mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
217fde5255
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27998 91177308-0d34-0410-b5e6-96231b3b80d8
1191 lines
34 KiB
Plaintext
1191 lines
34 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add a MUL2U and MUL2S nodes to represent a multiply that returns both the
|
|
Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to
|
|
X86, & make the dag combiner produce it when needed. This will eliminate one
|
|
imul from the code generated for:
|
|
|
|
long long test(long long X, long long Y) { return X*Y; }
|
|
|
|
by using the EAX result from the mul. We should add a similar node for
|
|
DIVREM.
|
|
|
|
another case is:
|
|
|
|
long long test(int X, int Y) { return (long long)X*Y; }
|
|
|
|
... which should only be one imul instruction.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some targets (e.g. athlons) prefer freep to fstp ST(0):
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should use fiadd on chips where it is profitable:
|
|
double foo(double P, int *I) { return P+*I; }
|
|
|
|
We have fiadd patterns now but the followings have the same cost and
|
|
complexity. We need a way to specify the later is more profitable.
|
|
|
|
def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
|
|
[(set RFP:$dst, (fadd RFP:$src1,
|
|
(extloadf64f32 addr:$src2)))]>;
|
|
// ST(0) = ST(0) + [mem32]
|
|
|
|
def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
|
|
[(set RFP:$dst, (fadd RFP:$src1,
|
|
(X86fild addr:$src2, i32)))]>;
|
|
// ST(0) = ST(0) + [mem32int]
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The FP stackifier needs to be global. Also, it should handle simple permutates
|
|
to reduce number of shuffle instructions, e.g. turning:
|
|
|
|
fld P -> fld Q
|
|
fld Q fld P
|
|
fxch
|
|
|
|
or:
|
|
|
|
fxch -> fucomi
|
|
fucomi jl X
|
|
jg X
|
|
|
|
Ideas:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Compile this:
|
|
_Bool f(_Bool a) { return a!=1; }
|
|
|
|
into:
|
|
movzbl %dil, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add a target specific hook to DAG combiner to handle SINT_TO_FP and
|
|
FP_TO_SINT when the source operand is already in memory.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g.
|
|
|
|
cmpl $1, %eax
|
|
setg %al
|
|
testb %al, %al # unnecessary
|
|
jne .BB7
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Count leading zeros and count trailing zeros:
|
|
|
|
int clz(int X) { return __builtin_clz(X); }
|
|
int ctz(int X) { return __builtin_ctz(X); }
|
|
|
|
$ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel
|
|
clz:
|
|
bsr %eax, DWORD PTR [%esp+4]
|
|
xor %eax, 31
|
|
ret
|
|
ctz:
|
|
bsf %eax, DWORD PTR [%esp+4]
|
|
ret
|
|
|
|
however, check that these are defined for 0 and 32. Our intrinsics are, GCC's
|
|
aren't.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use push/pop instructions in prolog/epilog sequences instead of stores off
|
|
ESP (certain code size win, perf win on some [which?] processors).
|
|
Also, it appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Open code rint,floor,ceil,trunc:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
|
|
|
|
Expand these to calls of sin/cos and stores:
|
|
double sincos(double x, double *sin, double *cos);
|
|
float sincosf(float x, float *sin, float *cos);
|
|
long double sincosl(long double x, long double *sin, long double *cos);
|
|
|
|
Doing so could allow SROA of the destination pointers. See also:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
How about intrinsics? An example is:
|
|
*res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C));
|
|
|
|
compiles to
|
|
pmuludq (%eax), %xmm0
|
|
movl 8(%esp), %eax
|
|
movdqa (%eax), %xmm1
|
|
pmulhuw %xmm0, %xmm1
|
|
|
|
The transformation probably requires a X86 specific pass or a DAG combiner
|
|
target specific hook.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
LSR should be turned on for the X86 backend and tuned to take advantage of its
|
|
addressing modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
|
other fast SSE modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Think about doing i64 math in SSE regs.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The DAG Isel doesn't fold the loads into the adds in this testcase. The
|
|
pattern selector does. This is because the chain value of the load gets
|
|
selected first, and the loads aren't checking to see if they are only used by
|
|
and add.
