llvm-6502/lib/Linker/LinkModules.cpp
Manman Ren 0d12d4ebc6 [llvm link] Destroy ConstantArrays in LLVMContext if they are not used.
ConstantArrays constructed during linking can cause quadratic memory
explosion. An example is the ConstantArrays constructed when linking in
GlobalVariables with appending linkage.

Releasing all unused constants can cause a 20% LTO compile-time
slowdown for a large application. So this commit releases unused ConstantArrays
only.

rdar://19040716. It reduces memory footprint from 20+G to 6+G.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226592 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-20 19:24:59 +00:00

1767 lines
62 KiB
C++

//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
//===----------------------------------------------------------------------===//
#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <cctype>
#include <tuple>
using namespace llvm;
//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type*, Type*> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type*, 16> SpeculativeTypes;
SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType*, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
public:
TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
Linker::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
}
/// Dump out the type map for debugging purposes.
void dump() const {
for (auto &Pair : MappedTypes) {
dbgs() << "TypeMap: ";
Pair.first->print(dbgs());
dbgs() << " => ";
Pair.second->print(dbgs());
dbgs() << '\n';
}
}
private:
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
assert(SpeculativeTypes.empty());
assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
MappedTypes.erase(Ty);
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
SpeculativeDstOpaqueTypes.size());
for (StructType *Ty : SpeculativeDstOpaqueTypes)
DstResolvedOpaqueTypes.erase(Ty);
} else {
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
STy->setName("");
}
SpeculativeTypes.clear();
SpeculativeDstOpaqueTypes.clear();
}
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
}
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
return true;
}
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
SpeculativeTypes.push_back(SrcTy);
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
}
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
return false;
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
return false;
}
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type*, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
}
SrcDefinitionsToResolve.clear();
DstResolvedOpaqueTypes.clear();
}
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
STy->setName("");
DTy->setName(TmpName);
}
DstStructTypesSet.addNonOpaque(DTy);
}
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
}
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
#ifndef NDEBUG
if (!IsUniqued) {
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
}
}
#endif
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
}
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
ElementTypes.resize(Ty->getNumContainedTypes());
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
}
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
}
}
return *Entry;
}
// If all of the element types mapped directly over and the type is not
// a nomed struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
cast<ArrayType>(Ty)->getNumElements());
case Type::VectorTyID:
return *Entry = VectorType::get(ElementTypes[0],
cast<VectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
cast<PointerType>(Ty)->getAddressSpace());
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
makeArrayRef(ElementTypes).slice(1),
cast<FunctionType>(Ty)->isVarArg());
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
DstStructTypesSet.addOpaque(STy);
return *Entry = Ty;
}
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
STy->setName("");
return *Entry = OldT;
}
if (!AnyChange) {
DstStructTypesSet.addNonOpaque(STy);
return *Entry = Ty;
}
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
}
}
}
//===----------------------------------------------------------------------===//
// ModuleLinker implementation.
//===----------------------------------------------------------------------===//
namespace {
class ModuleLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class ValueMaterializerTy : public ValueMaterializer {
TypeMapTy &TypeMap;
Module *DstM;
std::vector<GlobalValue *> &LazilyLinkGlobalValues;
public:
ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
std::vector<GlobalValue *> &LazilyLinkGlobalValues)
: ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
Value *materializeValueFor(Value *V) override;
};
class LinkDiagnosticInfo : public DiagnosticInfo {
const Twine &Msg;
public:
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
void print(DiagnosticPrinter &DP) const override;
};
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
/// This is an implementation class for the LinkModules function, which is the
/// entrypoint for this file.
class ModuleLinker {
Module *DstM, *SrcM;
TypeMapTy TypeMap;
ValueMaterializerTy ValMaterializer;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
struct AppendingVarInfo {
GlobalVariable *NewGV; // New aggregate global in dest module.
const Constant *DstInit; // Old initializer from dest module.
const Constant *SrcInit; // Old initializer from src module.
};
std::vector<AppendingVarInfo> AppendingVars;
// Set of items not to link in from source.
SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
// Vector of GlobalValues to lazily link in.
std::vector<GlobalValue *> LazilyLinkGlobalValues;
/// Functions that have replaced other functions.
