llvm-6502/include/llvm/ADT/SmallPtrSet.h
Chris Lattner 42e4bdf257 When clearing a SmallPtrSet, if the set had a huge capacity, but the
contents of the set were small, deallocate and shrink the set.  This
avoids having us to memset as much data, significantly speeding up
some pathological cases.  For example, this speeds up the verifier
from 0.3899s to 0.0763 (5.1x) on the testcase from PR1432 in a 
release build.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40837 91177308-0d34-0410-b5e6-96231b3b80d8
2007-08-05 07:32:14 +00:00

257 lines
8.4 KiB
C++

//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallPtrSet class. See the doxygen comment for
// SmallPtrSetImpl for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SMALLPTRSET_H
#define LLVM_ADT_SMALLPTRSET_H
#include <cassert>
#include <cstring>
#include "llvm/Support/DataTypes.h"
namespace llvm {
/// SmallPtrSetImpl - This is the common code shared among all the
/// SmallPtrSet<>'s, which is almost everything. SmallPtrSet has two modes, one
/// for small and one for large sets.
///
/// Small sets use an array of pointers allocated in the SmallPtrSet object,
/// which is treated as a simple array of pointers. When a pointer is added to
/// the set, the array is scanned to see if the element already exists, if not
/// the element is 'pushed back' onto the array. If we run out of space in the
/// array, we grow into the 'large set' case. SmallSet should be used when the
/// sets are often small. In this case, no memory allocation is used, and only
/// light-weight and cache-efficient scanning is used.
///
/// Large sets use a classic exponentially-probed hash table. Empty buckets are
/// represented with an illegal pointer value (-1) to allow null pointers to be
/// inserted. Tombstones are represented with another illegal pointer value
/// (-2), to allow deletion. The hash table is resized when the table is 3/4 or
/// more. When this happens, the table is doubled in size.
///
class SmallPtrSetImpl {
protected:
/// CurArray - This is the current set of buckets. If it points to
/// SmallArray, then the set is in 'small mode'.
const void **CurArray;
/// CurArraySize - The allocated size of CurArray, always a power of two.
/// Note that CurArray points to an array that has CurArraySize+1 elements in
/// it, so that the end iterator actually points to valid memory.
unsigned CurArraySize;
// If small, this is # elts allocated consequtively
unsigned NumElements;
unsigned NumTombstones;
const void *SmallArray[1]; // Must be last ivar.
// Helper to copy construct a SmallPtrSet.
SmallPtrSetImpl(const SmallPtrSetImpl& that);
public:
SmallPtrSetImpl(unsigned SmallSize) {
assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
"Initial size must be a power of two!");
CurArray = &SmallArray[0];
CurArraySize = SmallSize;
// The end pointer, always valid, is set to a valid element to help the
// iterator.
CurArray[SmallSize] = 0;
clear();
}
~SmallPtrSetImpl();
bool empty() const { return size() == 0; }
unsigned size() const { return NumElements; }
static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
static void *getEmptyMarker() {
// Note that -1 is chosen to make clear() efficiently implementable with
// memset and because it's not a valid pointer value.
return reinterpret_cast<void*>(-1);
}
void clear() {
// If the capacity of the array is huge, and the # elements used is small,
// shrink the array.
if (!isSmall() && NumElements*4 < CurArraySize && CurArraySize > 32)
return shrink_and_clear();
// Fill the array with empty markers.
memset(CurArray, -1, CurArraySize*sizeof(void*));
NumElements = 0;
NumTombstones = 0;
}
/// insert - This returns true if the pointer was new to the set, false if it
/// was already in the set.
bool insert(const void * Ptr);
template <typename IterT>
void insert(IterT I, IterT E) {
for (; I != E; ++I)
insert((void*)*I);
}
/// erase - If the set contains the specified pointer, remove it and return
/// true, otherwise return false.
bool erase(void * const Ptr);
bool count(void * const Ptr) const {
if (isSmall()) {
// Linear search for the item.
for (const void *const *APtr = SmallArray,
*const *E = SmallArray+NumElements; APtr != E; ++APtr)
if (*APtr == Ptr)
return true;
return false;
}
// Big set case.
