llvm-6502/lib/Transforms/Scalar/ConstantHoisting.cpp
Juergen Ributzka ee3242ed0b Revert "[Constant Hoisting] Extend coverage of the constant hoisting pass."
I will break this up into smaller pieces for review and recommit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204393 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-20 20:17:13 +00:00

459 lines
18 KiB
C++

//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies expensive constants to hoist and coalesces them to
// better prepare it for SelectionDAG-based code generation. This works around
// the limitations of the basic-block-at-a-time approach.
//
// First it scans all instructions for integer constants and calculates its
// cost. If the constant can be folded into the instruction (the cost is
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
// consider it expensive and leave it alone. This is the default behavior and
// the default implementation of getIntImmCost will always return TCC_Free.
//
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
// into the instruction and it might be beneficial to hoist the constant.
// Similar constants are coalesced to reduce register pressure and
// materialization code.
//
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
// be live-out of the basic block. Otherwise the constant would be just
// duplicated and each basic block would have its own copy in the SelectionDAG.
// The SelectionDAG recognizes such constants as opaque and doesn't perform
// certain transformations on them, which would create a new expensive constant.
//
// This optimization is only applied to integer constants in instructions and
// simple (this means not nested) constant cast experessions. For example:
// %0 = load i64* inttoptr (i64 big_constant to i64*)
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "consthoist"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
STATISTIC(NumConstantsRebased, "Number of constants rebased");
namespace {
typedef SmallVector<User *, 4> ConstantUseListType;
struct ConstantCandidate {
unsigned CumulativeCost;
ConstantUseListType Uses;
};
struct ConstantInfo {
ConstantInt *BaseConstant;
struct RebasedConstantInfo {
ConstantInt *OriginalConstant;
Constant *Offset;
ConstantUseListType Uses;
};
typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
RebasedConstantListType RebasedConstants;
};
class ConstantHoisting : public FunctionPass {
const TargetTransformInfo *TTI;
DominatorTree *DT;
/// Keeps track of expensive constants found in the function.
typedef MapVector<ConstantInt *, ConstantCandidate> ConstantMapType;
ConstantMapType ConstantMap;
/// These are the final constants we decided to hoist.
SmallVector<ConstantInfo, 4> Constants;
public:
static char ID; // Pass identification, replacement for typeid
ConstantHoisting() : FunctionPass(ID), TTI(0) {
initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
const char *getPassName() const override { return "Constant Hoisting"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfo>();
}
private:
void CollectConstant(User *U, unsigned Opcode, Intrinsic::ID IID,
ConstantInt *C);
void CollectConstants(Instruction *I);
void CollectConstants(Function &F);
void FindAndMakeBaseConstant(ConstantMapType::iterator S,
ConstantMapType::iterator E);
void FindBaseConstants();
Instruction *FindConstantInsertionPoint(Function &F,
const ConstantInfo &CI) const;
void EmitBaseConstants(Function &F, User *U, Instruction *Base,
Constant *Offset, ConstantInt *OriginalConstant);
bool EmitBaseConstants(Function &F);
bool OptimizeConstants(Function &F);
};
}
char ConstantHoisting::ID = 0;
INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
false, false)
FunctionPass *llvm::createConstantHoistingPass() {
return new ConstantHoisting();
}
/// \brief Perform the constant hoisting optimization for the given function.
bool ConstantHoisting::runOnFunction(Function &F) {
DEBUG(dbgs() << "********** Constant Hoisting **********\n");
DEBUG(dbgs() << "********** Function: " << F.getName() << '\n');
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
TTI = &getAnalysis<TargetTransformInfo>();
return OptimizeConstants(F);
}
void ConstantHoisting::CollectConstant(User * U, unsigned Opcode,
Intrinsic::ID IID, ConstantInt *C) {
unsigned Cost;
if (Opcode)
Cost = TTI->getIntImmCost(Opcode, C->getValue(), C->getType());
else
Cost = TTI->getIntImmCost(IID, C->getValue(), C->getType());
if (Cost > TargetTransformInfo::TCC_Basic) {
ConstantCandidate &CC = ConstantMap[C];
CC.CumulativeCost += Cost;
CC.Uses.push_back(U);
DEBUG(dbgs() << "Collect constant " << *C << " with cost " << Cost
<< " from " << *U << '\n');
}
}
/// \brief Scan the instruction or constant expression for expensive integer
/// constants and record them in the constant map.
