mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 07:32:52 +00:00
43705683fd
There are no patterns for this. This was already fixed for ARM64 but I forgot to apply it to AArch64 too. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207515 91177308-0d34-0410-b5e6-96231b3b80d8
5550 lines
207 KiB
C++
5550 lines
207 KiB
C++
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64.h"
|
|
#include "AArch64ISelLowering.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "AArch64TargetObjectFile.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-isel"
|
|
|
|
static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
|
|
assert (TM.getSubtarget<AArch64Subtarget>().isTargetELF() &&
|
|
"unknown subtarget type");
|
|
return new AArch64ElfTargetObjectFile();
|
|
}
|
|
|
|
AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
|
|
: TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
|
|
|
|
const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
|
|
|
|
// SIMD compares set the entire lane's bits to 1
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Scalar register <-> type mapping
|
|
addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
|
|
addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
|
|
|
|
if (Subtarget->hasFPARMv8()) {
|
|
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
|
|
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
|
|
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
|
|
}
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
// And the vectors
|
|
addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass);
|
|
addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
|
|
addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
|
|
addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
|
|
addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
|
|
addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
|
|
addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
|
|
addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
|
|
addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
|
|
}
|
|
|
|
computeRegisterProperties();
|
|
|
|
// We combine OR nodes for bitfield and NEON BSL operations.
|
|
setTargetDAGCombine(ISD::OR);
|
|
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
|
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
|
|
|
// AArch64 does not have i1 loads, or much of anything for i1 really.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
|
|
setStackPointerRegisterToSaveRestore(AArch64::XSP);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
|
|
// We'll lower globals to wrappers for selection.
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
|
|
// A64 instructions have the comparison predicate attached to the user of the
|
|
// result, but having a separate comparison is valuable for matching.
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
|
|
|
|
// Legal floating-point operations.
|
|
setOperationAction(ISD::FABS, MVT::f32, Legal);
|
|
setOperationAction(ISD::FABS, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FNEG, MVT::f32, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FRINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FSQRT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FSQRT, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
|
|
|
|
// Illegal floating-point operations.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FEXP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FEXP2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FLOG, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
|
|
// Virtually no operation on f128 is legal, but LLVM can't expand them when
|
|
// there's a valid register class, so we need custom operations in most cases.
|
|
setOperationAction(ISD::FABS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FADD, MVT::f128, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::f128, Custom);
|
|
setOperationAction(ISD::FMA, MVT::f128, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::f128, Custom);
|
|
setOperationAction(ISD::FNEG, MVT::f128, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f128, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f128, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::f128, Custom);
|
|
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f128, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f128, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
|
|
|
|
// Lowering for many of the conversions is actually specified by the non-f128
|
|
// type. The LowerXXX function will be trivial when f128 isn't involved.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
|
|
|
|
// i128 shift operation support
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
|
|
// This prevents LLVM trying to compress double constants into a floating
|
|
// constant-pool entry and trying to load from there. It's of doubtful benefit
|
|
// for A64: we'd need LDR followed by FCVT, I believe.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
|
|
|
|
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
|
|
setExceptionPointerRegister(AArch64::X0);
|
|
setExceptionSelectorRegister(AArch64::X1);
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i32, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
|
|
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v1i8, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v1i16, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v1i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v1i8, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v1i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v1i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v1i8, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v1i16, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v1i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v1i8, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v1i16, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v1i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Custom);
|
|
|
|
// Neon does not support vector divide/remainder operations except
|
|
// floating-point divide.
|
|
setOperationAction(ISD::SDIV, MVT::v1i8, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v1i16, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v1i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::UDIV, MVT::v1i8, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v1i16, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v1i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::SREM, MVT::v1i8, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v1i16, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v1i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SREM, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::UREM, MVT::v1i8, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v1i16, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v1i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::FREM, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v16i8, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v8i16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2i64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2f64, Expand);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v16i8, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v1i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v2f64, Custom);
|
|
|
|
// Vector ExtLoad and TruncStore are expanded.
|
|
for (unsigned I = MVT::FIRST_VECTOR_VALUETYPE;
|
|
I <= MVT::LAST_VECTOR_VALUETYPE; ++I) {
|
|
MVT VT = (MVT::SimpleValueType) I;
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, Expand);
|
|
for (unsigned II = MVT::FIRST_VECTOR_VALUETYPE;
|
|
II <= MVT::LAST_VECTOR_VALUETYPE; ++II) {
|
|
MVT VT1 = (MVT::SimpleValueType) II;
|
|
// A TruncStore has two vector types of the same number of elements
|
|
// and different element sizes.
|
|
if (VT.getVectorNumElements() == VT1.getVectorNumElements() &&
|
|
VT.getVectorElementType().getSizeInBits()
|
|
> VT1.getVectorElementType().getSizeInBits())
|
|
setTruncStoreAction(VT, VT1, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
}
|
|
|
|
// There is no v1i64/v2i64 multiply, expand v1i64/v2i64 to GPR i64 multiply.
|
|
// FIXME: For a v2i64 multiply, we copy VPR to GPR and do 2 i64 multiplies,
|
|
// and then copy back to VPR. This solution may be optimized by Following 3
|
|
// NEON instructions:
|
|
// pmull v2.1q, v0.1d, v1.1d
|
|
// pmull2 v3.1q, v0.2d, v1.2d
|
|
// ins v2.d[1], v3.d[0]
|
|
// As currently we can't verify the correctness of such assumption, we can
|
|
// do such optimization in the future.
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
|
|
}
|
|
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
|
|
MaskAndBranchFoldingIsLegal = true;
|
|
}
|
|
|
|
EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
// It's reasonably important that this value matches the "natural" legal
|
|
// promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
|
|
// in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
|
|
if (!VT.isVector()) return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
|
|
unsigned &LdrOpc,
|
|
unsigned &StrOpc) {
|
|
static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
|
|
AArch64::LDXR_word, AArch64::LDXR_dword};
|
|
static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
|
|
AArch64::LDAXR_word, AArch64::LDAXR_dword};
|
|
static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
|
|
AArch64::STXR_word, AArch64::STXR_dword};
|
|
static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
|
|
AArch64::STLXR_word, AArch64::STLXR_dword};
|
|
|
|
const unsigned *LoadOps, *StoreOps;
|
|
if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
|
|
LoadOps = LoadAcqs;
|
|
else
|
|
LoadOps = LoadBares;
|
|
|
|
if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
|
|
StoreOps = StoreRels;
|
|
else
|
|
StoreOps = StoreBares;
|
|
|
|
assert(isPowerOf2_32(Size) && Size <= 8 &&
|
|
"unsupported size for atomic binary op!");
|
|
|
|
LdrOpc = LoadOps[Log2_32(Size)];
|
|
StrOpc = StoreOps[Log2_32(Size)];
|
|
}
|
|
|
|
// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
|
|
// have value type mapped, and they are both being defined as MVT::untyped.
|
|
// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
|
|
// would fail to figure out the register pressure correctly.
|
|
std::pair<const TargetRegisterClass*, uint8_t>
|
|
AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
|
|
const TargetRegisterClass *RRC = nullptr;
|
|
uint8_t Cost = 1;
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(VT);
|
|
case MVT::v4i64:
|
|
RRC = &AArch64::QPairRegClass;
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v8i64:
|
|
RRC = &AArch64::QQuadRegClass;
|
|
Cost = 4;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Size,
|
|
unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned incr = MI->getOperand(2).getReg();
|
|
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
const TargetRegisterClass *TRC
|
|
= Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
|
|
unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldxr dest, ptr
|
|
// <binop> scratch, dest, incr
|
|
// stxr stxr_status, scratch, ptr
|
|
// cbnz stxr_status, loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
if (BinOpcode) {
|
|
// All arithmetic operations we'll be creating are designed to take an extra
|
|
// shift or extend operand, which we can conveniently set to zero.
|
|
|
|
// Operand order needs to go the other way for NAND.
|
|
if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
|
|
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
|
|
.addReg(incr).addReg(dest).addImm(0);
|
|
else
|
|
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
|
|
.addReg(dest).addReg(incr).addImm(0);
|
|
}
|
|
|
|
// From the stxr, the register is GPR32; from the cmp it's GPR32wsp
|
|
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
|
|
|
|
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
|
|
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
|
|
.addReg(stxr_status).addMBB(loopMBB);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size,
|
|
unsigned CmpOp,
|
|
A64CC::CondCodes Cond) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned incr = MI->getOperand(2).getReg();
|
|
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
|
|
|
|
unsigned oldval = dest;
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *TRC, *TRCsp;
|
|
if (Size == 8) {
|
|
TRC = &AArch64::GPR64RegClass;
|
|
TRCsp = &AArch64::GPR64xspRegClass;
|
|
} else {
|
|
TRC = &AArch64::GPR32RegClass;
|
|
TRCsp = &AArch64::GPR32wspRegClass;
|
|
}
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
MRI.constrainRegClass(scratch, TRCsp);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldxr dest, ptr
|
|
// cmp incr, dest (, sign extend if necessary)
|
|
// csel scratch, dest, incr, cond
|
|
// stxr stxr_status, scratch, ptr
|
|
// cbnz stxr_status, loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
|
|
// Build compare and cmov instructions.
|
|
MRI.constrainRegClass(incr, TRCsp);
|
|
BuildMI(BB, dl, TII->get(CmpOp))
|
|
.addReg(incr).addReg(oldval).addImm(0);
|
|
|
|
BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
|
|
scratch)
|
|
.addReg(oldval).addReg(incr).addImm(Cond);
|
|
|
|
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
|
|
|
|
BuildMI(BB, dl, TII->get(strOpc), stxr_status)
|
|
.addReg(scratch).addReg(ptr);
|
|
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
|
|
.addReg(stxr_status).addMBB(loopMBB);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned oldval = MI->getOperand(2).getReg();
|
|
unsigned newval = MI->getOperand(3).getReg();
|
|
AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
const TargetRegisterClass *TRCsp;
|
|
TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It; // insert the new blocks after the current block
|
|
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loop1MBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// loop1MBB:
|
|
// ldxr dest, [ptr]
|
|
// cmp dest, oldval
|
|
// b.ne exitMBB
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
|
|
unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
|
|
MRI.constrainRegClass(dest, TRCsp);
|
|
BuildMI(BB, dl, TII->get(CmpOp))
|
|
.addReg(dest).addReg(oldval).addImm(0);
|
|
BuildMI(BB, dl, TII->get(AArch64::Bcc))
|
|
.addImm(A64CC::NE).addMBB(exitMBB);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// loop2MBB:
|
|
// strex stxr_status, newval, [ptr]
|
|
// cbnz stxr_status, loop1MBB
|
|
BB = loop2MBB;
|
|
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
|
|
|
|
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
|
|
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
|
|
.addReg(stxr_status).addMBB(loop1MBB);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// We materialise the F128CSEL pseudo-instruction using conditional branches
|
|
// and loads, giving an instruciton sequence like:
|
|
// str q0, [sp]
|
|
// b.ne IfTrue
|
|
// b Finish
|
|
// IfTrue:
|
|
// str q1, [sp]
|
|
// Finish:
|
|
// ldr q0, [sp]
|
|
//
|
|
// Using virtual registers would probably not be beneficial since COPY
|
|
// instructions are expensive for f128 (there's no actual instruction to
|
|
// implement them).
|
|
//
|
|
// An alternative would be to do an integer-CSEL on some address. E.g.:
|
|
// mov x0, sp
|
|
// add x1, sp, #16
|
|
// str q0, [x0]
|
|
// str q1, [x1]
|
|
// csel x0, x0, x1, ne
|
|
// ldr q0, [x0]
|
|
//
|
|
// It's unclear which approach is actually optimal.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
MachineFunction *MF = MBB->getParent();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineFunction::iterator It = MBB;
|
|
++It;
|
|
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
unsigned IfTrueReg = MI->getOperand(1).getReg();
|
|
unsigned IfFalseReg = MI->getOperand(2).getReg();
|
|
unsigned CondCode = MI->getOperand(3).getImm();
|
|
bool NZCVKilled = MI->getOperand(4).isKill();
|
|
|
|
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, TrueBB);
|
|
MF->insert(It, EndBB);
|
|
|
|
// Transfer rest of current basic-block to EndBB
|
|
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
|
|
MBB->end());
|
|
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
// We need somewhere to store the f128 value needed.
|
|
int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
|
|
|
|
// [... start of incoming MBB ...]
|
|
// str qIFFALSE, [sp]
|
|
// b.cc IfTrue
|
|
// b Done
|
|
BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
|
|
.addReg(IfFalseReg)
|
|
.addFrameIndex(ScratchFI)
|
|
.addImm(0);
|
|
BuildMI(MBB, DL, TII->get(AArch64::Bcc))
|
|
.addImm(CondCode)
|
|
.addMBB(TrueBB);
|
|
BuildMI(MBB, DL, TII->get(AArch64::Bimm))
|
|
.addMBB(EndBB);
|
|
MBB->addSuccessor(TrueBB);
|
|
MBB->addSuccessor(EndBB);
|
|
|
|
if (!NZCVKilled) {
|
|
// NZCV is live-through TrueBB.
|
|
TrueBB->addLiveIn(AArch64::NZCV);
|
|
EndBB->addLiveIn(AArch64::NZCV);
|
|
}
|
|
|
|
// IfTrue:
|
|
// str qIFTRUE, [sp]
|
|
BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
|
|
.addReg(IfTrueReg)
|
|
.addFrameIndex(ScratchFI)
|
|
.addImm(0);
|
|
|
|
// Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
|
|
// blocks.
|
|
TrueBB->addSuccessor(EndBB);
|
|
|
|
// Done:
|
|
// ldr qDEST, [sp]
|
|
// [... rest of incoming MBB ...]