|
|
|
|
.ll:
|
|
|
|
int %test(int* %x, int* %y, int* %z) {
|
|
%X = load int* %x
|
|
%Y = load int* %y
|
|
%Z = load int* %z
|
|
%a = add int %X, %Y
|
|
%b = add int %a, %Z
|
|
ret int %b
|
|
}
|
|
|
|
dag isel:
|
|
|
|
_test:
|
|
movl 4(%esp), %eax
|
|
movl (%eax), %eax
|
|
movl 8(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
movl 12(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
ret
|
|
|
|
pattern isel:
|
|
|
|
_test:
|
|
movl 12(%esp), %ecx
|
|
movl 4(%esp), %edx
|
|
movl 8(%esp), %eax
|
|
movl (%eax), %eax
|
|
addl (%edx), %eax
|
|
addl (%ecx), %eax
|
|
ret
|
|
|
|
This is bad for register pressure, though the dag isel is producing a
|
|
better schedule. :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase should have no SSE instructions in it, and only one load from
|
|
a constant pool:
|
|
|
|
double %test3(bool %B) {
|
|
%C = select bool %B, double 123.412, double 523.01123123
|
|
ret double %C
|
|
}
|
|
|
|
Currently, the select is being lowered, which prevents the dag combiner from
|
|
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
|
|
|
The pattern isel got this one right.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We need to lower switch statements to tablejumps when appropriate instead of
|
|
always into binary branch trees.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
|
like this:
|
|
|
|
X += y
|
|
|
|
and the register allocator decides to spill X, it is cheaper to emit this as:
|
|
|
|
Y += [xslot]
|
|
store Y -> [xslot]
|
|
|
|
than as:
|
|
|
|
tmp = [xslot]
|
|
tmp += y
|
|
store tmp -> [xslot]
|
|
|
|
..and this uses one fewer register (so this should be done at load folding
|
|
time, not at spiller time). *Note* however that this can only be done
|
|
if Y is dead. Here's a testcase:
|
|
|
|
%.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0]
|
|
implementation ; Functions:
|
|
declare void %printf(int, ...)
|
|
void %main() {
|
|
build_tree.exit:
|
|
br label %no_exit.i7
|
|
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
|
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
|
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
|
br bool false, label %Compute_Tree.exit23, label %no_exit.i7
|
|
Compute_Tree.exit23: ; preds = %no_exit.i7
|
|
tail call void (int, ...)* %printf( int 0 )
|
|
store double %tmp.34.i18, double* null
|
|
ret void
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
.BBmain_1:
|
|
xorpd %XMM1, %XMM1
|
|
addsd %XMM0, %XMM1
|
|
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
|
*** addsd %XMM2, %XMM1
|
|
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
|
jmp .BBmain_1 # no_exit.i7
|
|
|
|
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
|
much sense (e.g. its an infinite loop). :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
None of the FPStack instructions are handled in
|
|
X86RegisterInfo::foldMemoryOperand, which prevents the spiller from
|
|
folding spill code into the instructions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate 'test' instead of 'cmp' in various cases, e.g.:
|
|
|
|
bool %test(int %X) {
|
|
%Y = shl int %X, ubyte 1
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
bool %test(int %X) {
|
|
%Y = and int %X, 8
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
|
|
This may just be a matter of using 'test' to write bigger patterns for X86cmp.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
|
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
|
|
|
double %X(double %Y, double %Z, double %A, double %B) {
|
|
%C = setlt double %A, %B
|
|
%z = add double %Z, 0.0 ;; select operand is not a load
|
|
%D = select bool %C, double %Y, double %z
|
|
ret double %D
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
_X:
|
|
subl $12, %esp
|
|
xorpd %xmm0, %xmm0
|
|
addsd 24(%esp), %xmm0
|
|
movsd 32(%esp), %xmm1
|
|
movsd 16(%esp), %xmm2
|
|
ucomisd 40(%esp), %xmm1
|
|
jb LBB_X_2
|
|
LBB_X_1:
|
|
movsd %xmm0, %xmm2
|
|
LBB_X_2:
|
|
movsd %xmm2, (%esp)
|
|
fldl (%esp)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
|
registers. The choice may depend on subtarget information. We should do some
|
|
more experiments on different x86 machines.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
int %test1(int %X) {
|
|
%Y = div int %X, 8
|
|
ret int %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Currently the x86 codegen isn't very good at mixing SSE and FPStack
|
|
code:
|
|
|
|
unsigned int foo(double x) { return x; }
|
|
|
|
foo:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
ret
|
|
|
|
This will be solved when we go to a dynamic programming based isel.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should generate min/max for stuff like:
|
|
|
|
void minf(float a, float b, float *X) {
|
|
*X = a <= b ? a : b;
|
|
}
|
|
|
|
Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN
|
|
and ISD::FMAX node types?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The first BB of this code:
|
|
|
|
declare bool %foo()
|
|
int %bar() {
|
|
%V = call bool %foo()
|
|
br bool %V, label %T, label %F
|
|
T:
|
|
ret int 1
|
|
F:
|
|
call bool %foo()
|
|
ret int 12
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
call L_foo$stub
|
|
xorb $1, %al
|
|
testb %al, %al
|
|
jne LBB_bar_2 # F
|
|
|
|
It would be better to emit "cmp %al, 1" than a xor and test.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Enable X86InstrInfo::convertToThreeAddress().
