
|
// e.g. d = c + (a * b)
|
|
def FMAv4f32:
|
|
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fadd (v4f32 VECREG:$rC),
|
|
(fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
|
|
|
|
def FMAf32:
|
|
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
|
|
|
|
// FP multiply and subtract
|
|
// Subtracts value in rC from product
|
|
// res = a * b - c
|
|
def FMSv4f32 :
|
|
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
|
|
(v4f32 VECREG:$rC)))]>;
|
|
|
|
def FMSf32 :
|
|
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT,
|
|
(fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
|
|
|
|
// Floating Negative Mulitply and Subtract
|
|
// Subtracts product from value in rC
|
|
// res = fneg(fms a b c)
|
|
// = - (a * b - c)
|
|
// = c - a * b
|
|
// NOTE: subtraction order
|
|
// fsub a b = a - b
|
|
// fs a b = b - a?
|
|
def FNMSf32 :
|
|
RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
|
|
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
|
|
|
|
def FNMSv4f32 :
|
|
RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT),
|
|
(fsub (v4f32 VECREG:$rC),
|
|
(fmul (v4f32 VECREG:$rA),
|
|
(v4f32 VECREG:$rB))))]>;
|
|
|
|
//--------------------------------------
|
|
// Floating Point Conversions
|
|
// Signed conversions:
|
|
def CSiFv4f32:
|
|
CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"csflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
|
|
|
|
// Convert signed integer to floating point
|
|
def CSiFf32 :
|
|
CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
|
|
"csflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
|
|
|
|
// Convert unsigned into to float
|
|
def CUiFv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cuflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
|
|
|
|
def CUiFf32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
|
|
"cuflt\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
|
|
|
|
// Convert float to unsigned int
|
|
// Assume that scale = 0
|
|
|
|
def CFUiv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cfltu\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
|
|
|
|
def CFUif32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
|
|
"cfltu\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
|
|
|
|
// Convert float to signed int
|
|
// Assume that scale = 0
|
|
|
|
def CFSiv4f32 :
|
|
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"cflts\t$rT, $rA, 0", SPrecFP,
|
|
[(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
|
|
|
|
def CFSif32 :
|
|
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
|
|
"cflts\t$rT, $rA, 0", SPrecFP,
|
|
[(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Single<->Double precision conversions
|
|
//===----------------------------------------------------------------------==//
|
|
|
|
// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
|
|
// v4f32, output is v2f64--which goes in the name?)
|
|
|
|
// Floating point extend single to double
|
|
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
|
|
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
|
|
// are ignored).
|
|
def FESDvec :
|
|
RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
"fesd\t$rT, $rA", SPrecFP,
|
|
[(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>;
|
|
|
|
def FESDf32 :
|
|
RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
|
|
"fesd\t$rT, $rA", SPrecFP,
|
|
[(set R64FP:$rT, (fextend R32FP:$rA))]>;
|
|
|
|
// Floating point round double to single
|
|
//def FRDSvec :
|
|
// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
|
|
// "frds\t$rT, $rA,", SPrecFP,
|
|
// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
|
|
|
|
def FRDSf64 :
|
|
RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
|
|
"frds\t$rT, $rA", SPrecFP,
|
|
[(set R32FP:$rT, (fround R64FP:$rA))]>;
|
|
|
|
//ToDo include anyextend?
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Double precision floating point instructions
|
|
//===----------------------------------------------------------------------==//
|
|
def FAf64 :
|
|
RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfa\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FAv2f64 :
|
|
RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfa\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FSf64 :
|
|
RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfs\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FSv2f64 :
|
|
RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfs\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FMf64 :
|
|
RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
|
|
"dfm\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
|
|
|
|
def FMv2f64:
|
|
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
|
|
"dfm\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
|
|
|
|
def FMAf64:
|
|
RRForm<0b00111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMAv2f64:
|
|
RRForm<0b00111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fadd (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMSf64 :
|
|
RRForm<0b10111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FMSv2f64 :
|
|
RRForm<0b10111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfms\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
|
|
(v2f64 VECREG:$rC)))]>;
|
|
|
|
// DFNMS: - (a * b - c)
|
|
// - (a * b) + c => c - (a * b)
|
|
|
|
class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
|
|
RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
|
|
DPrecFP, pattern>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
class DFNMSVecInst<list<dag> pattern>:
|
|
DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
pattern>;
|
|
|
|
class DFNMSRegInst<list<dag> pattern>:
|
|
DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
pattern>;
|
|
|
|
multiclass DFMultiplySubtract
|
|
{
|
|
def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT),
|
|
(fsub (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA),
|
|
(v2f64 VECREG:$rB))))]>;
|
|
|
|
def f64 : DFNMSRegInst<[(set R64FP:$rT,
|
|
(fsub R64FP:$rC,
|
|
(fmul R64FP:$rA, R64FP:$rB)))]>;
|
|
}
|
|
|
|
defm DFNMS : DFMultiplySubtract;
|
|
|
|
// - (a * b + c)
|
|
// - (a * b) - c
|
|
def FNMAf64 :
|
|
RRForm<0b11111010110, (outs R64FP:$rT),
|
|
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
|
|
"dfnma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
def FNMAv2f64 :
|
|
RRForm<0b11111010110, (outs VECREG:$rT),
|
|
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
|
|
"dfnma\t$rT, $rA, $rB", DPrecFP,
|
|
[(set (v2f64 VECREG:$rT),
|
|
(fneg (fadd (v2f64 VECREG:$rC),
|
|
(fmul (v2f64 VECREG:$rA),
|
|
(v2f64 VECREG:$rB)))))]>,
|
|
RegConstraint<"$rC = $rT">,
|
|
NoEncode<"$rC">;
|
|
|
|
//===----------------------------------------------------------------------==//
|
|
// Floating point negation and absolute value
|
|
//===----------------------------------------------------------------------==//
|
|
|
|
def : Pat<(fneg (v4f32 VECREG:$rA)),
|
|
(XORfnegvec (v4f32 VECREG:$rA),
|
|
(v4f32 (ILHUv4i32 0x8000)))>;
|
|
|
|
def : Pat<(fneg R32FP:$rA),
|
|
(XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
|
|
|
|
// Floating point absolute value
|
|
// Note: f64 fabs is custom-selected.