|
|
MachineInstr *StartOfEnd = EndBB->begin();
|
|
BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
|
|
.addFrameIndex(ScratchFI)
|
|
.addImm(0);
|
|
|
|
MI->eraseFromParent();
|
|
return EndBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unhandled instruction with custom inserter");
|
|
case AArch64::F128CSEL:
|
|
return EmitF128CSEL(MI, MBB);
|
|
case AArch64::ATOMIC_LOAD_ADD_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_ADD_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_ADD_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_ADD_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_SUB_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_SUB_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_SUB_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_SUB_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_AND_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_AND_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_AND_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_AND_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_OR_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_OR_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_OR_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_OR_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_XOR_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_XOR_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_XOR_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_XOR_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_NAND_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_NAND_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_NAND_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
|
|
case AArch64::ATOMIC_LOAD_NAND_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
|
|
|
|
case AArch64::ATOMIC_LOAD_MIN_I8:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
|
|
case AArch64::ATOMIC_LOAD_MIN_I16:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
|
|
case AArch64::ATOMIC_LOAD_MIN_I32:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
|
|
case AArch64::ATOMIC_LOAD_MIN_I64:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
|
|
|
|
case AArch64::ATOMIC_LOAD_MAX_I8:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
|
|
case AArch64::ATOMIC_LOAD_MAX_I16:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
|
|
case AArch64::ATOMIC_LOAD_MAX_I32:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
|
|
case AArch64::ATOMIC_LOAD_MAX_I64:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
|
|
|
|
case AArch64::ATOMIC_LOAD_UMIN_I8:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
|
|
case AArch64::ATOMIC_LOAD_UMIN_I16:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
|
|
case AArch64::ATOMIC_LOAD_UMIN_I32:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
|
|
case AArch64::ATOMIC_LOAD_UMIN_I64:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
|
|
|
|
case AArch64::ATOMIC_LOAD_UMAX_I8:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
|
|
case AArch64::ATOMIC_LOAD_UMAX_I16:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
|
|
case AArch64::ATOMIC_LOAD_UMAX_I32:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
|
|
case AArch64::ATOMIC_LOAD_UMAX_I64:
|
|
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
|
|
|
|
case AArch64::ATOMIC_SWAP_I8:
|
|
return emitAtomicBinary(MI, MBB, 1, 0);
|
|
case AArch64::ATOMIC_SWAP_I16:
|
|
return emitAtomicBinary(MI, MBB, 2, 0);
|
|
case AArch64::ATOMIC_SWAP_I32:
|
|
return emitAtomicBinary(MI, MBB, 4, 0);
|
|
case AArch64::ATOMIC_SWAP_I64:
|
|
return emitAtomicBinary(MI, MBB, 8, 0);
|
|
|
|
case AArch64::ATOMIC_CMP_SWAP_I8:
|
|
return emitAtomicCmpSwap(MI, MBB, 1);
|
|
case AArch64::ATOMIC_CMP_SWAP_I16:
|
|
return emitAtomicCmpSwap(MI, MBB, 2);
|
|
case AArch64::ATOMIC_CMP_SWAP_I32:
|
|
return emitAtomicCmpSwap(MI, MBB, 4);
|
|
case AArch64::ATOMIC_CMP_SWAP_I64:
|
|
return emitAtomicCmpSwap(MI, MBB, 8);
|
|
}
|
|
}
|
|
|
|
|
|
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
|
|
case AArch64ISD::Call: return "AArch64ISD::Call";
|
|
case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
|
|
case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
|
|
case AArch64ISD::BFI: return "AArch64ISD::BFI";
|
|
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
|
|
case AArch64ISD::Ret: return "AArch64ISD::Ret";
|
|
case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
|
|
case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
|
|
case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
|
|
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
|
|
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
|
|
case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
|
|
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
|
|
case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
|
|
|
|
case AArch64ISD::NEON_MOVIMM:
|
|
return "AArch64ISD::NEON_MOVIMM";
|
|
case AArch64ISD::NEON_MVNIMM:
|
|
return "AArch64ISD::NEON_MVNIMM";
|
|
case AArch64ISD::NEON_FMOVIMM:
|
|
return "AArch64ISD::NEON_FMOVIMM";
|
|
case AArch64ISD::NEON_CMP:
|
|
return "AArch64ISD::NEON_CMP";
|
|
case AArch64ISD::NEON_CMPZ:
|
|
return "AArch64ISD::NEON_CMPZ";
|
|
case AArch64ISD::NEON_TST:
|
|
return "AArch64ISD::NEON_TST";
|
|
case AArch64ISD::NEON_QSHLs:
|
|
return "AArch64ISD::NEON_QSHLs";
|
|
case AArch64ISD::NEON_QSHLu:
|
|
return "AArch64ISD::NEON_QSHLu";
|
|
case AArch64ISD::NEON_VDUP:
|
|
return "AArch64ISD::NEON_VDUP";
|
|
case AArch64ISD::NEON_VDUPLANE:
|
|
return "AArch64ISD::NEON_VDUPLANE";
|
|
case AArch64ISD::NEON_REV16:
|
|
return "AArch64ISD::NEON_REV16";
|
|
case AArch64ISD::NEON_REV32:
|
|
return "AArch64ISD::NEON_REV32";
|
|
case AArch64ISD::NEON_REV64:
|
|
return "AArch64ISD::NEON_REV64";
|
|
case AArch64ISD::NEON_UZP1:
|
|
return "AArch64ISD::NEON_UZP1";
|
|
case AArch64ISD::NEON_UZP2:
|
|
return "AArch64ISD::NEON_UZP2";
|
|
case AArch64ISD::NEON_ZIP1:
|
|
return "AArch64ISD::NEON_ZIP1";
|
|
case AArch64ISD::NEON_ZIP2:
|
|
return "AArch64ISD::NEON_ZIP2";
|
|
case AArch64ISD::NEON_TRN1:
|
|
return "AArch64ISD::NEON_TRN1";
|
|
case AArch64ISD::NEON_TRN2:
|
|
return "AArch64ISD::NEON_TRN2";
|
|
case AArch64ISD::NEON_LD1_UPD:
|
|
return "AArch64ISD::NEON_LD1_UPD";
|
|
case AArch64ISD::NEON_LD2_UPD:
|
|
return "AArch64ISD::NEON_LD2_UPD";
|
|
case AArch64ISD::NEON_LD3_UPD:
|
|
return "AArch64ISD::NEON_LD3_UPD";
|
|
case AArch64ISD::NEON_LD4_UPD:
|
|
return "AArch64ISD::NEON_LD4_UPD";
|
|
case AArch64ISD::NEON_ST1_UPD:
|
|
return "AArch64ISD::NEON_ST1_UPD";
|
|
case AArch64ISD::NEON_ST2_UPD:
|
|
return "AArch64ISD::NEON_ST2_UPD";
|
|
case AArch64ISD::NEON_ST3_UPD:
|
|
return "AArch64ISD::NEON_ST3_UPD";
|
|
case AArch64ISD::NEON_ST4_UPD:
|
|
return "AArch64ISD::NEON_ST4_UPD";
|
|
case AArch64ISD::NEON_LD1x2_UPD:
|
|
return "AArch64ISD::NEON_LD1x2_UPD";
|
|
case AArch64ISD::NEON_LD1x3_UPD:
|
|
return "AArch64ISD::NEON_LD1x3_UPD";
|
|
case AArch64ISD::NEON_LD1x4_UPD:
|
|
return "AArch64ISD::NEON_LD1x4_UPD";
|
|
case AArch64ISD::NEON_ST1x2_UPD:
|
|
return "AArch64ISD::NEON_ST1x2_UPD";
|
|
case AArch64ISD::NEON_ST1x3_UPD:
|
|
return "AArch64ISD::NEON_ST1x3_UPD";
|
|
case AArch64ISD::NEON_ST1x4_UPD:
|
|
return "AArch64ISD::NEON_ST1x4_UPD";
|
|
case AArch64ISD::NEON_LD2DUP:
|
|
return "AArch64ISD::NEON_LD2DUP";
|
|
case AArch64ISD::NEON_LD3DUP:
|
|
return "AArch64ISD::NEON_LD3DUP";
|
|
case AArch64ISD::NEON_LD4DUP:
|
|
return "AArch64ISD::NEON_LD4DUP";
|
|
case AArch64ISD::NEON_LD2DUP_UPD:
|
|
return "AArch64ISD::NEON_LD2DUP_UPD";
|
|
case AArch64ISD::NEON_LD3DUP_UPD:
|
|
return "AArch64ISD::NEON_LD3DUP_UPD";
|
|
case AArch64ISD::NEON_LD4DUP_UPD:
|
|
return "AArch64ISD::NEON_LD4DUP_UPD";
|
|
case AArch64ISD::NEON_LD2LN_UPD:
|
|
return "AArch64ISD::NEON_LD2LN_UPD";
|
|
case AArch64ISD::NEON_LD3LN_UPD:
|
|
return "AArch64ISD::NEON_LD3LN_UPD";
|
|
case AArch64ISD::NEON_LD4LN_UPD:
|
|
return "AArch64ISD::NEON_LD4LN_UPD";
|
|
case AArch64ISD::NEON_ST2LN_UPD:
|
|
return "AArch64ISD::NEON_ST2LN_UPD";
|
|
case AArch64ISD::NEON_ST3LN_UPD:
|
|
return "AArch64ISD::NEON_ST3LN_UPD";
|
|
case AArch64ISD::NEON_ST4LN_UPD:
|
|
return "AArch64ISD::NEON_ST4LN_UPD";
|
|
case AArch64ISD::NEON_VEXTRACT:
|
|
return "AArch64ISD::NEON_VEXTRACT";
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static const MCPhysReg AArch64FPRArgRegs[] = {
|
|
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
|
|
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
|
|
};
|
|
static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
|
|
|
|
static const MCPhysReg AArch64ArgRegs[] = {
|
|
AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
|
|
AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
|
|
};
|
|
static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
|
|
|
|
static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
// Mark all remaining general purpose registers as allocated. We don't
|
|
// backtrack: if (for example) an i128 gets put on the stack, no subsequent
|
|
// i64 will go in registers (C.11).
|
|
for (unsigned i = 0; i < NumArgRegs; ++i)
|
|
State.AllocateReg(AArch64ArgRegs[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
#include "AArch64GenCallingConv.inc"
|
|
|
|
CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
|
|
|
|
switch(CC) {
|
|
default: llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::Fast:
|
|
case CallingConv::C:
|
|
return CC_A64_APCS;
|
|
}
|
|
}
|
|
|
|
void
|
|
AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
|
|
SDLoc DL, SDValue &Chain) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
AArch64MachineFunctionInfo *FuncInfo
|
|
= MF.getInfo<AArch64MachineFunctionInfo>();
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
|
|
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
|
|
NumArgRegs);
|
|
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
|
|
NumFPRArgRegs);
|
|
|
|
unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
|
|
int GPRIdx = 0;
|
|
if (GPRSaveSize != 0) {
|
|
GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
|
|
|
|
for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
|
|
MachinePointerInfo::getStack(i * 8),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
|
|
DAG.getConstant(8, getPointerTy()));
|
|
}
|
|
}
|
|
|
|
if (getSubtarget()->hasFPARMv8()) {
|
|
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
|
|
int FPRIdx = 0;
|
|
// According to the AArch64 Procedure Call Standard, section B.1/B.3, we
|
|
// can omit a register save area if we know we'll never use registers of
|
|
// that class.
|
|
if (FPRSaveSize != 0) {
|
|
FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
|
|
|
|
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
|
|
&AArch64::FPR128RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
|
|
MachinePointerInfo::getStack(i * 16),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
|
|
DAG.getConstant(16, getPointerTy()));
|
|
}
|
|
}
|
|
FuncInfo->setVariadicFPRIdx(FPRIdx);
|
|
FuncInfo->setVariadicFPRSize(FPRSaveSize);
|
|
}
|
|
|
|
unsigned StackOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), 8);
|
|
int StackIdx = MFI->CreateFixedObject(8, StackOffset, true);
|
|
|
|
FuncInfo->setVariadicStackIdx(StackIdx);
|
|
FuncInfo->setVariadicGPRIdx(GPRIdx);
|
|
FuncInfo->setVariadicGPRSize(GPRSaveSize);
|
|
|
|
if (!MemOps.empty()) {
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
}
|
|
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
AArch64MachineFunctionInfo *FuncInfo
|
|
= MF.getInfo<AArch64MachineFunctionInfo>();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
|
|
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
|
|
SDValue ArgValue;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
// Byval is used for small structs and HFAs in the PCS, but the system
|
|
// should work in a non-compliant manner for larger structs.
|
|
EVT PtrTy = getPointerTy();
|
|
int Size = Flags.getByValSize();
|
|
unsigned NumRegs = (Size + 7) / 8;
|
|
|
|
uint32_t BEAlign = 0;
|
|
if (Size < 8 && !getSubtarget()->isLittle())
|
|
BEAlign = 8-Size;
|
|
unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
|
|
VA.getLocMemOffset() + BEAlign,
|
|
false);
|
|
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
|
|
InVals.push_back(FrameIdxN);
|
|
|
|
continue;
|
|
} else if (VA.isRegLoc()) {
|
|
MVT RegVT = VA.getLocVT();
|
|
const TargetRegisterClass *RC = getRegClassFor(RegVT);
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
} else { // VA.isRegLoc()
|
|
assert(VA.isMemLoc());
|
|
|
|
int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
|
|
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::FPExt: {
|
|
unsigned DestSize = VA.getValVT().getSizeInBits();
|
|
unsigned DestSubReg;
|
|
|
|
switch (DestSize) {
|
|
case 8: DestSubReg = AArch64::sub_8; break;
|
|
case 16: DestSubReg = AArch64::sub_16; break;
|
|
case 32: DestSubReg = AArch64::sub_32; break;
|
|
case 64: DestSubReg = AArch64::sub_64; break;
|
|
default: llvm_unreachable("Unexpected argument promotion");
|
|
}
|
|
|
|
ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
|
|
VA.getValVT(), ArgValue,
|
|
DAG.getTargetConstant(DestSubReg, MVT::i32)),
|
|
0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
if (isVarArg)
|
|
SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
|
|
|
|
unsigned StackArgSize = CCInfo.getNextStackOffset();
|
|
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
|
|
// This is a non-standard ABI so by fiat I say we're allowed to make full
|
|
// use of the stack area to be popped, which must be aligned to 16 bytes in
|
|
// any case:
|
|
StackArgSize = RoundUpToAlignment(StackArgSize, 16);
|
|
|
|
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
|
|
// a multiple of 16.
|
|
FuncInfo->setArgumentStackToRestore(StackArgSize);
|
|
|
|
// This realignment carries over to the available bytes below. Our own
|
|
// callers will guarantee the space is free by giving an aligned value to
|
|
// CALLSEQ_START.
|
|
}
|
|
// Even if we're not expected to free up the space, it's useful to know how
|
|
// much is there while considering tail calls (because we can reuse it).
|
|
FuncInfo->setBytesInStackArgArea(StackArgSize);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
// CCValAssign - represent the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slots.
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
|
|
// Analyze outgoing return values.
|
|
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
|
|
// PCS: "If the type, T, of the result of a function is such that
|
|
// void func(T arg) would require that arg be passed as a value in a
|
|
// register (or set of registers) according to the rules in 5.4, then the
|
|
// result is returned in the same registers as would be used for such an
|
|
// argument.
|
|
//
|
|
// Otherwise, the caller shall reserve a block of memory of sufficient
|
|
// size and alignment to hold the result. The address of the memory block
|
|
// shall be passed as an additional argument to the function in x8."
|
|
//
|
|
// This is implemented in two places. The register-return values are dealt
|
|
// with here, more complex returns are passed as an sret parameter, which
|
|
// means we don't have to worry about it during actual return.
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
|
|
|
|
|
|
SDValue Arg = OutVals[i];
|
|
|
|
// There's no convenient note in the ABI about this as there is for normal
|
|
// arguments, but it says return values are passed in the same registers as
|
|
// an argument would be. I believe that includes the comments about
|
|
// unspecified higher bits, putting the burden of widening on the *caller*
|
|
// for return values.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::AExt:
|
|
// Floating-point values should only be extended when they're going into
|
|
// memory, which can't happen here so an integer extend is acceptable.
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, RetOps);
|
|
}
|
|
|
|
unsigned AArch64TargetLowering::getByValTypeAlignment(Type *Ty) const {
|
|
// This is a new backend. For anything more precise than this a FE should
|
|
// set an explicit alignment.
|
|
return 4;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
AArch64MachineFunctionInfo *FuncInfo
|
|
= MF.getInfo<AArch64MachineFunctionInfo>();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
|
|
bool IsSibCall = false;
|
|
|
|
if (IsTailCall) {
|
|
IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
|
|
Outs, OutVals, Ins, DAG);
|
|
|
|
if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
// A sibling call is one where we're under the usual C ABI and not planning
|
|
// to change that but can still do a tail call:
|
|
if (!TailCallOpt && IsTailCall)
|
|
IsSibCall = true;
|
|
}
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
|
|
|
|
// On AArch64 (and all other architectures I'm aware of) the most this has to
|
|
// do is adjust the stack pointer.
|
|
unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
|
|
if (IsSibCall) {
|
|
// Since we're not changing the ABI to make this a tail call, the memory
|
|
// operands are already available in the caller's incoming argument space.
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// FPDiff is the byte offset of the call's argument area from the callee's.
|
|
// Stores to callee stack arguments will be placed in FixedStackSlots offset
|
|
// by this amount for a tail call. In a sibling call it must be 0 because the
|
|
// caller will deallocate the entire stack and the callee still expects its
|
|
// arguments to begin at SP+0. Completely unused for non-tail calls.
|
|
int FPDiff = 0;
|
|
|
|
if (IsTailCall && !IsSibCall) {
|
|
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
|
|
|
|
// FPDiff will be negative if this tail call requires more space than we
|
|
// would automatically have in our incoming argument space. Positive if we
|
|
// can actually shrink the stack.
|
|
FPDiff = NumReusableBytes - NumBytes;
|
|
|
|
// The stack pointer must be 16-byte aligned at all times it's used for a
|
|
// memory operation, which in practice means at *all* times and in
|
|
// particular across call boundaries. Therefore our own arguments started at
|
|
// a 16-byte aligned SP and the delta applied for the tail call should
|
|
// satisfy the same constraint.
|
|
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
|
|
}
|
|
|
|
if (!IsSibCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
dl);
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
|
|
getPointerTy());
|
|
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
SDValue Arg = OutVals[i];
|
|
|
|
// Callee does the actual widening, so all extensions just use an implicit
|
|
// definition of the rest of the Loc. Aesthetically, this would be nicer as
|
|
// an ANY_EXTEND, but that isn't valid for floating-point types and this
|
|
// alternative works on integer types too.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::FPExt: {
|
|
unsigned SrcSize = VA.getValVT().getSizeInBits();
|
|
unsigned SrcSubReg;
|
|
|
|
switch (SrcSize) {
|
|
case 8: SrcSubReg = AArch64::sub_8; break;
|
|
case 16: SrcSubReg = AArch64::sub_16; break;
|
|
case 32: SrcSubReg = AArch64::sub_32; break;
|
|
case 64: SrcSubReg = AArch64::sub_64; break;
|
|
default: llvm_unreachable("Unexpected argument promotion");
|
|
}
|
|
|
|
Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
|
|
VA.getLocVT(),
|
|
DAG.getUNDEF(VA.getLocVT()),
|
|
Arg,
|
|
DAG.getTargetConstant(SrcSubReg, MVT::i32)),
|
|
0);
|
|
|
|
break;
|
|
}
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
// A normal register (sub-) argument. For now we just note it down because
|
|
// we want to copy things into registers as late as possible to avoid
|
|
// register-pressure (and possibly worse).