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Investigate whether it is better to codegen the following
|
|
|
|
%tmp.1 = mul int %x, 9
|
|
to
|
|
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,8), %eax
|
|
|
|
as opposed to what llc is currently generating:
|
|
|
|
imull $9, 4(%esp), %eax
|
|
|
|
Currently the load folding imull has a higher complexity than the LEA32 pattern.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
|
|
We should leave these as libcalls for everything over a much lower threshold,
|
|
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
|
|
stores, TLB preheating, etc)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
|
feasible.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coalescer to commute 2-addr instructions, allowing us to eliminate
|
|
the reg-reg copy in this example:
|
|
|
|
float foo(int *x, float *y, unsigned c) {
|
|
float res = 0.0;
|
|
unsigned i;
|
|
for (i = 0; i < c; i++) {
|
|
float xx = (float)x[i];
|
|
xx = xx * y[i];
|
|
xx += res;
|
|
res = xx;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
LBB_foo_3: # no_exit
|
|
cvtsi2ss %XMM0, DWORD PTR [%EDX + 4*%ESI]
|
|
mulss %XMM0, DWORD PTR [%EAX + 4*%ESI]
|
|
addss %XMM0, %XMM1
|
|
inc %ESI
|
|
cmp %ESI, %ECX
|
|
**** movaps %XMM1, %XMM0
|
|
jb LBB_foo_3 # no_exit
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
if (copysign(1.0, x) == copysign(1.0, y))
|
|
into:
|
|
if (x^y & mask)
|
|
when using SSE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
%X = weak global int 0
|
|
|
|
void %foo(int %N) {
|
|
%N = cast int %N to uint
|
|
%tmp.24 = setgt int %N, 0
|
|
br bool %tmp.24, label %no_exit, label %return
|
|
|
|
no_exit:
|
|
%indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ]
|
|
%i.0.0 = cast uint %indvar to int
|
|
volatile store int %i.0.0, int* %X
|
|
%indvar.next = add uint %indvar, 1
|
|
%exitcond = seteq uint %indvar.next, %N
|
|
br bool %exitcond, label %return, label %no_exit
|
|
|
|
return:
|
|
ret void
|
|
}
|
|
|
|
compiles into:
|
|
|
|
.text
|
|
.align 4
|
|
.globl _foo
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
jl LBB_foo_4 # return
|
|
LBB_foo_1: # no_exit.preheader
|
|
xorl %ecx, %ecx
|
|
LBB_foo_2: # no_exit
|
|
movl L_X$non_lazy_ptr, %edx
|
|
movl %ecx, (%edx)
|
|
incl %ecx
|
|
cmpl %eax, %ecx
|
|
jne LBB_foo_2 # no_exit
|
|
LBB_foo_3: # return.loopexit
|
|
LBB_foo_4: # return
|
|
ret
|
|
|
|
We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after
|
|
remateralization is implemented. This can be accomplished with 1) a target
|
|
dependent LICM pass or 2) makeing SelectDAG represent the whole function.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following tests perform worse with LSR:
|
|
|
|
lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 /
|
|
FR64 to VR128.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
mov $reg, 48(%esp)
|
|
...