|
|
|
|
def : Pat<(fabs R32FP:$rA),
|
|
(ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
|
|
|
|
def : Pat<(fabs (v4f32 VECREG:$rA)),
|
|
(ANDfabsvec (v4f32 VECREG:$rA),
|
|
(IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hint for branch instructions:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/* def HBR : SPUInstr<(outs), (ins), "hbr\t" */
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
|
|
// in the odd pipeline)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> {
|
|
let Pattern = [];
|
|
|
|
let Inst{0-10} = 0b10000000010;
|
|
let Inst{11-17} = 0;
|
|
let Inst{18-24} = 0;
|
|
let Inst{25-31} = 0;
|
|
}
|
|
|
|
def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
|
|
let Pattern = [];
|
|
|
|
let Inst{0-10} = 0b10000000000;
|
|
let Inst{11-17} = 0;
|
|
let Inst{18-24} = 0;
|
|
let Inst{25-31} = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bit conversions (type conversions between vector/packed types)
|
|
// NOTE: Promotions are handled using the XS* instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
|
|
|
|
def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
|
|
|
|
def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
|
|
|
|
def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
|
|
|
|
def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>;
|
|
|
|
def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
|
|
(ORi128_vec VECREG:$src)>;
|
|
|
|
def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
|
|
(v16i8 (ORvec_i128 GPRC:$src))>;
|
|
def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
|
|
(v8i16 (ORvec_i128 GPRC:$src))>;
|
|
def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
|
|
(v4i32 (ORvec_i128 GPRC:$src))>;
|
|
def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
|
|
(v2i64 (ORvec_i128 GPRC:$src))>;
|
|
def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
|
|
(v4f32 (ORvec_i128 GPRC:$src))>;
|
|
def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
|
|
(v2f64 (ORvec_i128 GPRC:$src))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction patterns:
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// General 32-bit constants:
|
|
def : Pat<(i32 imm:$imm),
|
|
(IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
|
|
|
|
// Single precision float constants:
|
|
def : Pat<(f32 fpimm:$imm),
|
|
(IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
|
|
|
|
// General constant 32-bit vectors
|
|
def : Pat<(v4i32 v4i32Imm:$imm),
|
|
(IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
|
|
(LO16_vec v4i32Imm:$imm))>;
|
|
|
|
// 8-bit constants
|
|
def : Pat<(i8 imm:$imm),
|
|
(ILHr8 imm:$imm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Zero/Any/Sign extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// sext 8->32: Sign extend bytes to words
|
|
def : Pat<(sext_inreg R32C:$rSrc, i8),
|
|
(XSHWr32 (XSBHr32 R32C:$rSrc))>;
|
|
|
|
def : Pat<(i32 (sext R8C:$rSrc)),
|
|
(XSHWr16 (XSBHr8 R8C:$rSrc))>;
|
|
|
|
// sext 8->64: Sign extend bytes to double word
|
|
def : Pat<(sext_inreg R64C:$rSrc, i8),
|
|
(XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
|
|
|
|
def : Pat<(i64 (sext R8C:$rSrc)),
|
|
(XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
|
|
|
|
// zext 8->16: Zero extend bytes to halfwords
|
|
def : Pat<(i16 (zext R8C:$rSrc)),
|
|
(ANDHIi8i16 R8C:$rSrc, 0xff)>;
|
|
|
|
// zext 8->32: Zero extend bytes to words
|
|
def : Pat<(i32 (zext R8C:$rSrc)),
|
|
(ANDIi8i32 R8C:$rSrc, 0xff)>;
|
|
|
|
// zext 8->64: Zero extend bytes to double words
|
|
def : Pat<(i64 (zext R8C:$rSrc)),
|
|
(ORi64_v2i64 (SELBv4i32 (ROTQMBYv4i32
|
|
(ORv4i32_i32 (ANDIi8i32 R8C:$rSrc, 0xff)),
|
|
0x4),
|
|
(ILv4i32 0x0),
|
|
(FSMBIv4i32 0x0f0f)))>;
|
|
|
|
// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
|
|
def : Pat<(i16 (anyext R8C:$rSrc)),
|
|
(ORHIi8i16 R8C:$rSrc, 0)>;
|
|
|
|
// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
|
|
def : Pat<(i32 (anyext R8C:$rSrc)),
|
|