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
assert(VA.isMemLoc() && "unexpected argument location");
|
|
|
|
SDValue DstAddr;
|
|
MachinePointerInfo DstInfo;
|
|
if (IsTailCall) {
|
|
uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
|
|
VA.getLocVT().getSizeInBits();
|
|
OpSize = (OpSize + 7) / 8;
|
|
int32_t Offset = VA.getLocMemOffset() + FPDiff;
|
|
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
|
|
|
DstAddr = DAG.getFrameIndex(FI, getPointerTy());
|
|
DstInfo = MachinePointerInfo::getFixedStack(FI);
|
|
|
|
// Make sure any stack arguments overlapping with where we're storing are
|
|
// loaded before this eventual operation. Otherwise they'll be clobbered.
|
|
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
|
|
} else {
|
|
uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize()*8 :
|
|
VA.getLocVT().getSizeInBits();
|
|
OpSize = (OpSize + 7) / 8;
|
|
uint32_t BEAlign = 0;
|
|
if (OpSize < 8 && !getSubtarget()->isLittle())
|
|
BEAlign = 8-OpSize;
|
|
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + BEAlign);
|
|
|
|
DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
|
|
}
|
|
|
|
if (Flags.isByVal()) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
|
|
SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
|
|
Flags.getByValAlign(),
|
|
/*isVolatile = */ false,
|
|
/*alwaysInline = */ false,
|
|
DstInfo, MachinePointerInfo());
|
|
MemOpChains.push_back(Cpy);
|
|
} else {
|
|
// Normal stack argument, put it where it's needed.
|
|
SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
|
|
false, false, 0);
|
|
MemOpChains.push_back(Store);
|
|
}
|
|
}
|
|
|
|
// The loads and stores generated above shouldn't clash with each
|
|
// other. Combining them with this TokenFactor notes that fact for the rest of
|
|
// the backend.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
|
|
|
|
// Most of the rest of the instructions need to be glued together; we don't
|
|
// want assignments to actual registers used by a call to be rearranged by a
|
|
// well-meaning scheduler.
|
|
SDValue InFlag;
|
|
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// The linker is responsible for inserting veneers when necessary to put a
|
|
// function call destination in range, so we don't need to bother with a
|
|
// wrapper here.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
|
|
}
|
|
|
|
// We don't usually want to end the call-sequence here because we would tidy
|
|
// the frame up *after* the call, however in the ABI-changing tail-call case
|
|
// we've carefully laid out the parameters so that when sp is reset they'll be
|
|
// in the correct location.
|
|
if (IsTailCall && !IsSibCall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag, dl);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// We produce the following DAG scheme for the actual call instruction:
|
|
// (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
|
|
//
|
|
// Most arguments aren't going to be used and just keep the values live as
|
|
// far as LLVM is concerned. It's expected to be selected as simply "bl
|
|
// callee" (for a direct, non-tail call).
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
if (IsTailCall) {
|
|
// Each tail call may have to adjust the stack by a different amount, so
|
|
// this information must travel along with the operation for eventual
|
|
// consumption by emitEpilogue.
|
|
Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
|
|
}
|
|
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
|
|
// Add a register mask operand representing the call-preserved registers. This
|
|
// is used later in codegen to constrain register-allocation.
|
|
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
// If we needed glue, put it in as the last argument.
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
if (IsTailCall) {
|
|
return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, Ops);
|
|
}
|
|
|
|
Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Now we can reclaim the stack, just as well do it before working out where
|
|
// our return value is.
|
|
if (!IsSibCall) {
|
|
uint64_t CalleePopBytes
|
|
= DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(CalleePopBytes, true),
|
|
InFlag, dl);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
return LowerCallResult(Chain, InFlag, CallConv,
|
|
IsVarArg, Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
|
|
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
// Return values that are too big to fit into registers should use an sret
|
|
// pointer, so this can be a lot simpler than the main argument code.
|
|
assert(VA.isRegLoc() && "Memory locations not expected for call return");
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
|
|
InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::AExt:
|
|
// Floating-point arguments only get extended/truncated if they're going
|
|
// in memory, so using the integer operation is acceptable here.
|
|
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
bool
|
|
AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool IsVarArg,
|
|
bool IsCalleeStructRet,
|
|
bool IsCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
|
|
// For CallingConv::C this function knows whether the ABI needs
|
|
// changing. That's not true for other conventions so they will have to opt in
|
|
// manually.
|
|
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
|
|
return false;
|
|
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *CallerF = MF.getFunction();
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
// Byval parameters hand the function a pointer directly into the stack area
|
|
// we want to reuse during a tail call. Working around this *is* possible (see
|
|
// X86) but less efficient and uglier in LowerCall.
|
|
for (Function::const_arg_iterator i = CallerF->arg_begin(),
|
|
e = CallerF->arg_end(); i != e; ++i)
|
|
if (i->hasByValAttr())
|
|
return false;
|
|
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
|
|
if (IsTailCallConvention(CalleeCC) && CCMatch)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Now we search for cases where we can use a tail call without changing the
|
|
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
|
|
// concept.
|
|
|
|
// I want anyone implementing a new calling convention to think long and hard
|
|
// about this assert.
|
|
assert((!IsVarArg || CalleeCC == CallingConv::C)
|
|
&& "Unexpected variadic calling convention");
|
|
|
|
if (IsVarArg && !Outs.empty()) {
|
|
// At least two cases here: if caller is fastcc then we can't have any
|
|
// memory arguments (we'd be expected to clean up the stack afterwards). If
|
|
// caller is C then we could potentially use its argument area.
|
|
|
|
// FIXME: for now we take the most conservative of these in both cases:
|
|
// disallow all variadic memory operands.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
|
|
if (!ArgLocs[i].isRegLoc())
|
|
return false;
|
|
}
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs1, *DAG.getContext());
|
|
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs2, *DAG.getContext());
|
|
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Nothing more to check if the callee is taking no arguments
|
|
if (Outs.empty())
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
|
|
|
|
const AArch64MachineFunctionInfo *FuncInfo
|
|
= MF.getInfo<AArch64MachineFunctionInfo>();
|
|
|
|
// If the stack arguments for this call would fit into our own save area then
|
|
// the call can be made tail.
|
|
return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
|
|
}
|
|
|
|
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
|
|
bool TailCallOpt) const {
|
|
return CallCC == CallingConv::Fast && TailCallOpt;
|
|
}
|
|
|
|
bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
|
|
return CallCC == CallingConv::Fast;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
|
|
SelectionDAG &DAG,
|
|
MachineFrameInfo *MFI,
|
|
int ClobberedFI) const {
|
|
SmallVector<SDValue, 8> ArgChains;
|
|
int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
|
|
int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
|
|
|
|
// Include the original chain at the beginning of the list. When this is
|
|
// used by target LowerCall hooks, this helps legalize find the
|
|
// CALLSEQ_BEGIN node.
|
|
ArgChains.push_back(Chain);
|
|
|
|
// Add a chain value for each stack argument corresponding
|
|
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
|
|
UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
|
|
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
|
|
if (FI->getIndex() < 0) {
|
|
int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
|
|
int64_t InLastByte = InFirstByte;
|
|
InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
|
|
|
|
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
|
|
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
|
|
ArgChains.push_back(SDValue(L, 1));
|
|
}
|
|
|
|
// Build a tokenfactor for all the chains.
|
|
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
|
|
}
|
|
|
|
static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
case ISD::SETEQ: return A64CC::EQ;
|
|
case ISD::SETGT: return A64CC::GT;
|
|
case ISD::SETGE: return A64CC::GE;
|
|
case ISD::SETLT: return A64CC::LT;
|
|
case ISD::SETLE: return A64CC::LE;
|
|
case ISD::SETNE: return A64CC::NE;
|
|
case ISD::SETUGT: return A64CC::HI;
|
|
case ISD::SETUGE: return A64CC::HS;
|
|
case ISD::SETULT: return A64CC::LO;
|
|
case ISD::SETULE: return A64CC::LS;
|
|
default: llvm_unreachable("Unexpected condition code");
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
|
|
// icmp is implemented using adds/subs immediate, which take an unsigned
|
|
// 12-bit immediate, optionally shifted left by 12 bits.
|
|
|
|
// Symmetric by using adds/subs
|
|
if (Val < 0)
|
|
Val = -Val;
|
|
|
|
return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
|
|
ISD::CondCode CC, SDValue &A64cc,
|
|
SelectionDAG &DAG, SDLoc &dl) const {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
int64_t C = 0;
|
|
EVT VT = RHSC->getValueType(0);
|
|
bool knownInvalid = false;
|
|
|
|
// I'm not convinced the rest of LLVM handles these edge cases properly, but
|
|
// we can at least get it right.
|
|
if (isSignedIntSetCC(CC)) {
|
|
C = RHSC->getSExtValue();
|
|
} else if (RHSC->getZExtValue() > INT64_MAX) {
|
|
// A 64-bit constant not representable by a signed 64-bit integer is far
|
|
// too big to fit into a SUBS immediate anyway.
|
|
knownInvalid = true;
|
|
} else {
|
|
C = RHSC->getZExtValue();
|
|
}
|
|
|
|
if (!knownInvalid && !isLegalICmpImmediate(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if (isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
RHS = DAG.getConstant(C-1, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if (isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
RHS = DAG.getConstant(C-1, VT);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if (isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
RHS = DAG.getConstant(C+1, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if (isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
RHS = DAG.getConstant(C+1, VT);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
A64CC::CondCodes CondCode = IntCCToA64CC(CC);
|
|
A64cc = DAG.getConstant(CondCode, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
|
|
DAG.getCondCode(CC));
|
|
}
|
|
|
|
static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
|
|
A64CC::CondCodes &Alternative) {
|
|
A64CC::CondCodes CondCode = A64CC::Invalid;
|
|
Alternative = A64CC::Invalid;
|
|
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: CondCode = A64CC::EQ; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: CondCode = A64CC::GT; break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: CondCode = A64CC::GE; break;
|
|
case ISD::SETOLT: CondCode = A64CC::MI; break;
|
|
case ISD::SETOLE: CondCode = A64CC::LS; break;
|
|
case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
|
|
case ISD::SETO: CondCode = A64CC::VC; break;
|
|
case ISD::SETUO: CondCode = A64CC::VS; break;
|
|
case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
|
|
case ISD::SETUGT: CondCode = A64CC::HI; break;
|
|
case ISD::SETUGE: CondCode = A64CC::PL; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT: CondCode = A64CC::LT; break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE: CondCode = A64CC::LE; break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE: CondCode = A64CC::NE; break;
|
|
}
|
|
return CondCode;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
|
|
switch(getTargetMachine().getCodeModel()) {
|
|
case CodeModel::Small:
|
|
// The most efficient code is PC-relative anyway for the small memory model,
|
|
// so we don't need to worry about relocation model.
|
|
return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0,
|
|
AArch64II::MO_NO_FLAG),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0,
|
|
AArch64II::MO_LO12),
|
|
DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
|
|
case CodeModel::Large:
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
|
|
default:
|
|
llvm_unreachable("Only small and large code models supported now");
|
|
}
|
|
}
|
|
|
|
|
|
// (BRCOND chain, val, dest)
|
|
SDValue
|
|
AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue TheBit = Op.getOperand(1);
|
|
SDValue DestBB = Op.getOperand(2);
|
|
|
|
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
|
|
// that as the consumer we are responsible for ignoring rubbish in higher
|
|
// bits.
|
|
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
|
|
DAG.getConstant(0, TheBit.getValueType()),
|
|
DAG.getCondCode(ISD::SETNE));
|
|
|
|
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
|
|
A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
|
|
DestBB);
|
|
}
|
|
|
|
// (BR_CC chain, condcode, lhs, rhs, dest)
|
|
SDValue
|
|
AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue DestBB = Op.getOperand(4);
|
|
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
// f128 comparisons are lowered to runtime calls by a routine which sets
|
|
// LHS, RHS and CC appropriately for the rest of this function to continue.
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
SDValue A64cc;
|
|
|
|
// Integers are handled in a separate function because the combinations of
|
|
// immediates and tests can get hairy and we may want to fiddle things.
|
|
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
|
|
|
|
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
|
|
Chain, CmpOp, A64cc, DestBB);
|
|
}
|
|
|
|
// Note that some LLVM floating-point CondCodes can't be lowered to a single
|
|
// conditional branch, hence FPCCToA64CC can set a second test, where either
|
|
// passing is sufficient.
|
|
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
|
|
CondCode = FPCCToA64CC(CC, Alternative);
|
|
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
|
|
DAG.getCondCode(CC));
|
|
SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
|
|
Chain, SetCC, A64cc, DestBB);
|
|
|
|
if (Alternative != A64CC::Invalid) {
|
|
A64cc = DAG.getConstant(Alternative, MVT::i32);
|
|
A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
|
|
A64BR_CC, SetCC, A64cc, DestBB);
|
|
|
|
}
|
|
|
|
return A64BR_CC;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
|
|
RTLIB::Libcall Call) const {
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
|
|
EVT ArgVT = Op.getOperand(i).getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
}
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
|
|
|
|
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
|
|
|
|
// By default, the input chain to this libcall is the entry node of the
|
|
// function. If the libcall is going to be emitted as a tail call then
|
|
// isUsedByReturnOnly will change it to the right chain if the return
|
|
// node which is being folded has a non-entry input chain.