void ConstantHoisting::CollectConstants(Instruction *I) {
unsigned Opcode = 0;
Intrinsic::ID IID = Intrinsic::not_intrinsic;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
IID = II->getIntrinsicID();
else
Opcode = I->getOpcode();
// Scan all operands.
for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) {
if (ConstantInt *C = dyn_cast<ConstantInt>(O)) {
CollectConstant(I, Opcode, IID, C);
continue;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(O)) {
// We only handle constant cast expressions.
if (!CE->isCast())
continue;
if (ConstantInt *C = dyn_cast<ConstantInt>(CE->getOperand(0))) {
// Ignore the cast expression and use the opcode of the instruction.
CollectConstant(CE, Opcode, IID, C);
continue;
}
}
}
}
/// \brief Collect all integer constants in the function that cannot be folded
/// into an instruction itself.
void ConstantHoisting::CollectConstants(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
CollectConstants(I);
}
/// \brief Find the base constant within the given range and rebase all other
/// constants with respect to the base constant.
void ConstantHoisting::FindAndMakeBaseConstant(ConstantMapType::iterator S,
ConstantMapType::iterator E) {
ConstantMapType::iterator MaxCostItr = S;
unsigned NumUses = 0;
// Use the constant that has the maximum cost as base constant.
for (ConstantMapType::iterator I = S; I != E; ++I) {
NumUses += I->second.Uses.size();
if (I->second.CumulativeCost > MaxCostItr->second.CumulativeCost)
MaxCostItr = I;
}
// Don't hoist constants that have only one use.
if (NumUses <= 1)
return;
ConstantInfo CI;
CI.BaseConstant = MaxCostItr->first;
Type *Ty = CI.BaseConstant->getType();
// Rebase the constants with respect to the base constant.
for (ConstantMapType::iterator I = S; I != E; ++I) {
APInt Diff = I->first->getValue() - CI.BaseConstant->getValue();
ConstantInfo::RebasedConstantInfo RCI;
RCI.OriginalConstant = I->first;
RCI.Offset = ConstantInt::get(Ty, Diff);
RCI.Uses = std::move(I->second.Uses);
CI.RebasedConstants.push_back(RCI);
}
Constants.push_back(CI);
}
/// \brief Finds and combines constants that can be easily rematerialized with
/// an add from a common base constant.
void ConstantHoisting::FindBaseConstants() {
// Sort the constants by value and type. This invalidates the mapping.
std::sort(ConstantMap.begin(), ConstantMap.end(),
[](const std::pair<ConstantInt *, ConstantCandidate> &LHS,
const std::pair<ConstantInt *, ConstantCandidate> &RHS) {
if (LHS.first->getType() != RHS.first->getType())
return LHS.first->getType()->getBitWidth() <
RHS.first->getType()->getBitWidth();
return LHS.first->getValue().ult(RHS.first->getValue());
});
// Simple linear scan through the sorted constant map for viable merge
// candidates.
ConstantMapType::iterator MinValItr = ConstantMap.begin();
for (ConstantMapType::iterator I = std::next(ConstantMap.begin()),
E = ConstantMap.end(); I != E; ++I) {
if (MinValItr->first->getType() == I->first->getType()) {
// Check if the constant is in range of an add with immediate.
APInt Diff = I->first->getValue() - MinValItr->first->getValue();
if ((Diff.getBitWidth() <= 64) &&
TTI->isLegalAddImmediate(Diff.getSExtValue()))
continue;
}
// We either have now a different constant type or the constant is not in
// range of an add with immediate anymore.
FindAndMakeBaseConstant(MinValItr, I);
// Start a new base constant search.
