mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 22:32:38 +00:00
2da8bc8a5f
DAG scheduling during isel. Most new functionality is currently guarded by -enable-sched-cycles and -enable-sched-hazard. Added InstrItineraryData::IssueWidth field, currently derived from ARM itineraries, but could be initialized differently on other targets. Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is active, and if so how many cycles of state it holds. Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry into the scheduler's available queue. ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to get information about it's SUnits, provides RecedeCycle for bottom-up scheduling, correctly computes scoreboard depth, tracks IssueCount, and considers potential stall cycles when checking for hazards. ScheduleDAGRRList now models machine cycles and hazards (under flags). It tracks MinAvailableCycle, drives the hazard recognizer and priority queue's ready filter, manages a new PendingQueue, properly accounts for stall cycles, etc. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
652 lines
25 KiB
C++
652 lines
25 KiB
C++
//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCPredicates.h"
|
|
#include "PPCGenInstrInfo.inc"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCHazardRecognizers.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
|
|
namespace llvm {
|
|
extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp.
|
|
extern cl::opt<bool> EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp.
|
|
}
|
|
|
|
using namespace llvm;
|
|
|
|
PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
|
|
: TargetInstrInfoImpl(PPCInsts, array_lengthof(PPCInsts)), TM(tm),
|
|
RI(*TM.getSubtargetImpl(), *this) {}
|
|
|
|
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
|
|
/// this target when scheduling the DAG.
|
|
ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
|
|
const TargetMachine *TM,
|
|
const ScheduleDAG *DAG) const {
|
|
// Should use subtarget info to pick the right hazard recognizer. For
|
|
// now, always return a PPC970 recognizer.
|
|
const TargetInstrInfo *TII = TM->getInstrInfo();
|
|
assert(TII && "No InstrInfo?");
|
|
return new PPCHazardRecognizer970(*TII);
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case PPC::LD:
|
|
case PPC::LWZ:
|
|
case PPC::LFS:
|
|
case PPC::LFD:
|
|
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
|
|
MI->getOperand(2).isFI()) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case PPC::STD:
|
|
case PPC::STW:
|
|
case PPC::STFS:
|
|
case PPC::STFD:
|
|
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
|
|
MI->getOperand(2).isFI()) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// commuteInstruction - We can commute rlwimi instructions, but only if the
|
|
// rotate amt is zero. We also have to munge the immediates a bit.
|
|
MachineInstr *
|
|
PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
|
|
// Normal instructions can be commuted the obvious way.
|
|
if (MI->getOpcode() != PPC::RLWIMI)
|
|
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
|
|
|
|
// Cannot commute if it has a non-zero rotate count.
|
|
if (MI->getOperand(3).getImm() != 0)
|
|
return 0;
|
|
|
|
// If we have a zero rotate count, we have:
|
|
// M = mask(MB,ME)
|
|
// Op0 = (Op1 & ~M) | (Op2 & M)
|
|
// Change this to:
|
|
// M = mask((ME+1)&31, (MB-1)&31)
|
|
// Op0 = (Op2 & ~M) | (Op1 & M)
|
|
|
|
// Swap op1/op2
|
|
unsigned Reg0 = MI->getOperand(0).getReg();
|
|
unsigned Reg1 = MI->getOperand(1).getReg();
|
|
unsigned Reg2 = MI->getOperand(2).getReg();
|
|
bool Reg1IsKill = MI->getOperand(1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(2).isKill();
|
|
bool ChangeReg0 = false;
|
|
// If machine instrs are no longer in two-address forms, update
|
|
// destination register as well.
|
|
if (Reg0 == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
// Masks.
|
|
unsigned MB = MI->getOperand(4).getImm();
|
|
unsigned ME = MI->getOperand(5).getImm();
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
|
|
bool Reg0IsDead = MI->getOperand(0).isDead();
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg1IsKill))
|
|
.addImm((ME+1) & 31)
|
|
.addImm((MB-1) & 31);
|
|
}
|
|
|
|
if (ChangeReg0)
|
|
MI->getOperand(0).setReg(Reg2);
|
|
MI->getOperand(2).setReg(Reg1);
|
|
MI->getOperand(1).setReg(Reg2);
|
|
MI->getOperand(2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(1).setIsKill(Reg2IsKill);
|
|
|
|
// Swap the mask around.
|
|
MI->getOperand(4).setImm((ME+1) & 31);
|
|
MI->getOperand(5).setImm((MB-1) & 31);
|
|
return MI;
|
|
}
|
|
|
|
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
DebugLoc DL;
|
|
BuildMI(MBB, MI, DL, get(PPC::NOP));
|
|
}
|
|
|
|
|
|
// Branch analysis.
|
|
bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
if (LastInst->getOpcode() == PPC::B) {
|
|
if (!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BCC) {
|
|
if (!LastInst->getOperand(2).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst->getOperand(2).getMBB();
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
return false;
|
|
}
|
|
// Otherwise, don't know what this is.