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
// isTailCall may be true since the callee does not reference caller stack
|
|
// frame. Check if it's in the right position.
|
|
SDValue TCChain = InChain;
|
|
bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
|
|
if (isTailCall)
|
|
InChain = TCChain;
|
|
|
|
TargetLowering::
|
|
CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
|
|
0, getLibcallCallingConv(Call), isTailCall,
|
|
/*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
|
|
Callee, Args, DAG, SDLoc(Op));
|
|
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
|
|
|
|
if (!CallInfo.second.getNode())
|
|
// It's a tailcall, return the chain (which is the DAG root).
|
|
return DAG.getRoot();
|
|
|
|
return CallInfo.first;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
SDValue SrcVal = Op.getOperand(0);
|
|
return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
|
|
/*isSigned*/ false, SDLoc(Op)).first;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128ToCall(Op, DAG, LC);
|
|
}
|
|
|
|
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSigned) {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Vec = Op.getOperand(0);
|
|
EVT OpVT = Vec.getValueType();
|
|
unsigned Opc = IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
|
|
|
|
if (VT.getVectorNumElements() == 1) {
|
|
assert(OpVT == MVT::v1f64 && "Unexpected vector type!");
|
|
if (VT.getSizeInBits() == OpVT.getSizeInBits())
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
if (VT.getSizeInBits() > OpVT.getSizeInBits()) {
|
|
assert(Vec.getValueType() == MVT::v2f32 && VT == MVT::v2i64 &&
|
|
"Unexpected vector type!");
|
|
Vec = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v2f64, Vec);
|
|
return DAG.getNode(Opc, dl, VT, Vec);
|
|
} else if (VT.getSizeInBits() < OpVT.getSizeInBits()) {
|
|
EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
OpVT.getVectorElementType().getSizeInBits());
|
|
CastVT =
|
|
EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
|
|
Vec = DAG.getNode(Opc, dl, CastVT, Vec);
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Vec);
|
|
}
|
|
return DAG.getNode(Opc, dl, VT, Vec);
|
|
}
|
|
|
|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
// We custom lower concat_vectors with 4, 8, or 16 operands that are all the
|
|
// same operand and of type v1* using the DUP instruction.
|
|
unsigned NumOps = Op->getNumOperands();
|
|
if (NumOps == 2) {
|
|
assert(Op.getValueType().getSizeInBits() == 128 && "unexpected concat");
|
|
return Op;
|
|
}
|
|
|
|
if (NumOps != 4 && NumOps != 8 && NumOps != 16)
|
|
return SDValue();
|
|
|
|
// Must be a single value for VDUP.
|
|
SDValue Op0 = Op.getOperand(0);
|
|
for (unsigned i = 1; i < NumOps; ++i) {
|
|
SDValue OpN = Op.getOperand(i);
|
|
if (Op0 != OpN)
|
|
return SDValue();
|
|
}
|
|
|
|
// Verify the value type.
|
|
EVT EltVT = Op0.getValueType();
|
|
switch (NumOps) {
|
|
default: llvm_unreachable("Unexpected number of operands");
|
|
case 4:
|
|
if (EltVT != MVT::v1i16 && EltVT != MVT::v1i32)
|
|
return SDValue();
|
|
break;
|
|
case 8:
|
|
if (EltVT != MVT::v1i8 && EltVT != MVT::v1i16)
|
|
return SDValue();
|
|
break;
|
|
case 16:
|
|
if (EltVT != MVT::v1i8)
|
|
return SDValue();
|
|
break;
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
// VDUP produces better code for constants.
|
|
if (Op0->getOpcode() == ISD::BUILD_VECTOR)
|
|
return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Op0->getOperand(0));
|
|
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, Op0,
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSigned) const {
|
|
if (Op.getValueType().isVector())
|
|
return LowerVectorFP_TO_INT(Op, DAG, IsSigned);
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
if (IsSigned)
|
|
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128ToCall(Op, DAG, LC);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(8, MVT::i64);
|
|
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
// Return X30, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
|
|
}
|
|
|
|
|
|
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned FrameReg = AArch64::X29;
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(getTargetMachine().getCodeModel() == CodeModel::Large);
|
|
assert(getTargetMachine().getRelocationModel() == Reloc::Static);
|
|
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc dl(Op);
|
|
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GN->getGlobal();
|
|
|
|
SDValue GlobalAddr = DAG.getNode(
|
|
AArch64ISD::WrapperLarge, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
|
|
|
|
if (GN->getOffset() != 0)
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
|
|
DAG.getConstant(GN->getOffset(), PtrVT));
|
|
|
|
return GlobalAddr;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(getTargetMachine().getCodeModel() == CodeModel::Small);
|
|
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc dl(Op);
|
|
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GN->getGlobal();
|
|
unsigned Alignment = GV->getAlignment();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
|
|
// Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
|
|
// to zero when they remain undefined. In PIC mode the GOT can take care of
|
|
// this, but in absolute mode we use a constant pool load.
|
|
SDValue PoolAddr;
|
|
PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
|
|
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
|
|
AArch64II::MO_NO_FLAG),
|
|
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
|
|
AArch64II::MO_LO12),
|
|
DAG.getConstant(8, MVT::i32));
|
|
SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
/*isVolatile=*/ false,
|
|
/*isNonTemporal=*/ true,
|
|
/*isInvariant=*/ true, 8);
|
|
if (GN->getOffset() != 0)
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
|
|
DAG.getConstant(GN->getOffset(), PtrVT));
|
|
|
|
return GlobalAddr;
|
|
}
|
|
|
|
if (Alignment == 0) {
|
|
const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
|
|
if (GVPtrTy->getElementType()->isSized()) {
|
|
Alignment
|
|
= getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
|
|
} else {
|
|
// Be conservative if we can't guess, not that it really matters:
|
|
// functions and labels aren't valid for loads, and the methods used to
|
|
// actually calculate an address work with any alignment.
|
|
Alignment = 1;
|
|
}
|
|
}
|
|
|
|
unsigned char HiFixup, LoFixup;
|
|
bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
|
|
|
|
if (UseGOT) {
|
|
HiFixup = AArch64II::MO_GOT;
|
|
LoFixup = AArch64II::MO_GOT_LO12;
|
|
Alignment = 8;
|
|
} else {
|
|
HiFixup = AArch64II::MO_NO_FLAG;
|
|
LoFixup = AArch64II::MO_LO12;
|
|
}
|
|
|
|
// AArch64's small model demands the following sequence:
|
|
// ADRP x0, somewhere
|
|
// ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
|
|
SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
HiFixup),
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
|
|
LoFixup),
|
|
DAG.getConstant(Alignment, MVT::i32));
|
|
|
|
if (UseGOT) {
|
|
GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
|
|
GlobalRef);
|
|
}
|
|
|
|
if (GN->getOffset() != 0)
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
|
|
DAG.getConstant(GN->getOffset(), PtrVT));
|
|
|
|
return GlobalRef;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// TableGen doesn't have easy access to the CodeModel or RelocationModel, so
|
|
// we make those distinctions here.
|
|
|
|
switch (getTargetMachine().getCodeModel()) {
|
|
case CodeModel::Small:
|
|
return LowerGlobalAddressELFSmall(Op, DAG);
|
|
case CodeModel::Large:
|
|
return LowerGlobalAddressELFLarge(Op, DAG);
|
|
default:
|
|
llvm_unreachable("Only small and large code models supported now");
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Op);
|
|
const Constant *C = CN->getConstVal();
|
|
|
|
switch(getTargetMachine().getCodeModel()) {
|
|
case CodeModel::Small:
|
|
// The most efficient code is PC-relative anyway for the small memory model,
|
|
// so we don't need to worry about relocation model.
|
|
return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0,
|
|
AArch64II::MO_NO_FLAG),
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0,
|
|
AArch64II::MO_LO12),
|
|
DAG.getConstant(CN->getAlignment(), MVT::i32));
|
|
case CodeModel::Large:
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
|
|
DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC));
|
|
default:
|
|
llvm_unreachable("Only small and large code models supported now");
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
|
|
SDValue DescAddr,
|
|
SDLoc DL,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
// The function we need to call is simply the first entry in the GOT for this
|
|
// descriptor, load it in preparation.
|
|
SDValue Func, Chain;
|
|
Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
|
|
DescAddr);
|
|
|
|
// The function takes only one argument: the address of the descriptor itself
|
|
// in X0.
|
|
SDValue Glue;
|
|
Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Finally, there's a special calling-convention which means that the lookup
|
|
// must preserve all registers (except X0, obviously).
|
|
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
|
|
const AArch64RegisterInfo *A64RI
|
|
= static_cast<const AArch64RegisterInfo *>(TRI);
|
|
const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
|
|
|
|
// We're now ready to populate the argument list, as with a normal call:
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Func);
|
|
Ops.push_back(SymAddr);
|
|
Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
Ops.push_back(Glue);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, Ops);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
|
|
// back to the generic handling code.
|
|
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(getSubtarget()->isTargetELF() &&
|
|
"TLS not implemented for non-ELF targets");
|
|
assert(getTargetMachine().getCodeModel() == CodeModel::Small
|
|
&& "TLS only supported in small memory model");
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
|
|
|
|
SDValue TPOff;
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
|
|
|
|
if (Model == TLSModel::InitialExec) {
|
|
TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
AArch64II::MO_GOTTPREL),
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
AArch64II::MO_GOTTPREL_LO12),
|
|
DAG.getConstant(8, MVT::i32));
|
|
TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
|
|
TPOff);
|
|
} else if (Model == TLSModel::LocalExec) {
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_TPREL_G1);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_TPREL_G0_NC);
|
|
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
|
|
DAG.getTargetConstant(1, MVT::i32)), 0);
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
|
|
TPOff, LoVar,
|
|
DAG.getTargetConstant(0, MVT::i32)), 0);
|
|
} else if (Model == TLSModel::GeneralDynamic) {
|
|
// Accesses used in this sequence go via the TLS descriptor which lives in
|
|
// the GOT. Prepare an address we can use to handle this.
|
|
SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLSDESC);
|
|
SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLSDESC_LO12);
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
HiDesc, LoDesc,
|
|
DAG.getConstant(8, MVT::i32));
|
|
SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
|
|
|
|
TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
|
|
} else if (Model == TLSModel::LocalDynamic) {
|
|
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
|
|
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
|
|
// the beginning of the module's TLS region, followed by a DTPREL offset
|
|
// calculation.
|
|
|
|
// These accesses will need deduplicating if there's more than one.
|
|
AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
|
|
.getInfo<AArch64MachineFunctionInfo>();
|
|
MFI->incNumLocalDynamicTLSAccesses();
|
|
|
|
|
|
// Get the location of _TLS_MODULE_BASE_:
|
|
SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
|
|
AArch64II::MO_TLSDESC);
|
|
SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
|
|
AArch64II::MO_TLSDESC_LO12);
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
HiDesc, LoDesc,
|
|
DAG.getConstant(8, MVT::i32));
|
|
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
|
|
|
|
ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
|
|
|
|
// Get the variable's offset from _TLS_MODULE_BASE_
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_DTPREL_G1);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_DTPREL_G0_NC);
|
|
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
|
|
DAG.getTargetConstant(0, MVT::i32)), 0);
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
|
|
TPOff, LoVar,
|
|
DAG.getTargetConstant(0, MVT::i32)), 0);
|
|
} else
|
|
llvm_unreachable("Unsupported TLS access model");
|
|
|
|
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
|
|
}
|
|
|
|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSigned) {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Vec = Op.getOperand(0);
|
|
unsigned Opc = IsSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
|
|
|
|
if (VT.getVectorNumElements() == 1) {
|
|
assert(VT == MVT::v1f64 && "Unexpected vector type!");
|
|
if (VT.getSizeInBits() == Vec.getValueSizeInBits())
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
if (VT.getSizeInBits() < Vec.getValueSizeInBits()) {
|
|
assert(Vec.getValueType() == MVT::v2i64 && VT == MVT::v2f32 &&
|
|
"Unexpected vector type!");
|
|
Vec = DAG.getNode(Opc, dl, MVT::v2f64, Vec);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, VT, Vec, DAG.getIntPtrConstant(0));
|
|
} else if (VT.getSizeInBits() > Vec.getValueSizeInBits()) {
|
|
unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
EVT CastVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
VT.getVectorElementType().getSizeInBits());
|
|
CastVT =
|
|
EVT::getVectorVT(*DAG.getContext(), CastVT, VT.getVectorNumElements());
|
|
Vec = DAG.getNode(CastOpc, dl, CastVT, Vec);
|
|
}
|
|
|
|
return DAG.getNode(Opc, dl, VT, Vec);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSigned) const {
|
|
if (Op.getValueType().isVector())
|
|
return LowerVectorINT_TO_FP(Op, DAG, IsSigned);
|
|
if (Op.getValueType() != MVT::f128) {
|
|
// Legal for everything except f128.
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
if (IsSigned)
|
|
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128ToCall(Op, DAG, LC);
|
|
}
|
|
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
SDLoc dl(JT);
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
// When compiling PIC, jump tables get put in the code section so a static
|
|
// relocation-style is acceptable for both cases.
|
|
switch (getTargetMachine().getCodeModel()) {
|
|
case CodeModel::Small:
|
|
return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
AArch64II::MO_LO12),
|
|
DAG.getConstant(1, MVT::i32));
|
|
case CodeModel::Large:
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, dl, PtrVT,
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
|
|
default:
|
|
llvm_unreachable("Only small and large code models supported now");
|
|
}
|
|
}
|
|
|
|
// (SELECT testbit, iftrue, iffalse)
|
|
SDValue
|
|
AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue TheBit = Op.getOperand(0);
|
|
SDValue IfTrue = Op.getOperand(1);
|
|
SDValue IfFalse = Op.getOperand(2);
|
|
|
|
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
|
|
// that as the consumer we are responsible for ignoring rubbish in higher
|
|
// bits.
|
|
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
|
|
DAG.getConstant(0, TheBit.getValueType()),
|
|
DAG.getCondCode(ISD::SETNE));
|
|
|
|
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
|
|
A64CMP, IfTrue, IfFalse,
|
|
DAG.getConstant(A64CC::NE, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
EVT VT = Op.getValueType();
|
|
bool Invert = false;
|
|
SDValue Op0, Op1;
|
|
unsigned Opcode;
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
|
|
// Attempt to use Vector Integer Compare Mask Test instruction.
|
|
// TST = icmp ne (and (op0, op1), zero).
|
|
if (CC == ISD::SETNE) {
|
|
if (((LHS.getOpcode() == ISD::AND) &&
|
|
ISD::isBuildVectorAllZeros(RHS.getNode())) ||
|
|
((RHS.getOpcode() == ISD::AND) &&
|
|
ISD::isBuildVectorAllZeros(LHS.getNode()))) {
|
|
|
|
SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
|
|
SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
|
|
SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
|
|
return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
|
|
}
|
|
}
|
|
|
|
// Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
|
|
// Note: Compare against Zero does not support unsigned predicates.
|
|
if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
|
|
ISD::isBuildVectorAllZeros(LHS.getNode())) &&
|
|
!isUnsignedIntSetCC(CC)) {
|
|
|
|
// If LHS is the zero value, swap operands and CondCode.
|
|
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
|
|
CC = getSetCCSwappedOperands(CC);
|
|
Op0 = RHS;
|
|
} else
|
|
Op0 = LHS;
|
|
|
|
// Ensure valid CondCode for Compare Mask against Zero instruction:
|
|
// EQ, GE, GT, LE, LT.
|
|
if (ISD::SETNE == CC) {
|
|
Invert = true;
|
|
CC = ISD::SETEQ;
|
|
}
|
|
|
|
// Using constant type to differentiate integer and FP compares with zero.
|
|
Op1 = DAG.getConstant(0, MVT::i32);
|
|
Opcode = AArch64ISD::NEON_CMPZ;
|
|
|
|
} else {
|
|
// Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
|
|
// Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
|
|
bool Swap = false;
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Illegal integer comparison.");
|
|
case ISD::SETEQ:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
break;
|
|
case ISD::SETNE:
|
|
Invert = true;
|
|
CC = ISD::SETEQ;
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
Swap = true;
|
|
CC = getSetCCSwappedOperands(CC);
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(LHS, RHS);
|
|
|
|
Opcode = AArch64ISD::NEON_CMP;
|
|
Op0 = LHS;
|
|
Op1 = RHS;
|
|
}
|
|
|
|
// Generate Compare Mask instr or Compare Mask against Zero instr.
|
|
SDValue NeonCmp =
|
|
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
|
|
|
|
if (Invert)
|
|
NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
|
|
|
|
return NeonCmp;
|
|
}
|
|
|
|
// Now handle Floating Point cases.
|
|
// Attempt to use Vector Floating Point Compare Mask against Zero instruction.
|
|
if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
|
|
ISD::isBuildVectorAllZeros(LHS.getNode())) {
|
|
|
|
// If LHS is the zero value, swap operands and CondCode.
|
|
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
|
|
CC = getSetCCSwappedOperands(CC);
|
|
Op0 = RHS;
|
|
} else
|
|
Op0 = LHS;
|
|
|
|
// Using constant type to differentiate integer and FP compares with zero.
|
|
Op1 = DAG.getConstantFP(0, MVT::f32);
|
|
Opcode = AArch64ISD::NEON_CMPZ;
|
|
} else {
|
|
// Attempt to use Vector Floating Point Compare Mask instruction.
|
|
Op0 = LHS;
|
|
Op1 = RHS;
|
|
Opcode = AArch64ISD::NEON_CMP;
|
|
}
|
|
|
|
SDValue NeonCmpAlt;
|
|
// Some register compares have to be implemented with swapped CC and operands,
|
|
// e.g.: OLT implemented as OGT with swapped operands.
|
|
bool SwapIfRegArgs = false;
|
|
|
|
// Ensure valid CondCode for FP Compare Mask against Zero instruction:
|
|
// EQ, GE, GT, LE, LT.
|
|
// And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Illegal FP comparison");
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE:
|
|
Invert = true; // Fallthrough
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ:
|
|
CC = ISD::SETEQ;
|
|
break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT:
|
|
CC = ISD::SETLT;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT:
|
|
CC = ISD::SETGT;
|
|
break;
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE:
|
|
CC = ISD::SETLE;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE:
|
|
CC = ISD::SETGE;
|
|
break;
|
|
case ISD::SETUGE:
|
|
Invert = true;
|
|
CC = ISD::SETLT;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
case ISD::SETULE:
|
|
Invert = true;
|
|
CC = ISD::SETGT;
|
|
break;
|
|
case ISD::SETUGT:
|
|
Invert = true;
|
|
CC = ISD::SETLE;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
case ISD::SETULT:
|
|
Invert = true;
|
|
CC = ISD::SETGE;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
Invert = true; // Fallthrough
|
|
case ISD::SETONE:
|
|
// Expand this to (OGT |OLT).
|
|
NeonCmpAlt =
|
|
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
|
|
CC = ISD::SETLT;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
case ISD::SETUO:
|
|
Invert = true; // Fallthrough
|
|
case ISD::SETO:
|
|
// Expand this to (OGE | OLT).
|
|
NeonCmpAlt =
|
|
DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
|
|
CC = ISD::SETLT;
|
|
SwapIfRegArgs = true;
|
|
break;
|
|
}
|
|
|
|
if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
|
|
CC = getSetCCSwappedOperands(CC);
|
|
std::swap(Op0, Op1);
|
|
}
|
|
|
|
// Generate FP Compare Mask instr or FP Compare Mask against Zero instr
|
|
SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
|
|
|
|
if (NeonCmpAlt.getNode())
|
|
NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
|
|
|
|
if (Invert)
|
|
NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
|
|
|
|
return NeonCmp;
|
|
}
|
|
|
|
// (SETCC lhs, rhs, condcode)
|
|
SDValue
|
|
AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT.isVector())
|
|
return LowerVectorSETCC(Op, DAG);
|
|
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
// f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
|
|
// for the rest of the function (some i32 or i64 values).