return *FindBucketFor(Ptr) == Ptr;
}
private:
bool isSmall() const { return CurArray == &SmallArray[0]; }
unsigned Hash(const void *Ptr) const {
return ((uintptr_t)Ptr >> 4) & (CurArraySize-1);
}
const void * const *FindBucketFor(const void *Ptr) const;
void shrink_and_clear();
/// Grow - Allocate a larger backing store for the buckets and move it over.
void Grow();
void operator=(const SmallPtrSetImpl &RHS); // DO NOT IMPLEMENT.
protected:
void CopyFrom(const SmallPtrSetImpl &RHS);
};
/// SmallPtrSetIteratorImpl - This is the common base class shared between all
/// instances of SmallPtrSetIterator.
class SmallPtrSetIteratorImpl {
protected:
const void *const *Bucket;
public:
SmallPtrSetIteratorImpl(const void *const *BP) : Bucket(BP) {
AdvanceIfNotValid();
}
bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket == RHS.Bucket;
}
bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
return Bucket != RHS.Bucket;
}
protected:
/// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
/// that is. This is guaranteed to stop because the end() bucket is marked
/// valid.
void AdvanceIfNotValid() {
while (*Bucket == SmallPtrSetImpl::getEmptyMarker() ||
*Bucket == SmallPtrSetImpl::getTombstoneMarker())
++Bucket;
}
};
/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
template<typename PtrTy>
class SmallPtrSetIterator : public SmallPtrSetIteratorImpl {
public:
SmallPtrSetIterator(const void *const *BP) : SmallPtrSetIteratorImpl(BP) {}
// Most methods provided by baseclass.
const PtrTy operator*() const {
return static_cast<const PtrTy>(const_cast<void*>(*Bucket));
}
inline SmallPtrSetIterator& operator++() { // Preincrement
++Bucket;
AdvanceIfNotValid();
return *this;
}
SmallPtrSetIterator operator++(int) { // Postincrement
SmallPtrSetIterator tmp = *this; ++*this; return tmp;
}
};
/// NextPowerOfTwo - This is a helper template that rounds N up to the next
/// power of two.
template<unsigned N>
struct NextPowerOfTwo;
/// NextPowerOfTwoH - If N is not a power of two, increase it. This is a helper
/// template used to implement NextPowerOfTwo.
template<unsigned N, bool isPowerTwo>
struct NextPowerOfTwoH {
enum { Val = N };
};
template<unsigned N>
struct NextPowerOfTwoH<N, false> {
enum {
// We could just use NextVal = N+1, but this converges faster. N|(N-1) sets
// the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
Val = NextPowerOfTwo<(N|(N-1)) + 1>::Val
};
};
template<unsigned N>
struct NextPowerOfTwo {
enum { Val = NextPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
};
/// SmallPtrSet - This class implements a set which is optimizer for holding
/// SmallSize or less elements. This internally rounds up SmallSize to the next
/// power of two if it is not already a power of two. See the comments above
/// SmallPtrSetImpl for details of the algorithm.
template<class PtrType, unsigned SmallSize>
class SmallPtrSet : public SmallPtrSetImpl {
// Make sure that SmallSize is a power of two, round up if not.
enum { SmallSizePowTwo = NextPowerOfTwo<SmallSize>::Val };
void *SmallArray[SmallSizePowTwo];
public:
SmallPtrSet() : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {}
SmallPtrSet(const SmallPtrSet &that) : SmallPtrSetImpl(that) {}
template<typename It>
SmallPtrSet(It I, It E)
: SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {
insert(I, E);
}
typedef SmallPtrSetIterator<PtrType> iterator;
typedef SmallPtrSetIterator<PtrType> const_iterator;
inline iterator begin() const {
return iterator(CurArray);
}
inline iterator end() const {
return iterator(CurArray+CurArraySize);
}
// Allow assignment from any smallptrset with the same element type even if it
// doesn't have the same smallsize.
const SmallPtrSet<PtrType, SmallSize>&
operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) {
CopyFrom(RHS);
return *this;
}
};
}
#endif