|
|
leal 48(%esp), %eax
|
|
mov %eax, (%esp)
|
|
call _foo
|
|
|
|
Obviously it would have been better for the first mov (or any op) to store
|
|
directly %esp[0] if there are no other uses.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
|
|
of a v4sf value.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
|
|
Perhaps use pxor / xorp* to clear a XMM register first?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better codegen for:
|
|
|
|
void f(float a, float b, vector float * out) { *out = (vector float){ a, 0.0, 0.0, b}; }
|
|
void f(float a, float b, vector float * out) { *out = (vector float){ a, b, 0.0, 0}; }
|
|
|
|
For the later we generate:
|
|
|
|
_f:
|
|
pxor %xmm0, %xmm0
|
|
movss 8(%esp), %xmm1
|
|
movaps %xmm0, %xmm2
|
|
unpcklps %xmm1, %xmm2
|
|
movss 4(%esp), %xmm1
|
|
unpcklps %xmm0, %xmm1
|
|
unpcklps %xmm2, %xmm1
|
|
movl 12(%esp), %eax
|
|
movaps %xmm1, (%eax)
|
|
ret
|
|
|
|
This seems like it should use shufps, one for each of a & b.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Adding to the list of cmp / test poor codegen issues:
|
|
|
|
int test(__m128 *A, __m128 *B) {
|
|
if (_mm_comige_ss(*A, *B))
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %eax
|
|
movaps (%eax), %xmm1
|
|
comiss %xmm0, %xmm1
|
|
setae %al
|
|
movzbl %al, %ecx
|
|
movl $3, %eax
|
|
movl $4, %edx
|
|
cmpl $0, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
|
|
are a number of issues. 1) We are introducing a setcc between the result of the
|
|
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
|
|
so a any extend (which becomes a zero extend) is added.
|
|
|
|
We probably need some kind of target DAG combine hook to fix this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
How to decide when to use the "floating point version" of logical ops? Here are
|
|
some code fragments:
|
|
|
|
movaps LCPI5_5, %xmm2
|
|
divps %xmm1, %xmm2
|
|
mulps %xmm2, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm2
|
|
andps LCPI5_1, %xmm3
|
|
por %xmm2, %xmm3
|
|
movdqa %xmm3, (%edi)
|
|
|
|
movaps LCPI5_5, %xmm1
|
|
divps %xmm0, %xmm1
|
|
mulps %xmm1, %xmm3
|
|
mulps 8656(%ecx), %xmm3
|
|
addps 8672(%ecx), %xmm3
|
|
andps LCPI5_6, %xmm1
|
|
andps LCPI5_1, %xmm3
|
|
orps %xmm1, %xmm3
|
|
movaps %xmm3, 112(%esp)
|
|
movaps %xmm3, (%ebx)
|
|
|
|
Due to some minor source change, the later case ended up using orps and movaps
|
|
instead of por and movdqa. Does it matter?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use movddup to splat a v2f64 directly from a memory source. e.g.
|
|
|
|
#include <emmintrin.h>
|
|
|
|
void test(__m128d *r, double A) {
|
|
*r = _mm_set1_pd(A);
|
|
}
|
|
|
|
llc:
|
|
|
|
_test:
|
|
movsd 8(%esp), %xmm0
|
|
unpcklpd %xmm0, %xmm0
|
|
movl 4(%esp), %eax
|
|
movapd %xmm0, (%eax)
|
|
ret
|
|
|
|
icc:
|
|
|
|
_test:
|
|
movl 4(%esp), %eax
|
|
movddup 8(%esp), %xmm0
|
|
movapd %xmm0, (%eax)
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
A Mac OS X IA-32 specific ABI bug wrt returning value > 8 bytes:
|
|
http://llvm.org/bugs/show_bug.cgi?id=729
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
X86RegisterInfo::copyRegToReg() returns X86::MOVAPSrr for VR128. Is it possible
|
|
to choose between movaps, movapd, and movdqa based on types of source and
|
|
destination?