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, use it.
|
|
if (!RHS.getNode()) {
|
|
assert(LHS.getValueType() == Op.getValueType() &&
|
|
"Unexpected setcc expansion!");
|
|
return LHS;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
SDValue A64cc;
|
|
|
|
// Integers are handled in a separate function because the combinations of
|
|
// immediates and tests can get hairy and we may want to fiddle things.
|
|
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
|
|
|
|
return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
|
|
CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
|
|
A64cc);
|
|
}
|
|
|
|
// Note that some LLVM floating-point CondCodes can't be lowered to a single
|
|
// conditional branch, hence FPCCToA64CC can set a second test, where either
|
|
// passing is sufficient.
|
|
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
|
|
CondCode = FPCCToA64CC(CC, Alternative);
|
|
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
|
|
DAG.getCondCode(CC));
|
|
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
|
|
CmpOp, DAG.getConstant(1, VT),
|
|
DAG.getConstant(0, VT), A64cc);
|
|
|
|
if (Alternative != A64CC::Invalid) {
|
|
A64cc = DAG.getConstant(Alternative, MVT::i32);
|
|
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
|
|
DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
|
|
}
|
|
|
|
return A64SELECT_CC;
|
|
}
|
|
|
|
static SDValue LowerVectorSELECT_CC(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc dl(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue IfTrue = Op.getOperand(2);
|
|
SDValue IfFalse = Op.getOperand(3);
|
|
EVT IfTrueVT = IfTrue.getValueType();
|
|
EVT CondVT = IfTrueVT.changeVectorElementTypeToInteger();
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
// If LHS & RHS are floating point and IfTrue & IfFalse are vectors, we will
|
|
// use NEON compare.
|
|
if ((LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)) {
|
|
EVT EltVT = LHS.getValueType();
|
|
unsigned EltNum = 128 / EltVT.getSizeInBits();
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), EltVT, EltNum);
|
|
unsigned SubConstant =
|
|
(LHS.getValueType() == MVT::f32) ? AArch64::sub_32 :AArch64::sub_64;
|
|
EVT CEltT = (LHS.getValueType() == MVT::f32) ? MVT::i32 : MVT::i64;
|
|
EVT CVT = EVT::getVectorVT(*DAG.getContext(), CEltT, EltNum);
|
|
|
|
LHS
|
|
= SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
|
|
VT, DAG.getTargetConstant(0, MVT::i32), LHS,
|
|
DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
|
|
RHS
|
|
= SDValue(DAG.getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
|
|
VT, DAG.getTargetConstant(0, MVT::i32), RHS,
|
|
DAG.getTargetConstant(SubConstant, MVT::i32)), 0);
|
|
|
|
SDValue VSetCC = DAG.getSetCC(dl, CVT, LHS, RHS, CC);
|
|
SDValue ResCC = LowerVectorSETCC(VSetCC, DAG);
|
|
if (CEltT.getSizeInBits() < IfTrueVT.getSizeInBits()) {
|
|
EVT DUPVT =
|
|
EVT::getVectorVT(*DAG.getContext(), CEltT,
|
|
IfTrueVT.getSizeInBits() / CEltT.getSizeInBits());
|
|
ResCC = DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, DUPVT, ResCC,
|
|
DAG.getConstant(0, MVT::i64, false));
|
|
|
|
ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
|
|
} else {
|
|
// FIXME: If IfTrue & IfFalse hold v1i8, v1i16 or v1i32, this function
|
|
// can't handle them and will hit this assert.
|
|
assert(CEltT.getSizeInBits() == IfTrueVT.getSizeInBits() &&
|
|
"Vector of IfTrue & IfFalse is too small.");
|
|
|
|
unsigned ExEltNum =
|
|
EltNum * IfTrueVT.getSizeInBits() / ResCC.getValueSizeInBits();
|
|
EVT ExVT = EVT::getVectorVT(*DAG.getContext(), CEltT, ExEltNum);
|
|
ResCC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ExVT, ResCC,
|
|
DAG.getConstant(0, MVT::i64, false));
|
|
ResCC = DAG.getNode(ISD::BITCAST, dl, CondVT, ResCC);
|
|
}
|
|
SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
|
|
ResCC, IfTrue, IfFalse);
|
|
return VSelect;
|
|
}
|
|
|
|
// Here we handle the case that LHS & RHS are integer and IfTrue & IfFalse are
|
|
// vectors.
|
|
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
|
|
CondCode = FPCCToA64CC(CC, Alternative);
|
|
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
|
|
DAG.getCondCode(CC));
|
|
EVT SEVT = MVT::i32;
|
|
if (IfTrue.getValueType().getVectorElementType().getSizeInBits() > 32)
|
|
SEVT = MVT::i64;
|
|
SDValue AllOne = DAG.getConstant(-1, SEVT);
|
|
SDValue AllZero = DAG.getConstant(0, SEVT);
|
|
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, SEVT, SetCC,
|
|
AllOne, AllZero, A64cc);
|
|
|
|
if (Alternative != A64CC::Invalid) {
|
|
A64cc = DAG.getConstant(Alternative, MVT::i32);
|
|
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
|
|
SetCC, AllOne, A64SELECT_CC, A64cc);
|
|
}
|
|
SDValue VDup;
|
|
if (IfTrue.getValueType().getVectorNumElements() == 1)
|
|
VDup = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, CondVT, A64SELECT_CC);
|
|
else
|
|
VDup = DAG.getNode(AArch64ISD::NEON_VDUP, dl, CondVT, A64SELECT_CC);
|
|
SDValue VSelect = DAG.getNode(ISD::VSELECT, dl, IfTrue.getValueType(),
|
|
VDup, IfTrue, IfFalse);
|
|
return VSelect;
|
|
}
|
|
|
|
// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
|
|
SDValue
|
|
AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue IfTrue = Op.getOperand(2);
|
|
SDValue IfFalse = Op.getOperand(3);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
|
|
if (IfTrue.getValueType().isVector())
|
|
return LowerVectorSELECT_CC(Op, DAG);
|
|
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
// f128 comparisons are lowered to libcalls, but slot in nicely here
|
|
// afterwards.
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
SDValue A64cc;
|
|
|
|
// Integers are handled in a separate function because the combinations of
|
|
// immediates and tests can get hairy and we may want to fiddle things.
|
|
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
|
|
|
|
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), CmpOp,
|
|
IfTrue, IfFalse, A64cc);
|
|
}
|
|
|
|
// Note that some LLVM floating-point CondCodes can't be lowered to a single
|
|
// conditional branch, hence FPCCToA64CC can set a second test, where either
|
|
// passing is sufficient.
|
|
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
|
|
CondCode = FPCCToA64CC(CC, Alternative);
|
|
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
|
|
DAG.getCondCode(CC));
|
|
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
|
|
Op.getValueType(),
|
|
SetCC, IfTrue, IfFalse, A64cc);
|
|
|
|
if (Alternative != A64CC::Invalid) {
|
|
A64cc = DAG.getConstant(Alternative, MVT::i32);
|
|
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
|
|
SetCC, IfTrue, A64SELECT_CC, A64cc);
|
|
|
|
}
|
|
|
|
return A64SELECT_CC;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
|
|
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
|
|
// We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
|
|
// rather than just 8.
|
|
return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
|
|
Op.getOperand(1), Op.getOperand(2),
|
|
DAG.getConstant(32, MVT::i32), 8, false, false,
|
|
MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
// The layout of the va_list struct is specified in the AArch64 Procedure Call
|
|
// Standard, section B.3.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
AArch64MachineFunctionInfo *FuncInfo
|
|
= MF.getInfo<AArch64MachineFunctionInfo>();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue VAList = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
SmallVector<SDValue, 4> MemOps;
|
|
|
|
// void *__stack at offset 0
|
|
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
|
|
getPointerTy());
|
|
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
|
|
MachinePointerInfo(SV), false, false, 0));
|
|
|
|
// void *__gr_top at offset 8
|
|
int GPRSize = FuncInfo->getVariadicGPRSize();
|
|
if (GPRSize > 0) {
|
|
SDValue GRTop, GRTopAddr;
|
|
|
|
GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(8, getPointerTy()));
|
|
|
|
GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
|
|
GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
|
|
DAG.getConstant(GPRSize, getPointerTy()));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
|
|
MachinePointerInfo(SV, 8),
|
|
false, false, 0));
|
|
}
|
|
|
|
// void *__vr_top at offset 16
|
|
int FPRSize = FuncInfo->getVariadicFPRSize();
|
|
if (FPRSize > 0) {
|
|
SDValue VRTop, VRTopAddr;
|
|
VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(16, getPointerTy()));
|
|
|
|
VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
|
|
VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
|
|
DAG.getConstant(FPRSize, getPointerTy()));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
|
|
MachinePointerInfo(SV, 16),
|
|
false, false, 0));
|
|
}
|
|
|
|
// int __gr_offs at offset 24
|
|
SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(24, getPointerTy()));
|
|
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
|
|
GROffsAddr, MachinePointerInfo(SV, 24),
|
|
false, false, 0));
|
|
|
|
// int __vr_offs at offset 28
|
|
SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(28, getPointerTy()));
|
|
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
|
|
VROffsAddr, MachinePointerInfo(SV, 28),
|
|
false, false, 0));
|
|
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
|
|
case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
|
|
case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
|
|
case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
|
|
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
|
|
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
|
|
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
|
|
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
|
|
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
|
|
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::SETCC: return LowerSETCC(Op, DAG);
|
|
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Check if the specified splat value corresponds to a valid vector constant
|
|
/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If
|
|
/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
|
|
/// values.
|
|
static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
|
|
unsigned SplatBitSize, SelectionDAG &DAG,
|
|
bool is128Bits, NeonModImmType type, EVT &VT,
|
|
unsigned &Imm, unsigned &OpCmode) {
|
|
switch (SplatBitSize) {
|
|
default:
|
|
llvm_unreachable("unexpected size for isNeonModifiedImm");
|
|
case 8: {
|
|
if (type != Neon_Mov_Imm)
|
|
return false;
|
|
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
|
|
// Neon movi per byte: Op=0, Cmode=1110.
|
|
OpCmode = 0xe;
|
|
Imm = SplatBits;
|
|
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
|
|
break;
|
|
}
|
|
case 16: {
|
|
// Neon move inst per halfword
|
|
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x00nn is 0x00nn LSL 0
|
|
// movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
|
|
// bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001
|
|
// Op=x, Cmode=100y
|
|
Imm = SplatBits;
|
|
OpCmode = 0x8;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0xnn00 is 0x00nn LSL 8
|
|
// movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
|
|
// bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011
|
|
// Op=x, Cmode=101x
|
|
Imm = SplatBits >> 8;
|
|
OpCmode = 0xa;
|
|
break;
|
|
}
|
|
// can't handle any other
|
|
return false;
|
|
}
|
|
|
|
case 32: {
|
|
// First the LSL variants (MSL is unusable by some interested instructions).
|
|
|
|
// Neon move instr per word, shift zeros
|
|
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x000000nn is 0x000000nn LSL 0
|
|
// movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
|
|
// bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001
|
|
// Op=x, Cmode=000x
|
|
Imm = SplatBits;
|
|
OpCmode = 0;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0x0000nn00 is 0x000000nn LSL 8
|
|
// movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010
|
|
// bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011
|
|
// Op=x, Cmode=001x
|
|
Imm = SplatBits >> 8;
|
|
OpCmode = 0x2;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff0000) == 0) {
|
|
// Value = 0x00nn0000 is 0x000000nn LSL 16
|
|
// movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
|
|
// bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101
|
|
// Op=x, Cmode=010x
|
|
Imm = SplatBits >> 16;
|
|
OpCmode = 0x4;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff000000) == 0) {
|
|
// Value = 0xnn000000 is 0x000000nn LSL 24
|
|
// movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
|
|
// bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111
|
|
// Op=x, Cmode=011x
|
|
Imm = SplatBits >> 24;
|
|
OpCmode = 0x6;
|
|
break;
|
|
}
|
|
|
|
// Now the MSL immediates.
|
|
|
|
// Neon move instr per word, shift ones
|
|
if ((SplatBits & ~0xffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xff) == 0xff) {
|
|
// Value = 0x0000nnff is 0x000000nn MSL 8
|
|
// movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
|
|
// Op=x, Cmode=1100
|
|
Imm = SplatBits >> 8;
|
|
OpCmode = 0xc;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xffffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
|
|
// Value = 0x00nnffff is 0x000000nn MSL 16
|
|
// movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
|
|
// Op=x, Cmode=1101
|
|
Imm = SplatBits >> 16;
|
|
OpCmode = 0xd;
|
|
break;
|
|
}
|
|
// can't handle any other
|
|
return false;
|
|
}
|
|
|
|
case 64: {
|
|
if (type != Neon_Mov_Imm)
|
|
return false;
|
|
// Neon move instr bytemask, where each byte is either 0x00 or 0xff.
|
|
// movi Op=1, Cmode=1110.
|
|
OpCmode = 0x1e;
|
|
uint64_t BitMask = 0xff;
|
|
uint64_t Val = 0;
|
|
unsigned ImmMask = 1;
|
|
Imm = 0;
|
|
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
|
|
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
|
|
Val |= BitMask;
|
|
Imm |= ImmMask;
|
|
} else if ((SplatBits & BitMask) != 0) {
|
|
return false;
|
|
}
|
|
BitMask <<= 8;
|
|
ImmMask <<= 1;
|
|
}
|
|
SplatBits = Val;
|
|
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue PerformANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// We're looking for an SRA/SHL pair which form an SBFX.