SmallPtrSet<const Function *, 16> OverridingFunctions;
DiagnosticHandlerFunction DiagnosticHandler;
public:
ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
DiagnosticHandlerFunction DiagnosticHandler)
: DstM(dstM), SrcM(srcM), TypeMap(Set),
ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
DiagnosticHandler(DiagnosticHandler) {}
bool run();
private:
bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
const GlobalValue &Src);
/// Helper method for setting a message and returning an error code.
bool emitError(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
return true;
}
void emitWarning(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
}
bool getComdatLeader(Module *M, StringRef ComdatName,
const GlobalVariable *&GVar);
bool computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc);
std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
ComdatsChosen;
bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
bool &LinkFromSrc);
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
}
void computeTypeMapping();
void upgradeMismatchedGlobalArray(StringRef Name);
void upgradeMismatchedGlobals();
bool linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
bool linkGlobalValueProto(GlobalValue *GV);
bool linkModuleFlagsMetadata();
void linkAppendingVarInit(const AppendingVarInfo &AVI);
void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
bool linkFunctionBody(Function &Dst, Function &Src);
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
bool linkGlobalValueBody(GlobalValue &Src);
void linkNamedMDNodes();
void stripReplacedSubprograms();
};
}
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
GV->takeName(ConflictGV);
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
}
}
/// copy additional attributes (those not needed to construct a GlobalValue)
/// from the SrcGV to the DestGV.
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
DestGV->copyAttributesFrom(SrcGV);
forceRenaming(DestGV, SrcGV->getName());
}
static bool isLessConstraining(GlobalValue::VisibilityTypes a,
GlobalValue::VisibilityTypes b) {
if (a == GlobalValue::HiddenVisibility)
return false;
if (b == GlobalValue::HiddenVisibility)
return true;
if (a == GlobalValue::ProtectedVisibility)
return false;
if (b == GlobalValue::ProtectedVisibility)
return true;
return false;
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV = new GlobalVariable(
DstM, TypeMap.get(SGVar->getType()->getElementType()),
SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
return NewDGV;
}
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
SF->getName(), &DstM);
}
/// Set up prototypes for any aliases that come over from the source module.
static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalAlias *SGA) {
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
SGA->getLinkage(), SGA->getName(), &DstM);
}
static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
const GlobalValue *SGV) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
else if (auto *SF = dyn_cast<Function>(SGV))
NewGV = copyFunctionProto(TypeMap, DstM, SF);
else
NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
copyGVAttributes(NewGV, SGV);
return NewGV;
}
Value *ValueMaterializerTy::materializeValueFor(Value *V) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
if (Comdat *SC = SGV->getComdat()) {
if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
Comdat *DC = DstM->getOrInsertComdat(SC->getName());
DGO->setComdat(DC);
}
}
LazilyLinkGlobalValues.push_back(SGV);
return DGV;
}
bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
const GlobalVariable *&GVar) {
const GlobalValue *GVal = M->getNamedValue(ComdatName);
if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
GVal = GA->getBaseObject();
if (!GVal)
// We cannot resolve the size of the aliasee yet.
return emitError("Linking COMDATs named '" + ComdatName +
"': COMDAT key involves incomputable alias size.");
}
GVar = dyn_cast_or_null<GlobalVariable>(GVal);
if (!GVar)
return emitError(
"Linking COMDATs named '" + ComdatName +
"': GlobalVariable required for data dependent selection!");
return false;
}
bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
// The ability to mix Comdat::SelectionKind::Any with
// Comdat::SelectionKind::Largest is a behavior that comes from COFF.
bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
Dst == Comdat::SelectionKind::Largest;
bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
Src == Comdat::SelectionKind::Largest;
if (DstAnyOrLargest && SrcAnyOrLargest) {
if (Dst == Comdat::SelectionKind::Largest ||
Src == Comdat::SelectionKind::Largest)
Result = Comdat::SelectionKind::Largest;
else
Result = Comdat::SelectionKind::Any;
} else if (Src == Dst) {
Result = Dst;
} else {
return emitError("Linking COMDATs named '" + ComdatName +
"': invalid selection kinds!");
}
switch (Result) {
case Comdat::SelectionKind::Any:
// Go with Dst.