|
|
|
|
How about andps, andpd, and pand? Do we really care about the type of the packed
|
|
elements? If not, why not always use the "ps" variants which are likely to be
|
|
shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are emitting bad code for this:
|
|
|
|
float %test(float* %V, int %I, int %D, float %V) {
|
|
entry:
|
|
%tmp = seteq int %D, 0
|
|
br bool %tmp, label %cond_true, label %cond_false23
|
|
|
|
cond_true:
|
|
%tmp3 = getelementptr float* %V, int %I
|
|
%tmp = load float* %tmp3
|
|
%tmp5 = setgt float %tmp, %V
|
|
%tmp6 = tail call bool %llvm.isunordered.f32( float %tmp, float %V )
|
|
%tmp7 = or bool %tmp5, %tmp6
|
|
br bool %tmp7, label %UnifiedReturnBlock, label %cond_next
|
|
|
|
cond_next:
|
|
%tmp10 = add int %I, 1
|
|
%tmp12 = getelementptr float* %V, int %tmp10
|
|
%tmp13 = load float* %tmp12
|
|
%tmp15 = setle float %tmp13, %V
|
|
%tmp16 = tail call bool %llvm.isunordered.f32( float %tmp13, float %V )
|
|
%tmp17 = or bool %tmp15, %tmp16
|
|
%retval = select bool %tmp17, float 0.000000e+00, float 1.000000e+00
|
|
ret float %retval
|
|
|
|
cond_false23:
|
|
%tmp28 = tail call float %foo( float* %V, int %I, int %D, float %V )
|
|
ret float %tmp28
|
|
|
|
UnifiedReturnBlock: ; preds = %cond_true
|
|
ret float 0.000000e+00
|
|
}
|
|
|
|
declare bool %llvm.isunordered.f32(float, float)
|
|
|
|
declare float %foo(float*, int, int, float)
|
|
|
|
|
|
It exposes a known load folding problem:
|
|
|
|
movss (%edx,%ecx,4), %xmm1
|
|
ucomiss %xmm1, %xmm0
|
|
|
|
As well as this:
|
|
|
|
LBB_test_2: # cond_next
|
|
movss LCPI1_0, %xmm2
|
|
pxor %xmm3, %xmm3
|
|
ucomiss %xmm0, %xmm1
|
|
jbe LBB_test_6 # cond_next
|
|
LBB_test_5: # cond_next
|
|
movaps %xmm2, %xmm3
|
|
LBB_test_6: # cond_next
|
|
movss %xmm3, 40(%esp)
|
|
flds 40(%esp)
|
|
addl $44, %esp
|
|
ret
|
|
|
|
Clearly it's unnecessary to clear %xmm3. It's also not clear why we are emitting
|
|
three moves (movss, movaps, movss).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
External test Nurbs exposed some problems. Look for
|
|
__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
|
|
emits:
|
|
|
|
movaps (%edx), %xmm2 #59.21
|
|
movaps (%edx), %xmm5 #60.21
|
|
movaps (%edx), %xmm4 #61.21
|
|
movaps (%edx), %xmm3 #62.21
|
|
movl 40(%ecx), %ebp #69.49
|
|
shufps $0, %xmm2, %xmm5 #60.21
|
|
movl 100(%esp), %ebx #69.20
|
|
movl (%ebx), %edi #69.20
|
|
imull %ebp, %edi #69.49
|
|
addl (%eax), %edi #70.33
|
|
shufps $85, %xmm2, %xmm4 #61.21
|
|
shufps $170, %xmm2, %xmm3 #62.21
|
|
shufps $255, %xmm2, %xmm2 #63.21
|
|
lea (%ebp,%ebp,2), %ebx #69.49
|
|
negl %ebx #69.49
|
|
lea -3(%edi,%ebx), %ebx #70.33
|
|
shll $4, %ebx #68.37
|
|
addl 32(%ecx), %ebx #68.37
|
|
testb $15, %bl #91.13
|
|
jne L_B1.24 # Prob 5% #91.13
|
|
|
|
This is the llvm code after instruction scheduling:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%reg1078 = MOV32ri -3
|
|
%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
|
|
%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
|
|
%reg1080 = IMUL32rr %reg1079, %reg1037
|
|
%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
|
|
%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
|
|
%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
|
|
%reg1082 = SHL32ri %reg1038, 4
|
|
%reg1039 = ADD32rr %reg1036, %reg1082
|
|
%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
|
|
%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
|
|
%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
|
|
%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
|
|
%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
|
|
%reg1040 = MOV32rr %reg1039
|
|
%reg1084 = AND32ri8 %reg1039, 15
|
|
CMP32ri8 %reg1084, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
Still ok. After register allocation:
|
|
|
|