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
uint64_t TruncMask = N->getConstantOperandVal(1);
|
|
if (!isMask_64(TruncMask))
|
|
return SDValue();
|
|
|
|
uint64_t Width = CountPopulation_64(TruncMask);
|
|
SDValue Shift = N->getOperand(0);
|
|
|
|
if (Shift.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
|
|
return SDValue();
|
|
uint64_t LSB = Shift->getConstantOperandVal(1);
|
|
|
|
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
|
|
DAG.getConstant(LSB, MVT::i64),
|
|
DAG.getConstant(LSB + Width - 1, MVT::i64));
|
|
}
|
|
|
|
/// For a true bitfield insert, the bits getting into that contiguous mask
|
|
/// should come from the low part of an existing value: they must be formed from
|
|
/// a compatible SHL operation (unless they're already low). This function
|
|
/// checks that condition and returns the least-significant bit that's
|
|
/// intended. If the operation not a field preparation, -1 is returned.
|
|
static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
|
|
SDValue &MaskedVal, uint64_t Mask) {
|
|
if (!isShiftedMask_64(Mask))
|
|
return -1;
|
|
|
|
// Now we need to alter MaskedVal so that it is an appropriate input for a BFI
|
|
// instruction. BFI will do a left-shift by LSB before applying the mask we've
|
|
// spotted, so in general we should pre-emptively "undo" that by making sure
|
|
// the incoming bits have had a right-shift applied to them.
|
|
//
|
|
// This right shift, however, will combine with existing left/right shifts. In
|
|
// the simplest case of a completely straight bitfield operation, it will be
|
|
// expected to completely cancel out with an existing SHL. More complicated
|
|
// cases (e.g. bitfield to bitfield copy) may still need a real shift before
|
|
// the BFI.
|
|
|
|
uint64_t LSB = countTrailingZeros(Mask);
|
|
int64_t ShiftRightRequired = LSB;
|
|
if (MaskedVal.getOpcode() == ISD::SHL &&
|
|
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
|
|
ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
|
|
MaskedVal = MaskedVal.getOperand(0);
|
|
} else if (MaskedVal.getOpcode() == ISD::SRL &&
|
|
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
|
|
ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
|
|
MaskedVal = MaskedVal.getOperand(0);
|
|
}
|
|
|
|
if (ShiftRightRequired > 0)
|
|
MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
|
|
DAG.getConstant(ShiftRightRequired, MVT::i64));
|
|
else if (ShiftRightRequired < 0) {
|
|
// We could actually end up with a residual left shift, for example with
|
|
// "struc.bitfield = val << 1".
|
|
MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
|
|
DAG.getConstant(-ShiftRightRequired, MVT::i64));
|
|
}
|
|
|
|
return LSB;
|
|
}
|
|
|
|
/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
|
|
/// a mask and an extension. Returns true if a BFI was found and provides
|
|
/// information on its surroundings.
|
|
static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
|
|
bool &Extended) {
|
|
Extended = false;
|
|
if (N.getOpcode() == ISD::ZERO_EXTEND) {
|
|
Extended = true;
|
|
N = N.getOperand(0);
|
|
}
|
|
|
|
if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
|
|
Mask = N->getConstantOperandVal(1);
|
|
N = N.getOperand(0);
|
|
} else {
|
|
// Mask is the whole width.
|
|
Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
|
|
}
|
|
|
|
if (N.getOpcode() == AArch64ISD::BFI) {
|
|
BFI = N;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
|
|
/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
|
|
/// can often be further combined with a larger mask. Ultimately, we want mask
|
|
/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
|
|
static SDValue tryCombineToBFI(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(N->getOpcode() == ISD::OR && "Unexpected root");
|
|
|
|
// We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
|
|
// abandon the effort.
|
|
SDValue LHS = N->getOperand(0);
|
|
if (LHS.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
uint64_t LHSMask;
|
|
if (isa<ConstantSDNode>(LHS.getOperand(1)))
|
|
LHSMask = LHS->getConstantOperandVal(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
|
|
// is or abandon the effort.
|
|
SDValue RHS = N->getOperand(1);
|
|
if (RHS.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
uint64_t RHSMask;
|
|
if (isa<ConstantSDNode>(RHS.getOperand(1)))
|
|
RHSMask = RHS->getConstantOperandVal(1);
|
|
else
|
|
return SDValue();
|
|
|
|
// Can't do anything if the masks are incompatible.
|
|
if (LHSMask & RHSMask)
|
|
return SDValue();
|
|
|
|
// Now we need one of the masks to be a contiguous field. Without loss of
|
|
// generality that should be the RHS one.
|
|
SDValue Bitfield = LHS.getOperand(0);
|
|
if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
|
|
// We know that LHS is a candidate new value, and RHS isn't already a better
|
|
// one.
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSMask, RHSMask);
|
|
}
|
|
|
|
// We've done our best to put the right operands in the right places, all we
|
|
// can do now is check whether a BFI exists.
|
|
Bitfield = RHS.getOperand(0);
|
|
int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
|
|
if (LSB == -1)
|
|
return SDValue();
|
|
|
|
uint32_t Width = CountPopulation_64(RHSMask);
|
|
assert(Width && "Expected non-zero bitfield width");
|
|
|
|
SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
|
|
LHS.getOperand(0), Bitfield,
|
|
DAG.getConstant(LSB, MVT::i64),
|
|
DAG.getConstant(Width, MVT::i64));
|
|
|
|
// Mask is trivial
|
|
if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
|
|
return BFI;
|
|
|
|
return DAG.getNode(ISD::AND, DL, VT, BFI,
|
|
DAG.getConstant(LHSMask | RHSMask, VT));
|
|
}
|
|
|
|
/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
|
|
/// original input. This is surprisingly common because SROA splits things up
|
|
/// into i8 chunks, so the originally detected MaskedBFI may actually only act
|
|
/// on the low (say) byte of a word. This is then orred into the rest of the
|
|
/// word afterwards.
|
|
///
|
|
/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
|
|
///
|
|
/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
|
|
/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
|
|
/// involved.
|
|
static SDValue tryCombineToLargerBFI(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// First job is to hunt for a MaskedBFI on either the left or right. Swap
|
|
// operands if it's actually on the right.
|
|
SDValue BFI;
|
|
SDValue PossExtraMask;
|
|
uint64_t ExistingMask = 0;
|
|
bool Extended = false;
|
|
if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
|
|
PossExtraMask = N->getOperand(1);
|
|
else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
|
|
PossExtraMask = N->getOperand(0);
|
|
else
|
|
return SDValue();
|
|
|
|
// We can only combine a BFI with another compatible mask.
|
|
if (PossExtraMask.getOpcode() != ISD::AND ||
|
|
!isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
|
|
return SDValue();
|
|
|
|
uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
|
|
|
|
// Masks must be compatible.
|
|
if (ExtraMask & ExistingMask)
|
|
return SDValue();
|
|
|
|
SDValue OldBFIVal = BFI.getOperand(0);
|
|
SDValue NewBFIVal = BFI.getOperand(1);
|
|
if (Extended) {
|
|
// We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
|
|
// 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
|
|
// need to be made compatible.
|
|
assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
|
|
&& "Invalid types for BFI");
|
|
OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
|
|
NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
|
|
}
|
|
|
|
// We need the MaskedBFI to be combined with a mask of the *same* value.
|
|
if (PossExtraMask.getOperand(0) != OldBFIVal)
|
|
return SDValue();
|
|
|
|
BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
|
|
OldBFIVal, NewBFIVal,
|
|
BFI.getOperand(2), BFI.getOperand(3));
|
|
|
|
// If the masking is trivial, we don't need to create it.
|
|
if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
|
|
return BFI;
|
|
|
|
return DAG.getNode(ISD::AND, DL, VT, BFI,
|
|
DAG.getConstant(ExtraMask | ExistingMask, VT));
|
|
}
|
|
|
|
/// An EXTR instruction is made up of two shifts, ORed together. This helper
|
|
/// searches for and classifies those shifts.
|
|
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
|
|
bool &FromHi) {
|
|
if (N.getOpcode() == ISD::SHL)
|
|
FromHi = false;
|
|
else if (N.getOpcode() == ISD::SRL)
|
|
FromHi = true;
|
|
else
|
|
return false;
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(1)))
|
|
return false;
|
|
|
|
ShiftAmount = N->getConstantOperandVal(1);
|
|
Src = N->getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
/// EXTR instruction extracts a contiguous chunk of bits from two existing
|
|
/// registers viewed as a high/low pair. This function looks for the pattern:
|
|
/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
|
|
/// EXTR. Can't quite be done in TableGen because the two immediates aren't
|
|
/// independent.
|
|
static SDValue tryCombineToEXTR(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(N->getOpcode() == ISD::OR && "Unexpected root");
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue LHS;
|
|
uint32_t ShiftLHS = 0;
|
|
bool LHSFromHi = 0;
|
|
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
|
|
return SDValue();
|
|
|
|
SDValue RHS;
|
|
uint32_t ShiftRHS = 0;
|
|
bool RHSFromHi = 0;
|
|
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
|
|
return SDValue();
|
|
|
|
// If they're both trying to come from the high part of the register, they're
|
|
// not really an EXTR.
|
|
if (LHSFromHi == RHSFromHi)
|
|
return SDValue();
|
|
|
|
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
if (LHSFromHi) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(ShiftLHS, ShiftRHS);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::EXTR, DL, VT,
|
|
LHS, RHS,
|
|
DAG.getConstant(ShiftRHS, MVT::i64));
|
|
}
|
|
|
|
/// Target-specific dag combine xforms for ISD::OR
|
|
static SDValue PerformORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// Attempt to recognise bitfield-insert operations.
|
|
SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
|
|
if (Res.getNode())
|
|
return Res;
|
|
|
|
// Attempt to combine an existing MaskedBFI operation into one with a larger
|
|
// mask.
|
|
Res = tryCombineToLargerBFI(N, DCI, Subtarget);
|
|
if (Res.getNode())
|
|
return Res;
|
|
|
|
Res = tryCombineToEXTR(N, DCI);
|
|
if (Res.getNode())
|
|
return Res;
|
|
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
// Attempt to use vector immediate-form BSL
|
|
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
|
|
APInt SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
|
|
APInt SplatBits0;
|
|
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) &&
|
|
!HasAnyUndefs) {
|
|
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
|
|
APInt SplatBits1;
|
|
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) && !HasAnyUndefs &&
|
|
SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
|
|
SplatBits0 == ~SplatBits1) {
|
|
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, N0->getOperand(1),
|
|
N0->getOperand(0), N1->getOperand(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Target-specific dag combine xforms for ISD::SRA
|
|
static SDValue PerformSRACombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// We're looking for an SRA/SHL pair which form an SBFX.
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
uint64_t ExtraSignBits = N->getConstantOperandVal(1);
|
|
SDValue Shift = N->getOperand(0);
|
|
|
|
if (Shift.getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
|
|
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
|
|
return SDValue();
|
|
|
|
uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
|
|
uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
|
|
uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
|
|
|
|
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
|
|
DAG.getConstant(LSB, MVT::i64),
|
|
DAG.getConstant(LSB + Width - 1, MVT::i64));
|
|
}
|
|
|
|
/// Check if this is a valid build_vector for the immediate operand of
|
|
/// a vector shift operation, where all the elements of the build_vector
|
|
/// must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// Check if this is a valid build_vector for the immediate operand of
|
|
/// a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && Cnt < ElementBits);
|
|
}
|
|
|
|
/// Check if this is a valid build_vector for the immediate operand of a
|
|
/// vector shift right operation. The value must be in the range:
|
|
/// 1 <= Value <= ElementBits
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 1 && Cnt <= ElementBits);
|
|
}
|
|
|
|
static SDValue GenForSextInreg(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
EVT SrcVT, EVT DestVT, EVT SubRegVT,
|
|
const int *Mask, SDValue Src) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Bitcast
|
|
= DAG.getNode(ISD::BITCAST, SDLoc(N), SrcVT, Src);
|
|
SDValue Sext
|
|
= DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), DestVT, Bitcast);
|
|
SDValue ShuffleVec
|
|
= DAG.getVectorShuffle(DestVT, SDLoc(N), Sext, DAG.getUNDEF(DestVT), Mask);
|
|
SDValue ExtractSubreg
|
|
= SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N),
|
|
SubRegVT, ShuffleVec,
|
|
DAG.getTargetConstant(AArch64::sub_64, MVT::i32)), 0);
|
|
return ExtractSubreg;
|
|
}
|
|
|
|
/// Checks for vector shifts and lowers them.
|
|
static SDValue PerformShiftCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *ST) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
|
|
return PerformSRACombine(N, DCI);
|
|
|
|
// We're looking for an SRA/SHL pair to help generating instruction
|
|
// sshll v0.8h, v0.8b, #0
|
|
// The instruction STXL is also the alias of this instruction.
|
|
//
|
|
// For example, for DAG like below,
|
|
// v2i32 = sra (v2i32 (shl v2i32, 16)), 16
|
|
// we can transform it into
|
|
// v2i32 = EXTRACT_SUBREG
|
|
// (v4i32 (suffle_vector
|
|
// (v4i32 (sext (v4i16 (bitcast v2i32))),
|
|
// undef, (0, 2, u, u)),
|
|
// sub_64
|
|
//
|
|
// With this transformation we expect to generate "SSHLL + UZIP1"
|
|
// Sometimes UZIP1 can be optimized away by combining with other context.
|
|
int64_t ShrCnt, ShlCnt;
|
|
if (N->getOpcode() == ISD::SRA
|
|
&& (VT == MVT::v2i32 || VT == MVT::v4i16)
|
|
&& isVShiftRImm(N->getOperand(1), VT, ShrCnt)
|
|
&& N->getOperand(0).getOpcode() == ISD::SHL
|
|
&& isVShiftRImm(N->getOperand(0).getOperand(1), VT, ShlCnt)) {
|
|
SDValue Src = N->getOperand(0).getOperand(0);
|
|
if (VT == MVT::v2i32 && ShrCnt == 16 && ShlCnt == 16) {
|
|
// sext_inreg(v2i32, v2i16)
|
|
// We essentially only care the Mask {0, 2, u, u}
|
|
int Mask[4] = {0, 2, 4, 6};
|
|
return GenForSextInreg(N, DCI, MVT::v4i16, MVT::v4i32, MVT::v2i32,
|
|
Mask, Src);
|
|
}
|
|
else if (VT == MVT::v2i32 && ShrCnt == 24 && ShlCnt == 24) {
|
|
// sext_inreg(v2i16, v2i8)
|
|
// We essentially only care the Mask {0, u, 4, u, u, u, u, u, u, u, u, u}
|
|
int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
|
|
return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v2i32,
|
|
Mask, Src);
|
|
}
|
|
else if (VT == MVT::v4i16 && ShrCnt == 8 && ShlCnt == 8) {
|
|
// sext_inreg(v4i16, v4i8)
|
|
// We essentially only care the Mask {0, 2, 4, 6, u, u, u, u, u, u, u, u}
|
|
int Mask[8] = {0, 2, 4, 6, 8, 10, 12, 14};
|
|
return GenForSextInreg(N, DCI, MVT::v8i8, MVT::v8i16, MVT::v4i16,
|
|
Mask, Src);
|
|
}
|
|
}
|
|
|
|
// Nothing to be done for scalar shifts.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!VT.isVector() || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
int64_t Cnt;
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
|
|
SDValue RHS =
|
|
DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
|
|
}
|
|
break;
|
|
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
|
|
SDValue RHS =
|
|
DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// ARM-specific DAG combining for intrinsics.
|
|
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
|
|
switch (IntNo) {
|
|
default:
|
|
// Don't do anything for most intrinsics.