LinkFromSrc = false;
break;
case Comdat::SelectionKind::NoDuplicates:
return emitError("Linking COMDATs named '" + ComdatName +
"': noduplicates has been violated!");
case Comdat::SelectionKind::ExactMatch:
case Comdat::SelectionKind::Largest:
case Comdat::SelectionKind::SameSize: {
const GlobalVariable *DstGV;
const GlobalVariable *SrcGV;
if (getComdatLeader(DstM, ComdatName, DstGV) ||
getComdatLeader(SrcM, ComdatName, SrcGV))
return true;
const DataLayout *DstDL = DstM->getDataLayout();
const DataLayout *SrcDL = SrcM->getDataLayout();
if (!DstDL || !SrcDL) {
return emitError(
"Linking COMDATs named '" + ComdatName +
"': can't do size dependent selection without DataLayout!");
}
uint64_t DstSize =
DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
uint64_t SrcSize =
SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
if (Result == Comdat::SelectionKind::ExactMatch) {
if (SrcGV->getInitializer() != DstGV->getInitializer())
return emitError("Linking COMDATs named '" + ComdatName +
"': ExactMatch violated!");
LinkFromSrc = false;
} else if (Result == Comdat::SelectionKind::Largest) {
LinkFromSrc = SrcSize > DstSize;
} else if (Result == Comdat::SelectionKind::SameSize) {
if (SrcSize != DstSize)
return emitError("Linking COMDATs named '" + ComdatName +
"': SameSize violated!");
LinkFromSrc = false;
} else {
llvm_unreachable("unknown selection kind");
}
break;
}
}
return false;
}
bool ModuleLinker::getComdatResult(const Comdat *SrcC,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
Comdat::SelectionKind SSK = SrcC->getSelectionKind();
StringRef ComdatName = SrcC->getName();
Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
if (DstCI == ComdatSymTab.end()) {
// Use the comdat if it is only available in one of the modules.
LinkFromSrc = true;
Result = SSK;
return false;
}
const Comdat *DstC = &DstCI->second;
Comdat::SelectionKind DSK = DstC->getSelectionKind();
return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
LinkFromSrc);
}
bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
const GlobalValue &Dest,
const GlobalValue &Src) {
// We always have to add Src if it has appending linkage.
if (Src.hasAppendingLinkage()) {
LinkFromSrc = true;
return false;
}
bool SrcIsDeclaration = Src.isDeclarationForLinker();
bool DestIsDeclaration = Dest.isDeclarationForLinker();
if (SrcIsDeclaration) {
// If Src is external or if both Src & Dest are external.. Just link the
// external globals, we aren't adding anything.
if (Src.hasDLLImportStorageClass()) {
// If one of GVs is marked as DLLImport, result should be dllimport'ed.
LinkFromSrc = DestIsDeclaration;
return false;
}
// If the Dest is weak, use the source linkage.
LinkFromSrc = Dest.hasExternalWeakLinkage();
return false;
}
if (DestIsDeclaration) {
// If Dest is external but Src is not:
LinkFromSrc = true;
return false;
}
if (Src.hasCommonLinkage()) {
if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
if (!Dest.hasCommonLinkage()) {
LinkFromSrc = false;
return false;
}
// FIXME: Make datalayout mandatory and just use getDataLayout().
DataLayout DL(Dest.getParent());
uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
LinkFromSrc = SrcSize > DestSize;
return false;
}
if (Src.isWeakForLinker()) {
assert(!Dest.hasExternalWeakLinkage());
assert(!Dest.hasAvailableExternallyLinkage());
if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
LinkFromSrc = false;
return false;
}
if (Dest.isWeakForLinker()) {
assert(Src.hasExternalLinkage());
LinkFromSrc = true;
return false;
}
assert(!Src.hasExternalWeakLinkage());
assert(!Dest.hasExternalWeakLinkage());
assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
"Unexpected linkage type!");
return emitError("Linking globals named '" + Src.getName() +
"': symbol multiply defined!");
}
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void ModuleLinker::computeTypeMapping() {
for (GlobalValue &SGV : SrcM->globals()) {
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
continue;
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
}
for (GlobalValue &SGV : *SrcM) {
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
for (GlobalValue &SGV : SrcM->aliases()) {
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
for (StructType *ST : Types) {
if (!ST->hasName())
continue;
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
if (!DST)
continue;
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
//
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
//
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
}
static void upgradeGlobalArray(GlobalVariable *GV) {
ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
StructType *OldTy = cast<StructType>(ATy->getElementType());
assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
// Get the upgraded 3 element type.
PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
VoidPtrTy};
StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
// Build new constants with a null third field filled in.
Constant *OldInitC = GV->getInitializer();
ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
// Invalid initializer; give up.
return;
std::vector<Constant *> Initializers;
if (OldInit && OldInit->getNumOperands()) {
Value *Null = Constant::getNullValue(VoidPtrTy);
for (Use &U : OldInit->operands()) {
ConstantStruct *Init = cast<ConstantStruct>(U.get());
Initializers.push_back(ConstantStruct::get(
NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
}
}
assert(Initializers.size() == ATy->getNumElements() &&
"Failed to copy all array elements");
// Replace the old GV with a new one.
ATy = ArrayType::get(NewTy, Initializers.size());
Constant *NewInit = ConstantArray::get(ATy, Initializers);
GlobalVariable *NewGV = new GlobalVariable(
*GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
GV->isExternallyInitialized());
NewGV->copyAttributesFrom(GV);
NewGV->takeName(GV);
assert(GV->use_empty() && "program cannot use initializer list");
GV->eraseFromParent();
}
void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
// Look for the global arrays.
auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
if (!DstGV)
return;
auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
if (!SrcGV)
return;
// Check if the types already match.
auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
auto *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
if (DstTy == SrcTy)
return;
// Grab the element types. We can only upgrade an array of a two-field
// struct. Only bother if the other one has three-fields.
auto *DstEltTy = cast<StructType>(DstTy->getElementType());
auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
upgradeGlobalArray(DstGV);
return;
}
if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
upgradeGlobalArray(SrcGV);
// We can't upgrade any other differences.
}
void ModuleLinker::upgradeMismatchedGlobals() {
upgradeMismatchedGlobalArray("llvm.global_ctors");
upgradeMismatchedGlobalArray("llvm.global_dtors");
}
/// If there were any appending global variables, link them together now.
/// Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return emitError("Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending global!");
ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
ArrayType *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
Type *EltTy = DstTy->getElementType();
// Check to see that they two arrays agree on type.
if (EltTy != SrcTy->getElementType())
return emitError("Appending variables with different element types!");
if (DstGV->isConstant() != SrcGV->isConstant())
return emitError("Appending variables linked with different const'ness!");
if (DstGV->getAlignment() != SrcGV->getAlignment())
return emitError(
"Appending variables with different alignment need to be linked!");
if (DstGV->getVisibility() != SrcGV->getVisibility())
return emitError(
"Appending variables with different visibility need to be linked!");
if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
return emitError(
"Appending variables with different unnamed_addr need to be linked!");
if (StringRef(DstGV->getSection()) != SrcGV->getSection())
return emitError(
"Appending variables with different section name need to be linked!");
uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG =
new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
DstGV->getThreadLocalMode(),
DstGV->getType()->getAddressSpace());
// Propagate alignment, visibility and section info.
copyGVAttributes(NG, DstGV);
AppendingVarInfo AVI;
AVI.NewGV = NG;
AVI.DstInit = DstGV->getInitializer();
AVI.SrcInit = SrcGV->getInitializer();
AppendingVars.push_back(AVI);
// Replace any uses of the two global variables with uses of the new
// global.
ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
DstGV->eraseFromParent();
// Track the source variable so we don't try to link it.
DoNotLinkFromSource.insert(SrcGV);
return false;
}
bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
// Handle the ultra special appending linkage case first.
if (DGV && DGV->hasAppendingLinkage())
return linkAppendingVarProto(cast<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
bool LinkFromSrc = true;
Comdat *C = nullptr;
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
if (const Comdat *SC = SGV->getComdat()) {
Comdat::SelectionKind SK;
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
C = DstM->getOrInsertComdat(SC->getName());
C->setSelectionKind(SK);
} else if (DGV) {
if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
return true;
}
if (!LinkFromSrc) {
// Track the source global so that we don't attempt to copy it over when
// processing global initializers.
DoNotLinkFromSource.insert(SGV);
if (DGV)
// Make sure to remember this mapping.