|
|
return true;
|
|
}
|
|
|
|
// Get the instruction before it if it's a terminator.
|
|
MachineInstr *SecondLastInst = I;
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() &&
|
|
isUnpredicatedTerminator(--I))
|
|
return true;
|
|
|
|
// If the block ends with PPC::B and PPC:BCC, handle it.
|
|
if (SecondLastInst->getOpcode() == PPC::BCC &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(2).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(2).getMBB();
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
Cond.push_back(SecondLastInst->getOperand(1));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two PPC:Bs, handle it. The second one is not
|
|
// executed, so remove it.
|
|
if (SecondLastInst->getOpcode() == PPC::B &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin()) return 0;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return 0;
|
|
--I;
|
|
}
|
|
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC)
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) return 1;
|
|
--I;
|
|
if (I->getOpcode() != PPC::BCC)
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
unsigned
|
|
PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 2 || Cond.size() == 0) &&
|
|
"PPC branch conditions have two components!");
|
|
|
|
// One-way branch.
|
|
if (FBB == 0) {
|
|
if (Cond.empty()) // Unconditional branch
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
|
|
else // Conditional branch
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Two-way Conditional Branch.
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
unsigned Opc;
|
|
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR;
|
|
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR8;
|
|
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::FMR;
|
|
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::MCRF;
|
|
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::VOR;
|
|
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::CROR;
|
|
else
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
|
|
const TargetInstrDesc &TID = get(Opc);
|
|
if (TID.getNumOperands() == 3)
|
|
BuildMI(MBB, I, DL, TID, DestReg)
|
|
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
else
|
|
BuildMI(MBB, I, DL, TID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
bool
|
|
PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
|
|
unsigned SrcReg, bool isKill,
|
|
int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const{
|
|
DebugLoc DL;
|
|
if (RC == PPC::GPRCRegisterClass) {
|
|
if (SrcReg != PPC::LR) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else {
|
|
// FIXME: this spills LR immediately to memory in one step. To do this,
|
|
// we use R11, which we know cannot be used in the prolog/epilog. This is
|
|
// a hack.
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11));
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
|
|
.addReg(PPC::R11,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
}
|
|
} else if (RC == PPC::G8RCRegisterClass) {
|
|
if (SrcReg != PPC::LR8) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else {
|
|
// FIXME: this spills LR immediately to memory in one step. To do this,
|
|
// we use R11, which we know cannot be used in the prolog/epilog. This is
|
|
// a hack.
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11));
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
|
|
.addReg(PPC::X11,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
}
|
|
} else if (RC == PPC::F8RCRegisterClass) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (RC == PPC::F4RCRegisterClass) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (RC == PPC::CRRCRegisterClass) {
|
|
if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
|
|
(EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
|
|
// FIXME (64-bit): Enable
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
return true;
|
|
} else {
|
|
// FIXME: We need a scatch reg here. The trouble with using R0 is that
|
|
// it's possible for the stack frame to be so big the save location is
|
|
// out of range of immediate offsets, necessitating another register.
|
|
// We hack this on Darwin by reserving R2. It's probably broken on Linux
|
|
// at the moment.
|
|
|
|
// We need to store the CR in the low 4-bits of the saved value. First,
|
|
// issue a MFCR to save all of the CRBits.
|
|
unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
|
|
PPC::R2 : PPC::R0;
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFCRpseud), ScratchReg)
|
|
.addReg(SrcReg, getKillRegState(isKill)));
|
|
|
|
// If the saved register wasn't CR0, shift the bits left so that they are
|
|
// in CR0's slot.
|
|
if (SrcReg != PPC::CR0) {
|
|
unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(SrcReg)*4;
|
|
// rlwinm scratch, scratch, ShiftBits, 0, 31.
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
|
|
.addReg(ScratchReg).addImm(ShiftBits)
|
|
.addImm(0).addImm(31));
|
|
}
|
|
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
|
|
.addReg(ScratchReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
}
|
|
} else if (RC == PPC::CRBITRCRegisterClass) {
|
|
// FIXME: We use CRi here because there is no mtcrf on a bit. Since the
|
|
// backend currently only uses CR1EQ as an individual bit, this should
|
|
// not cause any bug. If we need other uses of CR bits, the following
|
|
// code may be invalid.
|
|
unsigned Reg = 0;
|
|
if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
|
|
SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
|
|
Reg = PPC::CR0;
|
|
else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
|
|
SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
|
|
Reg = PPC::CR1;
|
|
else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
|
|
SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
|
|
Reg = PPC::CR2;
|
|
else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
|
|
SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
|
|
Reg = PPC::CR3;
|
|
else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
|
|
SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
|
|
Reg = PPC::CR4;
|
|
else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
|
|
SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
|
|
Reg = PPC::CR5;
|
|
else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
|
|
SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
|
|
Reg = PPC::CR6;
|
|
else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
|
|
SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
|
|
Reg = PPC::CR7;
|
|
|
|
return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
|
|
PPC::CRRCRegisterClass, NewMIs);
|
|
|
|
} else if (RC == PPC::VRRCRegisterClass) {
|
|
// We don't have indexed addressing for vector loads. Emit:
|
|
// R0 = ADDI FI#
|
|
// STVX VAL, 0, R0
|
|
//
|
|
// FIXME: We use R0 here, because it isn't available for RA.