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
|
|
break;
|
|
unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
|
|
? AArch64ISD::NEON_QSHLs
|
|
: AArch64ISD::NEON_QSHLu;
|
|
return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Target-specific DAG combine function for NEON load/store intrinsics
|
|
/// to merge base address updates.
|
|
static SDValue CombineBaseUpdate(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
|
|
unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
|
|
SDValue Addr = N->getOperand(AddrOpIdx);
|
|
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD ||
|
|
UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load/store. Otherwise, folding
|
|
// it would create a cycle.
|
|
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
|
|
continue;
|
|
|
|
// Find the new opcode for the updating load/store.
|
|
bool isLoad = true;
|
|
bool isLaneOp = false;
|
|
unsigned NewOpc = 0;
|
|
unsigned NumVecs = 0;
|
|
if (isIntrinsic) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("unexpected intrinsic for Neon base update");
|
|
case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
|
|
NumVecs = 1; break;
|
|
case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
|
|
NumVecs = 1; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
|
|
NumVecs = 2; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
|
|
NumVecs = 3; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
|
|
NumVecs = 4; isLoad = false; break;
|
|
case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
|
|
NumVecs = 2; isLoad = false; break;
|
|
case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
|
|
NumVecs = 3; isLoad = false; break;
|
|
case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
|
|
NumVecs = 4; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD;
|
|
NumVecs = 2; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD;
|
|
NumVecs = 3; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD;
|
|
NumVecs = 4; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD;
|
|
NumVecs = 2; isLoad = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD;
|
|
NumVecs = 3; isLoad = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD;
|
|
NumVecs = 4; isLoad = false; isLaneOp = true; break;
|
|
}
|
|
} else {
|
|
isLaneOp = true;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode for Neon base update");
|
|
case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
|
|
NumVecs = 2; break;
|
|
case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
|
|
NumVecs = 3; break;
|
|
case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
|
|
NumVecs = 4; break;
|
|
}
|
|
}
|
|
|
|
// Find the size of memory referenced by the load/store.
|
|
EVT VecTy;
|
|
if (isLoad)
|
|
VecTy = N->getValueType(0);
|
|
else
|
|
VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
|
|
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
|
|
if (isLaneOp)
|
|
NumBytes /= VecTy.getVectorNumElements();
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint32_t IncVal = CInc->getZExtValue();
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
Inc = DAG.getTargetConstant(IncVal, MVT::i32);
|
|
}
|
|
|
|
// Create the new updating load/store node.
|
|
EVT Tys[6];
|
|
unsigned NumResultVecs = (isLoad ? NumVecs : 0);
|
|
unsigned n;
|
|
for (n = 0; n < NumResultVecs; ++n)
|
|
Tys[n] = VecTy;
|
|
Tys[n++] = MVT::i64;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs + 2));
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(N->getOperand(0)); // incoming chain
|
|
Ops.push_back(N->getOperand(AddrOpIdx));
|
|
Ops.push_back(Inc);
|
|
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
|
|
Ops.push_back(N->getOperand(i));
|
|
}
|
|
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
|
|
Ops, MemInt->getMemoryVT(),
|
|
MemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
std::vector<SDValue> NewResults;
|
|
for (unsigned i = 0; i < NumResultVecs; ++i) {
|
|
NewResults.push_back(SDValue(UpdN.getNode(), i));
|
|
}
|
|
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
|
|
DCI.CombineTo(N, NewResults);
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
|
|
/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
|
|
/// If so, combine them to a vldN-dup operation and return true.
|
|
static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
|
|
SDNode *VLD = N->getOperand(0).getNode();
|
|
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return SDValue();
|
|
unsigned NumVecs = 0;
|
|
unsigned NewOpc = 0;
|
|
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
|
|
if (IntNo == Intrinsic::arm_neon_vld2lane) {
|
|
NumVecs = 2;
|
|
NewOpc = AArch64ISD::NEON_LD2DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
|
|
NumVecs = 3;
|
|
NewOpc = AArch64ISD::NEON_LD3DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
|
|
NumVecs = 4;
|
|
NewOpc = AArch64ISD::NEON_LD4DUP;
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
|
|
// numbers match the load.
|
|
unsigned VLDLaneNo =
|
|
cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
// Ignore uses of the chain result.
|
|
if (UI.getUse().getResNo() == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
|
|
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
|
|
return SDValue();
|
|
}
|
|
|
|
// Create the vldN-dup node.
|
|
EVT Tys[5];
|
|
unsigned n;
|
|
for (n = 0; n < NumVecs; ++n)
|
|
Tys[n] = VT;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs + 1));
|
|
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
|
|
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
|
|
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops,
|
|
VLDMemInt->getMemoryVT(),
|
|
VLDMemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
unsigned ResNo = UI.getUse().getResNo();
|
|
// Ignore uses of the chain result.
|
|
if (ResNo == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
|
|
}
|
|
|
|
// Now the vldN-lane intrinsic is dead except for its chain result.
|
|
// Update uses of the chain.
|
|
std::vector<SDValue> VLDDupResults;
|
|
for (unsigned n = 0; n < NumVecs; ++n)
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
|
|
DCI.CombineTo(VLD, VLDDupResults);
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// vselect (v1i1 setcc) ->
|
|
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
|
|
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
|
|
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
|
|
// such VSELECT.
|
|
static SDValue PerformVSelectCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT CCVT = N0.getValueType();
|
|
|
|
if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
|
|
CCVT.getVectorElementType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
EVT ResVT = N->getValueType(0);
|
|
EVT CmpVT = N0.getOperand(0).getValueType();
|
|
// Only combine when the result type is of the same size as the compared
|
|
// operands.
|
|
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
SDValue IfTrue = N->getOperand(1);
|
|
SDValue IfFalse = N->getOperand(2);
|
|
SDValue SetCC =
|
|
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
|
|
IfTrue, IfFalse);
|
|
}
|
|
|
|
// sign_extend (extract_vector_elt (v1i1 setcc)) ->
|
|
// extract_vector_elt (v1iXX setcc)
|
|
// (XX is the size of the compared operand type)
|
|
static SDValue PerformSignExtendCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue Vec = N0.getOperand(0);
|
|
|
|
if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
Vec.getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
EVT ResVT = N->getValueType(0);
|
|
EVT CmpVT = Vec.getOperand(0).getValueType();
|
|
// Only optimize when the result type is of the same size as the element
|
|
// type of the compared operand.
|
|
if (ResVT.getSizeInBits() != CmpVT.getVectorElementType().getSizeInBits())
|
|
return SDValue();
|
|
|
|
SDValue Lane = N0.getOperand(1);
|
|
SDValue SetCC =
|
|
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
|
|
Vec.getOperand(0), Vec.getOperand(1),
|
|
cast<CondCodeSDNode>(Vec.getOperand(2))->get());
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ResVT,
|
|
SetCC, Lane);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::AND: return PerformANDCombine(N, DCI);
|
|
case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
return PerformShiftCombine(N, DCI, getSubtarget());
|
|
case ISD::VSELECT: return PerformVSelectCombine(N, DCI.DAG);
|
|
case ISD::SIGN_EXTEND: return PerformSignExtendCombine(N, DCI.DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return PerformIntrinsicCombine(N, DCI.DAG);
|
|
case AArch64ISD::NEON_VDUPLANE:
|
|
return CombineVLDDUP(N, DCI);
|
|
case AArch64ISD::NEON_LD2DUP:
|
|
case AArch64ISD::NEON_LD3DUP:
|
|
case AArch64ISD::NEON_LD4DUP:
|
|
return CombineBaseUpdate(N, DCI);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::aarch64_neon_vld1x2:
|
|
case Intrinsic::aarch64_neon_vld1x3:
|
|
case Intrinsic::aarch64_neon_vld1x4:
|
|
case Intrinsic::aarch64_neon_vst1x2:
|
|
case Intrinsic::aarch64_neon_vst1x3:
|
|
case Intrinsic::aarch64_neon_vst1x4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane:
|
|
return CombineBaseUpdate(N, DCI);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool
|
|
AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f16:
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
case MVT::f128:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
bool *Fast) const {
|
|
const AArch64Subtarget *Subtarget = getSubtarget();
|
|
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
|
|
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return false;
|
|
// Scalar types
|
|
case MVT::i8: case MVT::i16:
|
|
case MVT::i32: case MVT::i64:
|
|
case MVT::f32: case MVT::f64: {
|
|
// Unaligned access can use (for example) LRDB, LRDH, LDRW
|
|
if (AllowsUnaligned) {
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// 64-bit vector types
|
|
case MVT::v8i8: case MVT::v4i16:
|
|
case MVT::v2i32: case MVT::v1i64:
|
|
case MVT::v2f32: case MVT::v1f64:
|
|
// 128-bit vector types
|
|
case MVT::v16i8: case MVT::v8i16:
|
|
case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64: {
|
|
// For any little-endian targets with neon, we can support unaligned
|
|
// load/store of V registers using ld1/st1.
|
|
// A big-endian target may also explicitly support unaligned accesses
|
|
if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether a shuffle_vector could be presented as concat_vector.
|
|
bool AArch64TargetLowering::isConcatVector(SDValue Op, SelectionDAG &DAG,
|
|
SDValue V0, SDValue V1,
|
|
const int *Mask,
|
|
SDValue &Res) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
if (VT.getSizeInBits() != 128)
|
|
return false;
|
|
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
|
|
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isContactVector = true;
|
|
bool splitV0 = false;
|
|
if (V0.getValueType().getSizeInBits() == 128)
|
|
splitV0 = true;
|
|
|
|
for (int I = 0, E = NumElts / 2; I != E; I++) {
|
|
if (Mask[I] != I) {
|
|
isContactVector = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (isContactVector) {
|
|
int offset = NumElts / 2;
|
|
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
|
|
if (Mask[I] != I + splitV0 * offset) {
|
|
isContactVector = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isContactVector) {
|
|
EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
|
|
NumElts / 2);
|
|
if (splitV0) {
|
|
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
if (V1.getValueType().getSizeInBits() == 128) {
|
|
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check whether a Build Vector could be presented as Shuffle Vector.
|
|
// This Shuffle Vector maybe not legalized, so the length of its operand and
|
|
// the length of result may not equal.
|
|
bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
|
|
SDValue &V0, SDValue &V1,
|
|
int *Mask) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned V0NumElts = 0;
|
|
|
|
// Check if all elements are extracted from less than 3 vectors.
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Elt = Op.getOperand(i);
|
|
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
Elt.getOperand(0).getValueType().getVectorElementType() !=
|
|
VT.getVectorElementType())
|
|
return false;
|
|
|
|
if (!V0.getNode()) {
|
|
V0 = Elt.getOperand(0);
|
|
V0NumElts = V0.getValueType().getVectorNumElements();
|
|
}
|
|
if (Elt.getOperand(0) == V0) {
|
|
Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
|
|
continue;
|
|
} else if (!V1.getNode()) {
|
|
V1 = Elt.getOperand(0);
|
|
}
|
|
if (Elt.getOperand(0) == V1) {
|
|
unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
|
|
Mask[i] = (Lane + V0NumElts);
|
|
continue;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// LowerShiftRightParts - Lower SRL_PARTS and SRA_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, MVT::i64), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i64));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
SDValue Tmp3 = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
|
|
SDValue A64cc;
|
|
SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
|
|
DAG.getConstant(0, MVT::i64),
|
|
ISD::SETGE, A64cc,
|
|
DAG, dl);
|
|
|
|
SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
|
|
DAG.getConstant(0, Tmp3.getValueType()), Tmp3,
|
|
A64cc);
|
|
SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
|
|
TrueVal, FalseVal, A64cc);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a quad-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, MVT::i64), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i64));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue Tmp4 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
|
|
SDValue A64cc;
|
|
SDValue CmpOp = getSelectableIntSetCC(ExtraShAmt,
|
|
DAG.getConstant(0, MVT::i64),
|
|
ISD::SETGE, A64cc,
|
|
DAG, dl);
|
|
|
|
SDValue Lo = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
|
|
DAG.getConstant(0, Tmp4.getValueType()), Tmp4,
|
|
A64cc);
|
|
SDValue Hi = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
|
|
Tmp3, FalseVal, A64cc);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it.
|
|
SDValue
|
|
AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const AArch64Subtarget *ST) const {
|
|
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
unsigned UseNeonMov = VT.getSizeInBits() >= 64;
|
|
|
|
// Note we favor lowering MOVI over MVNI.
|
|
// This has implications on the definition of patterns in TableGen to select
|
|
// BIC immediate instructions but not ORR immediate instructions.
|
|
// If this lowering order is changed, TableGen patterns for BIC immediate and
|
|
// ORR immediate instructions have to be updated.
|
|
if (UseNeonMov &&
|
|
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
// First attempt to use vector immediate-form MOVI
|
|
EVT NeonMovVT;
|
|
unsigned Imm = 0;
|
|
unsigned OpCmode = 0;
|
|
|
|
if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
|
|
SplatBitSize, DAG, VT.is128BitVector(),
|
|
Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
|
|
SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
|
|
SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
|
|
|
|
if (ImmVal.getNode() && OpCmodeVal.getNode()) {
|
|
SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
|
|
ImmVal, OpCmodeVal);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
|
|
}
|
|
}
|
|
|
|
// Then attempt to use vector immediate-form MVNI
|
|
uint64_t NegatedImm = (~SplatBits).getZExtValue();
|
|
if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
|
|
Imm, OpCmode)) {
|
|
SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
|
|
SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
|
|
if (ImmVal.getNode() && OpCmodeVal.getNode()) {
|
|
SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
|
|
ImmVal, OpCmodeVal);
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
|
|
}
|
|
}
|
|
|
|
// Attempt to use vector immediate-form FMOV
|
|
if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
|
|
(VT == MVT::v2f64 && SplatBitSize == 64)) {
|
|
APFloat RealVal(
|
|
SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
|
|
SplatBits);
|
|
uint32_t ImmVal;
|
|
if (A64Imms::isFPImm(RealVal, ImmVal)) {
|
|
SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool hasDominantValue = false;
|
|
bool isConstant = true;
|
|
|
|
// Map of the number of times a particular SDValue appears in the
|
|
// element list.
|
|
DenseMap<SDValue, unsigned> ValueCounts;
|
|
SDValue Value;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
ValueCounts.insert(std::make_pair(V, 0));
|
|
unsigned &Count = ValueCounts[V];
|
|
|
|
// Is this value dominant? (takes up more than half of the lanes)
|
|
if (++Count > (NumElts / 2)) {
|
|
hasDominantValue = true;
|
|
Value = V;
|
|
}
|
|
}
|
|
if (ValueCounts.size() != 1)
|
|
usesOnlyOneValue = false;
|
|
if (!Value.getNode() && ValueCounts.size() > 0)
|
|
Value = ValueCounts.begin()->first;
|
|
|
|
if (ValueCounts.size() == 0)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (isOnlyLowElement)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (hasDominantValue && EltSize <= 64) {
|
|
// Use VDUP for non-constant splats.
|
|
if (!isConstant) {
|
|
SDValue N;
|
|
|
|
// If we are DUPing a value that comes directly from a vector, we could
|
|
// just use DUPLANE. We can only do this if the lane being extracted
|
|
// is at a constant index, as the DUP from lane instructions only have
|
|
// constant-index forms.
|
|
//
|
|
// If there is a TRUNCATE between EXTRACT_VECTOR_ELT and DUP, we can
|
|
// remove TRUNCATE for DUPLANE by apdating the source vector to
|
|
// appropriate vector type and lane index.
|
|
//
|
|
// FIXME: for now we have v1i8, v1i16, v1i32 legal vector types, if they
|
|
// are not legal any more, no need to check the type size in bits should
|
|
// be large than 64.
|
|
SDValue V = Value;
|
|
if (Value->getOpcode() == ISD::TRUNCATE)
|
|
V = Value->getOperand(0);
|
|
if (V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isa<ConstantSDNode>(V->getOperand(1)) &&
|
|
V->getOperand(0).getValueType().getSizeInBits() >= 64) {
|
|
|
|
// If the element size of source vector is larger than DUPLANE
|
|
// element size, we can do transformation by,
|
|
// 1) bitcasting source register to smaller element vector
|
|
// 2) mutiplying the lane index by SrcEltSize/ResEltSize
|
|
// For example, we can lower
|
|
// "v8i16 vdup_lane(v4i32, 1)"
|
|
// to be
|
|
// "v8i16 vdup_lane(v8i16 bitcast(v4i32), 2)".
|
|
SDValue SrcVec = V->getOperand(0);
|
|
unsigned SrcEltSize =
|
|
SrcVec.getValueType().getVectorElementType().getSizeInBits();
|
|
unsigned ResEltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (SrcEltSize > ResEltSize) {
|
|
assert((SrcEltSize % ResEltSize == 0) && "Invalid element size");
|
|
SDValue BitCast;
|
|
unsigned SrcSize = SrcVec.getValueType().getSizeInBits();
|
|
unsigned ResSize = VT.getSizeInBits();
|
|
|
|
if (SrcSize > ResSize) {
|
|
assert((SrcSize % ResSize == 0) && "Invalid vector size");
|
|
EVT CastVT =
|
|
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
|
|
SrcSize / ResEltSize);
|
|
BitCast = DAG.getNode(ISD::BITCAST, DL, CastVT, SrcVec);
|
|
} else {
|
|
assert((SrcSize == ResSize) && "Invalid vector size of source vec");
|
|
BitCast = DAG.getNode(ISD::BITCAST, DL, VT, SrcVec);
|
|
}
|
|
|
|
unsigned LaneIdx = V->getConstantOperandVal(1);
|
|
SDValue Lane =
|
|
DAG.getConstant((SrcEltSize / ResEltSize) * LaneIdx, MVT::i64);
|
|
N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, BitCast, Lane);
|
|
} else {
|
|
assert((SrcEltSize == ResEltSize) &&
|
|
"Invalid element size of source vec");
|
|
N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, V->getOperand(0),
|
|
V->getOperand(1));
|
|
}
|
|
} else
|
|
N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
|
|
|
|
if (!usesOnlyOneValue) {
|
|
// The dominant value was splatted as 'N', but we now have to insert
|
|
// all differing elements.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
if (Op.getOperand(I) == Value)
|
|
continue;
|
|
SmallVector<SDValue, 3> Ops;
|
|
Ops.push_back(N);
|
|
Ops.push_back(Op.getOperand(I));
|
|
Ops.push_back(DAG.getConstant(I, MVT::i64));
|
|
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Ops);
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
if (usesOnlyOneValue && isConstant) {
|
|
return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
|
|
}
|
|
}
|
|
// If all elements are constants and the case above didn't get hit, fall back
|
|
// to the default expansion, which will generate a load from the constant
|
|
// pool.
|
|
if (isConstant)
|
|
return SDValue();
|
|
|
|
// Try to lower this in lowering ShuffleVector way.