ValueMap[SGV] =
ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
}
if (DGV) {
Visibility = isLessConstraining(Visibility, DGV->getVisibility())
? DGV->getVisibility()
: Visibility;
HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
}
if (!LinkFromSrc && !DGV)
return false;
GlobalValue *NewGV;
if (!LinkFromSrc) {
NewGV = DGV;
} else {
// If the GV is to be lazily linked, don't create it just yet.
// The ValueMaterializerTy will deal with creating it if it's used.
if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
SGV->hasAvailableExternallyLinkage())) {
DoNotLinkFromSource.insert(SGV);
return false;
}
NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
if (DGV && isa<Function>(DGV))
if (auto *NewF = dyn_cast<Function>(NewGV))
OverridingFunctions.insert(NewF);
}
NewGV->setUnnamedAddr(HasUnnamedAddr);
NewGV->setVisibility(Visibility);
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
if (C)
NewGO->setComdat(C);
if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
}
if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
auto *SGVar = dyn_cast<GlobalVariable>(SGV);
if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
(!DGVar->isConstant() || !SGVar->isConstant()))
NewGVar->setConstant(false);
}
// Make sure to remember this mapping.
if (NewGV != DGV) {
if (DGV) {
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
DGV->eraseFromParent();
}
ValueMap[SGV] = NewGV;
}
return false;
}
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
Dest.push_back(C->getAggregateElement(i));
}
void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
// Merge the initializer.
SmallVector<Constant *, 16> DstElements;
getArrayElements(AVI.DstInit, DstElements);
SmallVector<Constant *, 16> SrcElements;
getArrayElements(AVI.SrcInit, SrcElements);
ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
StringRef Name = AVI.NewGV->getName();
bool IsNewStructor =
(Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
cast<StructType>(NewType->getElementType())->getNumElements() == 3;
for (auto *V : SrcElements) {
if (IsNewStructor) {
Constant *Key = V->getAggregateElement(2);
if (DoNotLinkFromSource.count(Key))
continue;
}
DstElements.push_back(
MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
}
if (IsNewStructor) {
NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
AVI.NewGV->mutateType(PointerType::get(NewType, 0));
}
AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
}
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
&ValMaterializer));
}
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (std::error_code EC = Src.materialize())
return emitError(EC.message());
// Link in the prefix data.
if (Src.hasPrefixData())
Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
&ValMaterializer));
// Link in the prologue data.
if (Src.hasPrologueData())
Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
&TypeMap, &ValMaterializer));
// Go through and convert function arguments over, remembering the mapping.
Function::arg_iterator DI = Dst.arg_begin();
for (Argument &Arg : Src.args()) {
DI->setName(Arg.getName()); // Copy the name over.
// Add a mapping to our mapping.
ValueMap[&Arg] = DI;
++DI;
}
// Splice the body of the source function into the dest function.
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// At this point, all of the instructions and values of the function are now
// copied over. The only problem is that they are still referencing values in
// the Source function as operands. Loop through all of the operands of the
// functions and patch them up to point to the local versions.
for (BasicBlock &BB : Dst)
for (Instruction &I : BB)
RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
&ValMaterializer);
// There is no need to map the arguments anymore.
for (Argument &Arg : Src.args())
ValueMap.erase(&Arg);
Src.Dematerialize();
return false;
}
void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
Constant *Aliasee = Src.getAliasee();
Constant *Val =
MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
Dst.setAliasee(Val);
}
bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
Value *Dst = ValueMap[&Src];
assert(Dst);
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(*Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
return false;
}
linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
return false;
}
/// Insert all of the named MDNodes in Src into the Dest module.
void ModuleLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
E = SrcM->named_metadata_end(); I != E; ++I) {
// Don't link module flags here. Do them separately.
if (&*I == SrcModFlags) continue;
NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
// Add Src elements into Dest node.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
&TypeMap, &ValMaterializer));
}
}
/// Drop DISubprograms that have been superseded.
///
/// FIXME: this creates an asymmetric result: we strip losing subprograms from
/// DstM, but leave losing subprograms in SrcM. Instead we should also strip
/// losers from SrcM, but this requires extra plumbing in MapMetadata.
void ModuleLinker::stripReplacedSubprograms() {
// Avoid quadratic runtime by returning early when there's nothing to do.
if (OverridingFunctions.empty())
return;
// Move the functions now, so the set gets cleared even on early returns.
auto Functions = std::move(OverridingFunctions);
OverridingFunctions.clear();
// Drop subprograms whose functions have been overridden by the new compile
// unit.
NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
if (!CompileUnits)
return;
for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
DICompileUnit CU(CompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
DITypedArray<DISubprogram> SPs(CU.getSubprograms());
assert(SPs && "Expected valid subprogram array");
SmallVector<Metadata *, 16> NewSPs;
NewSPs.reserve(SPs.getNumElements());
for (unsigned S = 0, SE = SPs.getNumElements(); S != SE; ++S) {
DISubprogram SP = SPs.getElement(S);
if (SP && SP.getFunction() && Functions.count(SP.getFunction()))
continue;
NewSPs.push_back(SP);
}
// Redirect operand to the overriding subprogram.
if (NewSPs.size() != SPs.getNumElements())
CU.replaceSubprograms(DIArray(MDNode::get(DstM->getContext(), NewSPs)));
}
}
/// Merge the linker flags in Src into the Dest module.
bool ModuleLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
if (!SrcModFlags) return false;
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
DstModFlags->addOperand(SrcModFlags->getOperand(I));
return false;
}
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode*, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
Flags[ID] = std::make_pair(Op, I);
}
}
// Merge in the flags from the source module, and also collect its set of
// requirements.
bool HasErr = false;
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
ConstantInt *SrcBehavior =
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
DstModFlags->addOperand(SrcOp);
}
continue;
}
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
ConstantInt *DstBehavior =
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting override values");
}
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
continue;
}
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors");
continue;
}
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
};
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override: llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitWarning("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
MDs.push_back(DstValue->getOperand(i));
for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
MDs.push_back(SrcValue->getOperand(i));
replaceDstValue(MDNode::get(DstM->getContext(), MDs));
break;
}
case Module::AppendUnique: {
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
Elts.insert(DstValue->getOperand(i));
for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
Elts.insert(SrcValue->getOperand(i));
replaceDstValue(MDNode::get(DstM->getContext(),
makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
}
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue) {
HasErr |= emitError("linking module flags '" + Flag->getString() +
"': does not have the required value");
continue;
}
}
return HasErr;
}
bool ModuleLinker::run() {
assert(DstM && "Null destination module");
assert(SrcM && "Null source module");
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (!DstM->getDataLayout() && SrcM->getDataLayout())
DstM->setDataLayout(SrcM->getDataLayout());
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
DstM->setTargetTriple(SrcM->getTargetTriple());
if (SrcM->getDataLayout() && DstM->getDataLayout() &&
*SrcM->getDataLayout() != *DstM->getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getDataLayoutStr() + "' whereas '" +
DstM->getModuleIdentifier() + "' is '" +
DstM->getDataLayoutStr() + "'\n");
}
if (!SrcM->getTargetTriple().empty() &&
DstM->getTargetTriple() != SrcM->getTargetTriple()) {
emitWarning("Linking two modules of different target triples: " +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getTargetTriple() + "' whereas '" +
DstM->getModuleIdentifier() + "' is '" +
DstM->getTargetTriple() + "'\n");
}
// Append the module inline asm string.
if (!SrcM->getModuleInlineAsm().empty()) {
if (DstM->getModuleInlineAsm().empty())
DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
else
DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
SrcM->getModuleInlineAsm());
}
// Loop over all of the linked values to compute type mappings.
computeTypeMapping();
ComdatsChosen.clear();
for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
const Comdat &C = SMEC.getValue();
if (ComdatsChosen.count(&C))
continue;
Comdat::SelectionKind SK;
bool LinkFromSrc;
if (getComdatResult(&C, SK, LinkFromSrc))
return true;
ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
}
// Upgrade mismatched global arrays.
upgradeMismatchedGlobals();
// Insert all of the globals in src into the DstM module... without linking
// initializers (which could refer to functions not yet mapped over).
for (Module::global_iterator I = SrcM->global_begin(),
E = SrcM->global_end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
// Link the functions together between the two modules, without doing function
// bodies... this just adds external function prototypes to the DstM
// function... We do this so that when we begin processing function bodies,
// all of the global values that may be referenced are available in our
// ValueMap.
for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
// If there were any aliases, link them now.