MinValItr = I;
}
// Finalize the last base constant search.
FindAndMakeBaseConstant(MinValItr, ConstantMap.end());
}
/// \brief Records the basic block of the instruction or all basic blocks of the
/// users of the constant expression.
static void CollectBasicBlocks(SmallPtrSet<BasicBlock *, 4> &BBs, Function &F,
User *U) {
if (Instruction *I = dyn_cast<Instruction>(U))
BBs.insert(I->getParent());
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U))
// Find all users of this constant expression.
for (User *UU : CE->users())
// Only record users that are instructions. We don't want to go down a
// nested constant expression chain. Also check if the instruction is even
// in the current function.
if (Instruction *I = dyn_cast<Instruction>(UU))
if(I->getParent()->getParent() == &F)
BBs.insert(I->getParent());
}
/// \brief Find the instruction we should insert the constant materialization
/// before.
static Instruction *getMatInsertPt(Instruction *I, const DominatorTree *DT) {
if (!isa<PHINode>(I) && !isa<LandingPadInst>(I)) // Simple case.
return I;
// We can't insert directly before a phi node or landing pad. Insert before
// the terminator of the dominating block.
assert(&I->getParent()->getParent()->getEntryBlock() != I->getParent() &&
"PHI or landing pad in entry block!");
BasicBlock *IDom = DT->getNode(I->getParent())->getIDom()->getBlock();
return IDom->getTerminator();
}
/// \brief Find an insertion point that dominates all uses.
Instruction *ConstantHoisting::
FindConstantInsertionPoint(Function &F, const ConstantInfo &CI) const {
BasicBlock *Entry = &F.getEntryBlock();
// Collect all basic blocks.
SmallPtrSet<BasicBlock *, 4> BBs;
ConstantInfo::RebasedConstantListType::const_iterator RCI, RCE;
for (RCI = CI.RebasedConstants.begin(), RCE = CI.RebasedConstants.end();
RCI != RCE; ++RCI)
for (SmallVectorImpl<User *>::const_iterator U = RCI->Uses.begin(),
E = RCI->Uses.end(); U != E; ++U)
CollectBasicBlocks(BBs, F, *U);
if (BBs.count(Entry))
return getMatInsertPt(&Entry->front(), DT);
while (BBs.size() >= 2) {
BasicBlock *BB, *BB1, *BB2;
BB1 = *BBs.begin();
BB2 = *std::next(BBs.begin());
BB = DT->findNearestCommonDominator(BB1, BB2);
if (BB == Entry)
return getMatInsertPt(&Entry->front(), DT);
BBs.erase(BB1);
BBs.erase(BB2);
BBs.insert(BB);
}
assert((BBs.size() == 1) && "Expected only one element.");
Instruction &FirstInst = (*BBs.begin())->front();
return getMatInsertPt(&FirstInst, DT);
}
/// \brief Emit materialization code for all rebased constants and update their
/// users.
void ConstantHoisting::EmitBaseConstants(Function &F, User *U,
Instruction *Base, Constant *Offset,
ConstantInt *OriginalConstant) {
if (Instruction *I = dyn_cast<Instruction>(U)) {
Instruction *Mat = Base;
if (!Offset->isNullValue()) {
Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
"const_mat", getMatInsertPt(I, DT));
// Use the same debug location as the instruction we are about to update.
Mat->setDebugLoc(I->getDebugLoc());
DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
<< " + " << *Offset << ") in BB "
<< I->getParent()->getName() << '\n' << *Mat << '\n');
}
DEBUG(dbgs() << "Update: " << *I << '\n');
I->replaceUsesOfWith(OriginalConstant, Mat);
DEBUG(dbgs() << "To: " << *I << '\n');
return;
}
assert(isa<ConstantExpr>(U) && "Expected a ConstantExpr.");
ConstantExpr *CE = cast<ConstantExpr>(U);
SmallVector<std::pair<Instruction *, Instruction *>, 8> WorkList;
DEBUG(dbgs() << "Visit ConstantExpr " << *CE << '\n');
for (User *UU : CE->users()) {
DEBUG(dbgs() << "Check user "; UU->print(dbgs()); dbgs() << '\n');
// We only handel instructions here and won't walk down a ConstantExpr chain
// to replace all ConstExpr with instructions.