|
|
SDValue V0, V1;
|
|
int Mask[16];
|
|
if (isKnownShuffleVector(Op, DAG, V0, V1, Mask)) {
|
|
unsigned V0NumElts = V0.getValueType().getVectorNumElements();
|
|
if (!V1.getNode() && V0NumElts == NumElts * 2) {
|
|
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
|
|
DAG.getConstant(NumElts, MVT::i64));
|
|
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
|
|
DAG.getConstant(0, MVT::i64));
|
|
V0NumElts = V0.getValueType().getVectorNumElements();
|
|
}
|
|
|
|
if (V1.getNode() && NumElts == V0NumElts &&
|
|
V0NumElts == V1.getValueType().getVectorNumElements()) {
|
|
SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
|
|
if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
|
|
return Shuffle;
|
|
else
|
|
return LowerVECTOR_SHUFFLE(Shuffle, DAG);
|
|
} else {
|
|
SDValue Res;
|
|
if (isConcatVector(Op, DAG, V0, V1, Mask, Res))
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
|
|
// know the default expansion would otherwise fall back on something even
|
|
// worse. For a vector with one or two non-undef values, that's
|
|
// scalar_to_vector for the elements followed by a shuffle (provided the
|
|
// shuffle is valid for the target) and materialization element by element
|
|
// on the stack followed by a load for everything else.
|
|
if (!isConstant && !usesOnlyOneValue) {
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
for (unsigned i = 0 ; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
|
|
}
|
|
return Vec;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// isREVMask - Check if a vector shuffle corresponds to a REV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
|
|
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
|
|
"Only possible block sizes for REV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
|
|
// TRN instruction.
|
|
static unsigned isPermuteMask(ArrayRef<int> M, EVT VT, bool isV2undef) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts < 4)
|
|
return 0;
|
|
|
|
bool ismatch = true;
|
|
|
|
// Check UZP1
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = i * 2;
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_UZP1;
|
|
|
|
// Check UZP2
|
|
ismatch = true;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = i * 2 + 1;
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_UZP2;
|
|
|
|
// Check ZIP1
|
|
ismatch = true;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = i / 2 + NumElts * (i % 2);
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_ZIP1;
|
|
|
|
// Check ZIP2
|
|
ismatch = true;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = (NumElts + i) / 2 + NumElts * (i % 2);
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_ZIP2;
|
|
|
|
// Check TRN1
|
|
ismatch = true;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = i + (NumElts - 1) * (i % 2);
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_TRN1;
|
|
|
|
// Check TRN2
|
|
ismatch = true;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
unsigned answer = 1 + i + (NumElts - 1) * (i % 2);
|
|
if (isV2undef && answer >= NumElts)
|
|
answer -= NumElts;
|
|
if (M[i] != -1 && (unsigned)M[i] != answer) {
|
|
ismatch = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ismatch)
|
|
return AArch64ISD::NEON_TRN2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
ArrayRef<int> ShuffleMask = SVN->getMask();
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSize > 64)
|
|
return SDValue();
|
|
|
|
if (isREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
|
|
if (isREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
|
|
if (isREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
|
|
|
|
unsigned ISDNo;
|
|
if (V2.getOpcode() == ISD::UNDEF)
|
|
ISDNo = isPermuteMask(ShuffleMask, VT, true);
|
|
else
|
|
ISDNo = isPermuteMask(ShuffleMask, VT, false);
|
|
|
|
if (ISDNo) {
|
|
if (V2.getOpcode() == ISD::UNDEF)
|
|
return DAG.getNode(ISDNo, dl, VT, V1, V1);
|
|
else
|
|
return DAG.getNode(ISDNo, dl, VT, V1, V2);
|
|
}
|
|
|
|
SDValue Res;
|
|
if (isConcatVector(Op, DAG, V1, V2, &ShuffleMask[0], Res))
|
|
return Res;
|
|
|
|
// If the element of shuffle mask are all the same constant, we can
|
|
// transform it into either NEON_VDUP or NEON_VDUPLANE
|
|
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1) Lane = 0;
|
|
|
|
// Test if V1 is a SCALAR_TO_VECTOR.
|
|
if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
|
|
if (V1.getOpcode() == ISD::BUILD_VECTOR) {
|
|
bool IsScalarToVector = true;
|
|
for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
|
|
if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
|
|
i != (unsigned)Lane) {
|
|
IsScalarToVector = false;
|
|
break;
|
|
}
|
|
if (IsScalarToVector)
|
|
return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
|
|
V1.getOperand(Lane));
|
|
}
|
|
|
|
// Test if V1 is a EXTRACT_SUBVECTOR.
|
|
if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
|
|
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
|
|
DAG.getConstant(Lane + ExtLane, MVT::i64));
|
|
}
|
|
// Test if V1 is a CONCAT_VECTORS.
|
|
if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
V1.getOperand(1).getOpcode() == ISD::UNDEF) {
|
|
SDValue Op0 = V1.getOperand(0);
|
|
assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
|
|
"Invalid vector lane access");
|
|
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
|
|
DAG.getConstant(Lane, MVT::i64));
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
|
|
DAG.getConstant(Lane, MVT::i64));
|
|
}
|
|
|
|
int Length = ShuffleMask.size();
|
|
int V1EltNum = V1.getValueType().getVectorNumElements();
|
|
|
|
// If the number of v1 elements is the same as the number of shuffle mask
|
|
// element and the shuffle masks are sequential values, we can transform
|
|
// it into NEON_VEXTRACT.
|
|
if (V1EltNum == Length) {
|
|
// Check if the shuffle mask is sequential.
|
|
int SkipUndef = 0;
|
|
while (ShuffleMask[SkipUndef] == -1) {
|
|
SkipUndef++;
|
|
}
|
|
int CurMask = ShuffleMask[SkipUndef];
|
|
if (CurMask >= SkipUndef) {
|
|
bool IsSequential = true;
|
|
for (int I = SkipUndef; I < Length; ++I) {
|
|
if (ShuffleMask[I] != -1 && ShuffleMask[I] != CurMask) {
|
|
IsSequential = false;
|
|
break;
|
|
}
|
|
CurMask++;
|
|
}
|
|
if (IsSequential) {
|
|
assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
|
|
unsigned VecSize = EltSize * V1EltNum;
|
|
unsigned Index = (EltSize / 8) * (ShuffleMask[SkipUndef] - SkipUndef);
|
|
if (VecSize == 64 || VecSize == 128)
|
|
return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
|
|
DAG.getConstant(Index, MVT::i64));
|
|
}
|
|
}
|
|
}
|
|
|
|
// For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
|
|
// by element from V2 to V1 .
|
|
// If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
|
|
// better choice to be inserted than V1 as less insert needed, so we count
|
|
// element to be inserted for both V1 and V2, and select less one as insert
|
|
// target.
|
|
|
|
// Collect elements need to be inserted and their index.
|
|
SmallVector<int, 8> NV1Elt;
|
|
SmallVector<int, 8> N1Index;
|
|
SmallVector<int, 8> NV2Elt;
|
|
SmallVector<int, 8> N2Index;
|
|
for (int I = 0; I != Length; ++I) {
|
|
if (ShuffleMask[I] != I) {
|
|
NV1Elt.push_back(ShuffleMask[I]);
|
|
N1Index.push_back(I);
|
|
}
|
|
}
|
|
for (int I = 0; I != Length; ++I) {
|
|
if (ShuffleMask[I] != (I + V1EltNum)) {
|
|
NV2Elt.push_back(ShuffleMask[I]);
|
|
N2Index.push_back(I);
|
|
}
|
|
}
|
|
|
|
// Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
|
|
// will be inserted.
|
|
SDValue InsV = V1;
|
|
SmallVector<int, 8> InsMasks = NV1Elt;
|
|
SmallVector<int, 8> InsIndex = N1Index;
|
|
if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
|
|
if (NV1Elt.size() > NV2Elt.size()) {
|
|
InsV = V2;
|
|
InsMasks = NV2Elt;
|
|
InsIndex = N2Index;
|
|
}
|
|
} else {
|
|
InsV = DAG.getNode(ISD::UNDEF, dl, VT);
|
|
}
|
|
|
|
for (int I = 0, E = InsMasks.size(); I != E; ++I) {
|
|
SDValue ExtV = V1;
|
|
int Mask = InsMasks[I];
|
|
if (Mask >= V1EltNum) {
|
|
ExtV = V2;
|
|
Mask -= V1EltNum;
|
|
}
|
|
// Any value type smaller than i32 is illegal in AArch64, and this lower
|
|
// function is called after legalize pass, so we need to legalize
|
|
// the result here.
|
|
EVT EltVT;
|
|
if (VT.getVectorElementType().isFloatingPoint())
|
|
EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
|
|
else
|
|
EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
|
|
|
|
if (Mask >= 0) {
|
|
ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
|
|
DAG.getConstant(Mask, MVT::i64));
|
|
InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
|
|
DAG.getConstant(InsIndex[I], MVT::i64));
|
|
}
|
|
}
|
|
return InsV;
|
|
}
|
|
|
|
AArch64TargetLowering::ConstraintType
|
|
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'w': // An FP/SIMD vector register
|
|
return C_RegisterClass;
|
|
case 'I': // Constant that can be used with an ADD instruction
|
|
case 'J': // Constant that can be used with a SUB instruction
|
|
case 'K': // Constant that can be used with a 32-bit logical instruction
|
|
case 'L': // Constant that can be used with a 64-bit logical instruction
|
|
case 'M': // Constant that can be used as a 32-bit MOV immediate
|
|
case 'N': // Constant that can be used as a 64-bit MOV immediate
|
|
case 'Y': // Floating point constant zero
|
|
case 'Z': // Integer constant zero
|
|
return C_Other;
|
|
case 'Q': // A memory reference with base register and no offset
|
|
return C_Memory;
|
|
case 'S': // A symbolic address
|
|
return C_Other;
|
|
}
|
|
}
|
|
|
|
// FIXME: Ump, Utf, Usa, Ush
|
|
// Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
|
|
// whatever they may be
|
|
// Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
|
|
// Usa: An absolute symbolic address
|
|
// Ush: The high part (bits 32:12) of a pc-relative symbolic address
|
|
assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
|
|
&& Constraint != "Ush" && "Unimplemented constraints");
|
|
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
TargetLowering::ConstraintWeight
|
|
AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
|
|
const char *Constraint) const {
|
|
|
|
llvm_unreachable("Constraint weight unimplemented");
|
|
}
|
|
|
|
void
|
|
AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Only length 1 constraints are C_Other.
|
|
if (Constraint.size() != 1) return;
|
|
|
|
// Only C_Other constraints get lowered like this. That means constants for us
|
|
// so return early if there's no hope the constraint can be lowered.
|
|
|
|
switch(Constraint[0]) {
|
|
default: break;
|
|
case 'I': case 'J': case 'K': case 'L':
|
|
case 'M': case 'N': case 'Z': {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
uint64_t CVal = C->getZExtValue();
|
|
uint32_t Bits;
|
|
|
|
switch (Constraint[0]) {
|
|
default:
|
|
// FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
|
|
// is a peculiarly useless SUB constraint.
|
|
llvm_unreachable("Unimplemented C_Other constraint");
|
|
case 'I':
|
|
if (CVal <= 0xfff)
|
|
break;
|
|
return;
|
|
case 'K':
|
|
if (A64Imms::isLogicalImm(32, CVal, Bits))
|
|
break;
|
|
return;
|
|
case 'L':
|
|
if (A64Imms::isLogicalImm(64, CVal, Bits))
|
|
break;
|
|
return;
|
|
case 'Z':
|
|
if (CVal == 0)
|
|
break;
|
|
return;
|
|
}
|
|
|
|
Result = DAG.getTargetConstant(CVal, Op.getValueType());
|
|
break;
|
|
}
|
|
case 'S': {
|
|
// An absolute symbolic address or label reference.
|
|
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
|
|
Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
|
|
GA->getValueType(0));
|
|
} else if (const BlockAddressSDNode *BA
|
|
= dyn_cast<BlockAddressSDNode>(Op)) {
|
|
Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
|
|
BA->getValueType(0));
|
|
} else if (const ExternalSymbolSDNode *ES
|
|
= dyn_cast<ExternalSymbolSDNode>(Op)) {
|
|
Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
|
|
ES->getValueType(0));
|
|
} else
|
|
return;
|
|
break;
|
|
}
|
|
case 'Y':
|
|
if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
if (CFP->isExactlyValue(0.0)) {
|
|
Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
// It's an unknown constraint for us. Let generic code have a go.
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
AArch64TargetLowering::getRegForInlineAsmConstraint(
|
|
const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
if (VT.getSizeInBits() <= 32)
|
|
return std::make_pair(0U, &AArch64::GPR32RegClass);
|
|
else if (VT == MVT::i64)
|
|
return std::make_pair(0U, &AArch64::GPR64RegClass);
|
|
break;
|
|
case 'w':
|
|
if (VT == MVT::f16)
|
|
return std::make_pair(0U, &AArch64::FPR16RegClass);
|
|
else if (VT == MVT::f32)
|
|
return std::make_pair(0U, &AArch64::FPR32RegClass);
|
|
else if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, &AArch64::FPR64RegClass);
|
|
else if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &AArch64::FPR128RegClass);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Use the default implementation in TargetLowering to convert the register
|
|
// constraint into a member of a register class.
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
|
|
/// The associated MachineMemOperands record the alignment specified
|
|
/// in the intrinsic calls.
|
|
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::aarch64_neon_vld1x2:
|
|
case Intrinsic::aarch64_neon_vld1x3:
|
|
case Intrinsic::aarch64_neon_vld1x4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile loads with NEON intrinsics not supported
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::aarch64_neon_vst1x2:
|
|
case Intrinsic::aarch64_neon_vst1x3:
|
|
case Intrinsic::aarch64_neon_vst1x4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile stores with NEON intrinsics not supported
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Truncations from 64-bit GPR to 32-bit GPR is free.
|
|
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
if (NumBits1 <= NumBits2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (!VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
if (NumBits1 <= NumBits2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
|
|
// 64-bit GPR.
|
|
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
if (NumBits1 == 32 && NumBits2 == 64)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
|
|
if (!VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
if (NumBits1 == 32 && NumBits2 == 64)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
EVT VT1 = Val.getValueType();
|
|
if (isZExtFree(VT1, VT2)) {
|
|
return true;
|
|
}
|
|
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
|
|
return (VT1.isSimple() && VT1.isInteger() && VT2.isSimple() &&
|
|
VT2.isInteger() && VT1.getSizeInBits() <= 32);
|
|
}
|
|
|
|
// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// AArch64 has five basic addressing modes:
|
|
// reg
|
|
// reg + 9-bit signed offset
|
|
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
|
|
// reg1 + reg2
|
|
// reg + SIZE_IN_BYTES * reg
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// No reg+reg+imm addressing.
|
|
if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
|
|
return false;
|
|
|
|
// check reg + imm case:
|
|
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
|
|
uint64_t NumBytes = 0;
|
|
if (Ty->isSized()) {
|
|
uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
|
|
NumBytes = NumBits / 8;
|
|
if (!isPowerOf2_64(NumBits))
|
|
NumBytes = 0;
|
|
}
|
|
|
|
if (!AM.Scale) {
|
|
int64_t Offset = AM.BaseOffs;
|
|
|
|
// 9-bit signed offset
|
|
if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
|
|
return true;
|
|
|
|
// 12-bit unsigned offset
|
|
unsigned shift = Log2_64(NumBytes);
|
|
if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
|
|
// Must be a multiple of NumBytes (NumBytes is a power of 2)
|
|
(Offset >> shift) << shift == Offset)
|
|
return true;
|
|
return false;
|
|
}
|
|
if (!AM.Scale || AM.Scale == 1 ||
|
|
(AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// Scaling factors are not free at all.
|
|
// Operands | Rt Latency
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm] | 4
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
|
|
// Rt, [Xn, Wm, <extend> #imm] |
|
|
if (isLegalAddressingMode(AM, Ty))
|
|
// Scale represents reg2 * scale, thus account for 1 if
|
|
// it is not equal to 0 or 1.
|
|
return AM.Scale != 0 && AM.Scale != 1;
|
|
return -1;
|
|
}
|
|
|
|
/// getMaximalGlobalOffset - Returns the maximal possible offset which can
|
|
/// be used for loads / stores from the global.
|
|
unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
|
|
return 4095;
|
|
}
|
|
|