1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2025-01-02 22:32:38 +00:00
llvm-6502/lib/Transforms/IPO/IPConstantPropagation.cpp
Owen Anderson 081c34b725 Get rid of static constructors for pass registration. Instead, every pass exposes an initializeMyPassFunction(), which
must be called in the pass's constructor.  This function uses static dependency declarations to recursively initialize
the pass's dependencies.

Clients that only create passes through the createFooPass() APIs will require no changes.  Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.

I have tested this with all standard configurations of clang and llvm-gcc on Darwin.  It is possible that there are problems
with the static dependencies that will only be visible with non-standard options.  If you encounter any crash in pass
registration/creation, please send the testcase to me directly.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-19 17:21:58 +00:00

280 lines
9.4 KiB
C++

//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an _extremely_ simple interprocedural constant
// propagation pass. It could certainly be improved in many different ways,
// like using a worklist. This pass makes arguments dead, but does not remove
// them. The existing dead argument elimination pass should be run after this
// to clean up the mess.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ipconstprop"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/CallSite.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumArgumentsProped, "Number of args turned into constants");
STATISTIC(NumReturnValProped, "Number of return values turned into constants");
namespace {
/// IPCP - The interprocedural constant propagation pass
///
struct IPCP : public ModulePass {
static char ID; // Pass identification, replacement for typeid
IPCP() : ModulePass(ID) {
initializeIPCPPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M);
private:
bool PropagateConstantsIntoArguments(Function &F);
bool PropagateConstantReturn(Function &F);
};
}
char IPCP::ID = 0;
INITIALIZE_PASS(IPCP, "ipconstprop",
"Interprocedural constant propagation", false, false)
ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
bool IPCP::runOnModule(Module &M) {
bool Changed = false;
bool LocalChange = true;
// FIXME: instead of using smart algorithms, we just iterate until we stop
// making changes.
while (LocalChange) {
LocalChange = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration()) {
// Delete any klingons.
I->removeDeadConstantUsers();
if (I->hasLocalLinkage())
LocalChange |= PropagateConstantsIntoArguments(*I);
Changed |= PropagateConstantReturn(*I);
}
Changed |= LocalChange;
}
return Changed;
}
/// PropagateConstantsIntoArguments - Look at all uses of the specified
/// function. If all uses are direct call sites, and all pass a particular
/// constant in for an argument, propagate that constant in as the argument.
///
bool IPCP::PropagateConstantsIntoArguments(Function &F) {
if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
// For each argument, keep track of its constant value and whether it is a
// constant or not. The bool is driven to true when found to be non-constant.
SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
ArgumentConstants.resize(F.arg_size());
unsigned NumNonconstant = 0;
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
User *U = *UI;
// Ignore blockaddress uses.
if (isa<BlockAddress>(U)) continue;
// Used by a non-instruction, or not the callee of a function, do not
// transform.
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
return false;
CallSite CS(cast<Instruction>(U));
if (!CS.isCallee(UI))
return false;
// Check out all of the potentially constant arguments. Note that we don't
// inspect varargs here.
CallSite::arg_iterator AI = CS.arg_begin();
Function::arg_iterator Arg = F.arg_begin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
++i, ++AI, ++Arg) {
// If this argument is known non-constant, ignore it.
if (ArgumentConstants[i].second)
continue;
Constant *C = dyn_cast<Constant>(*AI);
if (C && ArgumentConstants[i].first == 0) {
ArgumentConstants[i].first = C; // First constant seen.
} else if (C && ArgumentConstants[i].first == C) {
// Still the constant value we think it is.
} else if (*AI == &*Arg) {
// Ignore recursive calls passing argument down.
} else {
// Argument became non-constant. If all arguments are non-constant now,
// give up on this function.
if (++NumNonconstant == ArgumentConstants.size())
return false;
ArgumentConstants[i].second = true;
}
}
}
// If we got to this point, there is a constant argument!
assert(NumNonconstant != ArgumentConstants.size());
bool MadeChange = false;
Function::arg_iterator AI = F.arg_begin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
// Do we have a constant argument?
if (ArgumentConstants[i].second || AI->use_empty() ||
(AI->hasByValAttr() && !F.onlyReadsMemory()))
continue;
Value *V = ArgumentConstants[i].first;
if (V == 0) V = UndefValue::get(AI->getType());
AI->replaceAllUsesWith(V);
++NumArgumentsProped;
MadeChange = true;
}
return MadeChange;
}
// Check to see if this function returns one or more constants. If so, replace
// all callers that use those return values with the constant value. This will
// leave in the actual return values and instructions, but deadargelim will
// clean that up.
//
// Additionally if a function always returns one of its arguments directly,
// callers will be updated to use the value they pass in directly instead of
// using the return value.
bool IPCP::PropagateConstantReturn(Function &F) {
if (F.getReturnType()->isVoidTy())
return false; // No return value.
// If this function could be overridden later in the link stage, we can't
// propagate information about its results into callers.
if (F.mayBeOverridden())
return false;
// Check to see if this function returns a constant.
SmallVector<Value *,4> RetVals;
const StructType *STy = dyn_cast<StructType>(F.getReturnType());
if (STy)
for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
RetVals.push_back(UndefValue::get(STy->getElementType(i)));
else
RetVals.push_back(UndefValue::get(F.getReturnType()));
unsigned NumNonConstant = 0;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
// Already found conflicting return values?
Value *RV = RetVals[i];
if (!RV)
continue;
// Find the returned value
Value *V;
if (!STy)
V = RI->getOperand(i);
else
V = FindInsertedValue(RI->getOperand(0), i);
if (V) {
// Ignore undefs, we can change them into anything
if (isa<UndefValue>(V))
continue;
// Try to see if all the rets return the same constant or argument.
if (isa<Constant>(V) || isa<Argument>(V)) {
if (isa<UndefValue>(RV)) {
// No value found yet? Try the current one.
RetVals[i] = V;
continue;
}
// Returning the same value? Good.
if (RV == V)
continue;
}
}
// Different or no known return value? Don't propagate this return
// value.
RetVals[i] = 0;
// All values non constant? Stop looking.
if (++NumNonConstant == RetVals.size())
return false;
}
}
// If we got here, the function returns at least one constant value. Loop
// over all users, replacing any uses of the return value with the returned
// constant.
bool MadeChange = false;
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
CallSite CS(*UI);
Instruction* Call = CS.getInstruction();
// Not a call instruction or a call instruction that's not calling F
// directly?
if (!Call || !CS.isCallee(UI))
continue;
// Call result not used?
if (Call->use_empty())
continue;
MadeChange = true;
if (STy == 0) {
Value* New = RetVals[0];
if (Argument *A = dyn_cast<Argument>(New))
// Was an argument returned? Then find the corresponding argument in
// the call instruction and use that.
New = CS.getArgument(A->getArgNo());
Call->replaceAllUsesWith(New);
continue;
}
for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
I != E;) {
Instruction *Ins = cast<Instruction>(*I);
// Increment now, so we can remove the use
++I;
// Find the index of the retval to replace with
int index = -1;
if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
if (EV->hasIndices())
index = *EV->idx_begin();
// If this use uses a specific return value, and we have a replacement,
// replace it.
if (index != -1) {
Value *New = RetVals[index];
if (New) {
if (Argument *A = dyn_cast<Argument>(New))
// Was an argument returned? Then find the corresponding argument in
// the call instruction and use that.
New = CS.getArgument(A->getArgNo());
Ins->replaceAllUsesWith(New);
Ins->eraseFromParent();
}
}
}
}
if (MadeChange) ++NumReturnValProped;
return MadeChange;
}