cond_next140 (0xa910740, LLVM BB @0xa90beb0):
|
|
%EAX = MOV32ri -3
|
|
%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
|
|
ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
|
|
%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%EDX = MOV32rm %EDX, 1, %NOREG, 40
|
|
IMUL32rr %EAX<def&use>, %EDX
|
|
%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 0
|
|
MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
|
|
%EAX = LEA32r %ESI, 1, %EAX, -3
|
|
%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
|
|
%ESI = MOV32rm %ESI, 1, %NOREG, 32
|
|
%EDI = MOV32rr %EAX
|
|
SHL32ri %EDI<def&use>, 4
|
|
ADD32rr %EDI<def&use>, %ESI
|
|
%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
|
|
%XMM1 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM1<def&use>, %XMM1, 170
|
|
%XMM2 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM2<def&use>, %XMM2, 0
|
|
%XMM3 = MOVAPSrr %XMM0
|
|
SHUFPSrr %XMM3<def&use>, %XMM3, 255
|
|
SHUFPSrr %XMM0<def&use>, %XMM0, 85
|
|
%EBX = MOV32rr %EDI
|
|
AND32ri8 %EBX<def&use>, 15
|
|
CMP32ri8 %EBX, 0
|
|
JE mbb<cond_next204,0xa914d30>
|
|
|
|
This looks really bad. The problem is shufps is a destructive opcode. Since it
|
|
appears as operand two in more than one shufps ops. It resulted in a number of
|
|
copies. Note icc also suffers from the same problem. Either the instruction
|
|
selector should select pshufd or The register allocator can made the two-address
|
|
to three-address transformation.
|
|
|
|
It also exposes some other problems. See MOV32ri -3 and the spills.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25500
|
|
|
|
LLVM is producing bad code.
|
|
|
|
LBB_main_4: # cond_true44
|
|
addps %xmm1, %xmm2
|
|
subps %xmm3, %xmm2
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm2, %xmm1
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
There are two problems. 1) No need to two loop induction variables. We can
|
|
compare against 262144 * 16. 2) Known register coalescer issue. We should
|
|
be able eliminate one of the movaps:
|
|
|
|
addps %xmm2, %xmm1 <=== Commute!
|
|
subps %xmm3, %xmm1
|
|
movaps (%ecx), %xmm4
|
|
movaps %xmm1, %xmm1 <=== Eliminate!
|
|
addps %xmm4, %xmm1
|
|
addl $16, %ecx
|
|
incl %edx
|
|
cmpl $262144, %edx
|
|
movaps %xmm3, %xmm2
|
|
movaps %xmm4, %xmm3
|
|
jne LBB_main_4 # cond_true44
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
|
|
__m128 test(float a) {
|
|
return _mm_set_ps(0.0, 0.0, 0.0, a*a);
|
|
}
|
|
|
|
This compiles into:
|
|
|
|
movss 4(%esp), %xmm1
|
|
mulss %xmm1, %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Because mulss doesn't modify the top 3 elements, the top elements of
|
|
xmm1 are already zero'd. We could compile this to:
|
|
|
|
movss 4(%esp), %xmm0
|
|
mulss %xmm0, %xmm0
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Here's a sick and twisted idea. Consider code like this:
|
|
|
|
__m128 test(__m128 a) {
|
|
float b = *(float*)&A;
|
|
...
|
|
return _mm_set_ps(0.0, 0.0, 0.0, b);
|
|
}
|
|
|
|
This might compile to this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
xorps %xmm0, %xmm0
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
Now consider if the ... code caused xmm1 to get spilled. This might produce
|
|
this code:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
xorps %xmm0, %xmm0
|
|
movaps c2(%esp), %xmm1
|
|
movss %xmm1, %xmm0
|
|
ret
|
|
|
|
However, since the reload is only used by these instructions, we could
|
|
"fold" it into the uses, producing something like this:
|
|
|
|
movaps c(%esp), %xmm1
|
|
movaps %xmm1, c2(%esp)
|
|
...
|
|
|
|
movss c2(%esp), %xmm0
|
|
ret
|
|
|
|
... saving two instructions.
|
|
|
|
The basic idea is that a reload from a spill slot, can, if only one 4-byte
|
|
chunk is used, bring in 3 zeros the the one element instead of 4 elements.