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
|
|
FrameIdx, 0, 0));
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX))
|
|
.addReg(SrcReg, getKillRegState(isKill))
|
|
.addReg(PPC::R0)
|
|
.addReg(PPC::R0));
|
|
} else {
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
|
|
if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) {
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setSpillsCR();
|
|
}
|
|
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(
|
|
MachinePointerInfo(PseudoSourceValue::getFixedStack(FrameIdx)),
|
|
MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlignment(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
void
|
|
PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs)const{
|
|
if (RC == PPC::GPRCRegisterClass) {
|
|
if (DestReg != PPC::LR) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
|
|
DestReg), FrameIdx));
|
|
} else {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
|
|
PPC::R11), FrameIdx));
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11));
|
|
}
|
|
} else if (RC == PPC::G8RCRegisterClass) {
|
|
if (DestReg != PPC::LR8) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
|
|
FrameIdx));
|
|
} else {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD),
|
|
PPC::R11), FrameIdx));
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::R11));
|
|
}
|
|
} else if (RC == PPC::F8RCRegisterClass) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
|
|
FrameIdx));
|
|
} else if (RC == PPC::F4RCRegisterClass) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
|
|
FrameIdx));
|
|
} else if (RC == PPC::CRRCRegisterClass) {
|
|
// FIXME: We need a scatch reg here. The trouble with using R0 is that
|
|
// it's possible for the stack frame to be so big the save location is
|
|
// out of range of immediate offsets, necessitating another register.
|
|
// We hack this on Darwin by reserving R2. It's probably broken on Linux
|
|
// at the moment.
|
|
unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
|
|
PPC::R2 : PPC::R0;
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
|
|
ScratchReg), FrameIdx));
|
|
|
|
// If the reloaded register isn't CR0, shift the bits right so that they are
|
|
// in the right CR's slot.
|
|
if (DestReg != PPC::CR0) {
|
|
unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(DestReg)*4;
|
|
// rlwinm r11, r11, 32-ShiftBits, 0, 31.
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
|
|
.addReg(ScratchReg).addImm(32-ShiftBits).addImm(0)
|
|
.addImm(31));
|
|
}
|
|
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTCRF), DestReg)
|
|
.addReg(ScratchReg));
|
|
} else if (RC == PPC::CRBITRCRegisterClass) {
|
|
|
|
unsigned Reg = 0;
|
|
if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
|
|
DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
|
|
Reg = PPC::CR0;
|
|
else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
|
|
DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
|
|
Reg = PPC::CR1;
|
|
else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
|
|
DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
|
|
Reg = PPC::CR2;
|
|
else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
|
|
DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
|
|
Reg = PPC::CR3;
|
|
else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
|
|
DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
|
|
Reg = PPC::CR4;
|
|
else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
|
|
DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
|
|
Reg = PPC::CR5;
|
|
else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
|
|
DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
|
|
Reg = PPC::CR6;
|
|
else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
|
|
DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
|
|
Reg = PPC::CR7;
|
|
|
|
return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
|
|
PPC::CRRCRegisterClass, NewMIs);
|
|
|
|
} else if (RC == PPC::VRRCRegisterClass) {
|
|
// We don't have indexed addressing for vector loads. Emit:
|
|
// R0 = ADDI FI#
|
|
// Dest = LVX 0, R0
|
|
//
|
|
// FIXME: We use R0 here, because it isn't available for RA.
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
|
|
FrameIdx, 0, 0));
|
|
NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0)
|
|
.addReg(PPC::R0));
|
|
} else {
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
}
|
|
|
|
void
|
|
PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
DebugLoc DL;
|
|
if (MI != MBB.end()) DL = MI->getDebugLoc();
|
|
LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(
|
|
MachinePointerInfo(PseudoSourceValue::getFixedStack(FrameIdx)),
|
|
MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlignment(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
MachineInstr*
|
|
PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
|
|
int FrameIx, uint64_t Offset,
|
|
const MDNode *MDPtr,
|
|
DebugLoc DL) const {
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE));
|
|
addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr);
|
|
return &*MIB;
|
|
}
|
|
|
|
bool PPCInstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
|
|
// Leave the CR# the same, but invert the condition.
|
|
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
|
|
return false;
|
|
}
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
///
|
|
unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case PPC::INLINEASM: { // Inline Asm: Variable size.
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const char *AsmStr = MI->getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
}
|
|
case PPC::PROLOG_LABEL:
|
|
case PPC::EH_LABEL:
|
|
case PPC::GC_LABEL:
|
|
case PPC::DBG_VALUE:
|
|
return 0;
|
|
default:
|
|
return 4; // PowerPC instructions are all 4 bytes
|
|
}
|
|
}
|