for (Module::alias_iterator I = SrcM->alias_begin(),
E = SrcM->alias_end(); I != E; ++I)
if (linkGlobalValueProto(I))
return true;
for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
linkAppendingVarInit(AppendingVars[i]);
for (const auto &Entry : DstM->getComdatSymbolTable()) {
const Comdat &C = Entry.getValue();
if (C.getSelectionKind() == Comdat::Any)
continue;
const GlobalValue *GV = SrcM->getNamedValue(C.getName());
assert(GV);
MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
}
// Link in the function bodies that are defined in the source module into
// DstM.
for (Function &SF : *SrcM) {
// Skip if no body (function is external).
if (SF.isDeclaration())
continue;
// Skip if not linking from source.
if (DoNotLinkFromSource.count(&SF))
continue;
if (linkGlobalValueBody(SF))
return true;
}
// Resolve all uses of aliases with aliasees.
for (GlobalAlias &Src : SrcM->aliases()) {
if (DoNotLinkFromSource.count(&Src))
continue;
linkGlobalValueBody(Src);
}
// Strip replaced subprograms before linking together compile units.
stripReplacedSubprograms();
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
linkNamedMDNodes();
// Merge the module flags into the DstM module.
if (linkModuleFlagsMetadata())
return true;
// Update the initializers in the DstM module now that all globals that may
// be referenced are in DstM.
for (GlobalVariable &Src : SrcM->globals()) {
// Only process initialized GV's or ones not already in dest.
if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
continue;
linkGlobalValueBody(Src);
}
// Process vector of lazily linked in functions.
while (!LazilyLinkGlobalValues.empty()) {
GlobalValue *SGV = LazilyLinkGlobalValues.back();
LazilyLinkGlobalValues.pop_back();
assert(!SGV->isDeclaration() && "users should not pass down decls");
if (linkGlobalValueBody(*SGV))
return true;
}
return false;
}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
if (IsPacked != That.IsPacked)
return false;
if (ETypes != That.ETypes)
return false;
return true;
}
bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
}
StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
Key.IsPacked);
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey())
return LHS == getEmptyKey();
if (RHS == getTombstoneKey())
return LHS == getTombstoneKey();
return KeyTy(LHS) == KeyTy(RHS);
}
void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
}
void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
assert(Ty->isOpaque());
OpaqueStructTypes.insert(Ty);
}
StructType *
Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
if (I == NonOpaqueStructTypes.end())
return nullptr;
return *I;
}
bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
if (I == NonOpaqueStructTypes.end())
return false;
return *I == Ty;
}
void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
this->Composite = M;
this->DiagnosticHandler = DiagnosticHandler;
TypeFinder StructTypes;
StructTypes.run(*M, true);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
IdentifiedStructTypes.addOpaque(Ty);
else
IdentifiedStructTypes.addNonOpaque(Ty);
}
}
Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
init(M, DiagnosticHandler);
}
Linker::Linker(Module *M) {
init(M, [this](const DiagnosticInfo &DI) {
Composite->getContext().diagnose(DI);
});
}
Linker::~Linker() {
}
void Linker::deleteModule() {
delete Composite;
Composite = nullptr;
}
bool Linker::linkInModule(Module *Src) {
ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
DiagnosticHandler);
bool RetCode = TheLinker.run();
Composite->dropTriviallyDeadConstantArrays();
return RetCode;
}
//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//
/// This function links two modules together, with the resulting Dest module
/// modified to be the composite of the two input modules. If an error occurs,
/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
/// Upon failure, the Dest module could be in a modified state, and shouldn't be
/// relied on to be consistent.
bool Linker::LinkModules(Module *Dest, Module *Src,
DiagnosticHandlerFunction DiagnosticHandler) {
Linker L(Dest, DiagnosticHandler);
return L.linkInModule(Src);
}
bool Linker::LinkModules(Module *Dest, Module *Src) {
Linker L(Dest);
return L.linkInModule(Src);
}
//===----------------------------------------------------------------------===//
// C API.
//===----------------------------------------------------------------------===//
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
unsigned Unused, char **OutMessages) {
Module *D = unwrap(Dest);
std::string Message;
raw_string_ostream Stream(Message);
DiagnosticPrinterRawOStream DP(Stream);
LLVMBool Result = Linker::LinkModules(
D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
if (OutMessages && Result)
*OutMessages = strdup(Message.c_str());
return Result;
}