if (Instruction *I = dyn_cast<Instruction>(UU)) {
// Only update constant expressions in the current function.
if (I->getParent()->getParent() != &F) {
DEBUG(dbgs() << "Not in the same function - skip.\n");
continue;
}
Instruction *Mat = Base;
Instruction *InsertBefore = getMatInsertPt(I, DT);
if (!Offset->isNullValue()) {
Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
"const_mat", InsertBefore);
// Use the same debug location as the instruction we are about to
// update.
Mat->setDebugLoc(I->getDebugLoc());
DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
<< " + " << *Offset << ") in BB "
<< I->getParent()->getName() << '\n' << *Mat << '\n');
}
Instruction *ICE = CE->getAsInstruction();
ICE->replaceUsesOfWith(OriginalConstant, Mat);
ICE->insertBefore(InsertBefore);
// Use the same debug location as the instruction we are about to update.
ICE->setDebugLoc(I->getDebugLoc());
WorkList.push_back(std::make_pair(I, ICE));
} else {
DEBUG(dbgs() << "Not an instruction - skip.\n");
}
}
SmallVectorImpl<std::pair<Instruction *, Instruction *> >::iterator I, E;
for (I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
DEBUG(dbgs() << "Create instruction: " << *I->second << '\n');
DEBUG(dbgs() << "Update: " << *I->first << '\n');
I->first->replaceUsesOfWith(CE, I->second);
DEBUG(dbgs() << "To: " << *I->first << '\n');
}
}
/// \brief Hoist and hide the base constant behind a bitcast and emit
/// materialization code for derived constants.
bool ConstantHoisting::EmitBaseConstants(Function &F) {
bool MadeChange = false;
SmallVectorImpl<ConstantInfo>::iterator CI, CE;
for (CI = Constants.begin(), CE = Constants.end(); CI != CE; ++CI) {
// Hoist and hide the base constant behind a bitcast.
Instruction *IP = FindConstantInsertionPoint(F, *CI);
IntegerType *Ty = CI->BaseConstant->getType();
Instruction *Base = new BitCastInst(CI->BaseConstant, Ty, "const", IP);
DEBUG(dbgs() << "Hoist constant (" << *CI->BaseConstant << ") to BB "
<< IP->getParent()->getName() << '\n');
NumConstantsHoisted++;
// Emit materialization code for all rebased constants.
ConstantInfo::RebasedConstantListType::iterator RCI, RCE;
for (RCI = CI->RebasedConstants.begin(), RCE = CI->RebasedConstants.end();
RCI != RCE; ++RCI) {
NumConstantsRebased++;
for (SmallVectorImpl<User *>::iterator U = RCI->Uses.begin(),
E = RCI->Uses.end(); U != E; ++U)
EmitBaseConstants(F, *U, Base, RCI->Offset, RCI->OriginalConstant);
}
// Use the same debug location as the last user of the constant.
assert(!Base->use_empty() && "The use list is empty!?");
assert(isa<Instruction>(Base->user_back()) &&
"All uses should be instructions.");
Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
// Correct for base constant, which we counted above too.
NumConstantsRebased--;
MadeChange = true;
}
return MadeChange;
}
/// \brief Optimize expensive integer constants in the given function.
bool ConstantHoisting::OptimizeConstants(Function &F) {
bool MadeChange = false;
// Collect all constant candidates.
CollectConstants(F);
// There are no constants to worry about.
if (ConstantMap.empty())
return MadeChange;
// Combine constants that can be easily materialized with an add from a common
// base constant.
FindBaseConstants();
// Finally hoist the base constant and emit materializating code for dependent
// constants.
MadeChange |= EmitBaseConstants(F);
ConstantMap.clear();
Constants.clear();
return MadeChange;
}