|
|
This can be used to simplify a variety of shuffle operations, where the
|
|
elements are fixed zeros.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate significantly worse code for this than GCC:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
|
|
|
There is also one case we do worse on PPC.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
#include <emmintrin.h>
|
|
void test(__m128d *r, __m128d *A, double B) {
|
|
*r = _mm_loadl_pd(*A, &B);
|
|
}
|
|
|
|
We generates:
|
|
|
|
subl $12, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, (%esp)
|
|
movl 20(%esp), %eax
|
|
movapd (%eax), %xmm0
|
|
movlpd (%esp), %xmm0
|
|
movl 16(%esp), %eax
|
|
movapd %xmm0, (%eax)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
icc generates:
|
|
|
|
movl 4(%esp), %edx #3.6
|
|
movl 8(%esp), %eax #3.6
|
|
movapd (%eax), %xmm0 #4.22
|
|
movlpd 12(%esp), %xmm0 #4.8
|
|
movapd %xmm0, (%edx) #4.3
|
|
ret #5.1
|
|
|
|
So icc is smart enough to know that B is in memory so it doesn't load it and
|
|
store it back to stack.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
__m128d test1( __m128d A, __m128d B) {
|
|
return _mm_shuffle_pd(A, B, 0x3);
|
|
}
|
|
|
|
compiles to
|
|
|
|
shufpd $3, %xmm1, %xmm0
|
|
|
|
Perhaps it's better to use unpckhpd instead?
|
|
|
|
unpckhpd %xmm1, %xmm0
|
|
|
|
Don't know if unpckhpd is faster. But it is shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
typedef short v8i16 __attribute__ ((__vector_size__ (16)));
|
|
v8i16 test(v8i16 x, v8i16 y) {
|
|
return x + y;
|
|
}
|
|
|
|
compiles to
|
|
|
|
_test:
|
|
paddw %xmm0, %xmm1
|
|
movaps %xmm1, %xmm0
|
|
ret
|
|
|
|
It should be
|
|
|
|
paddw %xmm1, %xmm0
|
|
ret
|
|
|
|
since paddw is commutative.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase:
|
|
|
|
%G1 = weak global <4 x float> zeroinitializer ; <<4 x float>*> [#uses=1]
|
|
%G2 = weak global <4 x float> zeroinitializer ; <<4 x float>*> [#uses=1]
|
|
%G3 = weak global <4 x float> zeroinitializer ; <<4 x float>*> [#uses=1]
|
|
%G4 = weak global <4 x float> zeroinitializer ; <<4 x float>*> [#uses=1]
|
|
|
|
implementation ; Functions:
|
|
|
|
void %test() {
|
|
%tmp = load <4 x float>* %G1 ; <<4 x float>> [#uses=2]
|
|
%tmp2 = load <4 x float>* %G2 ; <<4 x float>> [#uses=2]
|
|
%tmp135 = shufflevector <4 x float> %tmp, <4 x float> %tmp2, <4 x uint> < uint 0, uint 4, uint 1, uint 5 > ; <<4 x float>> [#uses=1]
|
|
store <4 x float> %tmp135, <4 x float>* %G3
|
|
%tmp293 = shufflevector <4 x float> %tmp, <4 x float> %tmp2, <4 x uint> < uint 1, uint undef, uint 3, uint 4 > ; <<4 x float>> [#uses=1]
|
|
store <4 x float> %tmp293, <4 x float>* %G4
|
|
ret void
|
|
}
|
|
|
|
Compiles (llc -march=x86 -mcpu=yonah -relocation-model=static) to:
|
|
|
|
_test:
|
|
movaps _G2, %xmm0
|
|
movaps _G1, %xmm1
|
|
movaps %xmm1, %xmm2
|
|
2) shufps $3, %xmm0, %xmm2
|
|
movaps %xmm1, %xmm3
|
|
2) shufps $1, %xmm0, %xmm3
|
|
1) unpcklps %xmm0, %xmm1
|
|
2) shufps $128, %xmm2, %xmm3
|
|
1) movaps %xmm1, _G3
|
|
movaps %xmm3, _G4
|
|
ret
|
|
|
|
The 1) marked instructions could be scheduled better for reduced register
|
|
pressure. The scheduling issue is more pronounced without -static.
|
|
|
|
The 2) marked instructions are the lowered form of the 1,undef,3,4
|
|
shufflevector. It seems that there should be a better way to do it :)
|
|
|
|
|