(ORIi8i32 R8C:$rSrc, 0)>;
|
|
|
|
// sext 16->64: Sign extend halfword to double word
|
|
def : Pat<(sext_inreg R64C:$rSrc, i16),
|
|
(XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
|
|
|
|
def : Pat<(sext R16C:$rSrc),
|
|
(XSWDr64 (XSHWr16 R16C:$rSrc))>;
|
|
|
|
// zext 16->32: Zero extend halfwords to words
|
|
def : Pat<(i32 (zext R16C:$rSrc)),
|
|
(ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xf)>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xff)>;
|
|
|
|
def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
|
|
(ANDIi16i32 R16C:$rSrc, 0xfff)>;
|
|
|
|
// anyext 16->32: Extend 16->32 bits, irrespective of sign
|
|
def : Pat<(i32 (anyext R16C:$rSrc)),
|
|
(ORIi16i32 R16C:$rSrc, 0)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Truncates:
|
|
// These truncates are for the SPU's supported types (i8, i16, i32). i64 and
|
|
// above are custom lowered.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(i8 (trunc GPRC:$src)),
|
|
(ORi8_v16i8
|
|
(SHUFBgprc GPRC:$src, GPRC:$src,
|
|
(IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)))>;
|
|
|
|
def : Pat<(i8 (trunc R64C:$src)),
|
|
(ORi8_v16i8
|
|
(SHUFBv2i64_m32
|
|
(ORv2i64_i64 R64C:$src),
|
|
(ORv2i64_i64 R64C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)))>;
|
|
|
|
def : Pat<(i8 (trunc R32C:$src)),
|
|
(ORi8_v16i8
|
|
(SHUFBv4i32_m32
|
|
(ORv4i32_i32 R32C:$src),
|
|
(ORv4i32_i32 R32C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>;
|
|
|
|
def : Pat<(i8 (trunc R16C:$src)),
|
|
(ORi8_v16i8
|
|
(SHUFBv4i32_m32
|
|
(ORv8i16_i16 R16C:$src),
|
|
(ORv8i16_i16 R16C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>;
|
|
|
|
def : Pat<(i16 (trunc GPRC:$src)),
|
|
(ORi16_v8i16
|
|
(SHUFBgprc GPRC:$src, GPRC:$src,
|
|
(IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)))>;
|
|
|
|
def : Pat<(i16 (trunc R64C:$src)),
|
|
(ORi16_v8i16
|
|
(SHUFBv2i64_m32
|
|
(ORv2i64_i64 R64C:$src),
|
|
(ORv2i64_i64 R64C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)))>;
|
|
|
|
def : Pat<(i16 (trunc R32C:$src)),
|
|
(ORi16_v8i16
|
|
(SHUFBv4i32_m32
|
|
(ORv4i32_i32 R32C:$src),
|
|
(ORv4i32_i32 R32C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)))>;
|
|
|
|
def : Pat<(i32 (trunc GPRC:$src)),
|
|
(ORi32_v4i32
|
|
(SHUFBgprc GPRC:$src, GPRC:$src,
|
|
(IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)))>;
|
|
|
|
def : Pat<(i32 (trunc R64C:$src)),
|
|
(ORi32_v4i32
|
|
(SHUFBv2i64_m32
|
|
(ORv2i64_i64 R64C:$src),
|
|
(ORv2i64_i64 R64C:$src),
|
|
(IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Address generation: SPU, like PPC, has to split addresses into high and
|
|
// low parts in order to load them into a register.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
|
|
def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
|
|
def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>;
|
|
def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
|
|
(SPUlo tglobaladdr:$in, 0)),
|
|
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
|
|
(SPUlo texternalsym:$in, 0)),
|
|
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
|
|
(SPUlo tjumptable:$in, 0)),
|
|
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
|
|
|
|
def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
|
|
(SPUlo tconstpool:$in, 0)),
|
|
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
|
|
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
|
|
|
|
def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
|
|
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
|
|
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
|
|
|
|
def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
|
|
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
|
|
|
|
// Intrinsics:
|
|
include "CellSDKIntrinsics.td"
|
|
// Various math operator instruction sequences
|
|
include "SPUMathInstr.td"
|
|
// 64-bit "instructions"/support
|
|
include "SPU64InstrInfo.td"
|
|
// 128-bit "instructions"/support
|
|
include "SPU128InstrInfo.td"
|