mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-06 05:06:45 +00:00
a81d29b391
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79838 91177308-0d34-0410-b5e6-96231b3b80d8
315 lines
11 KiB
C++
315 lines
11 KiB
C++
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
|
// loops identified may actually be several natural loops that share the same
|
|
// header node... not just a single natural loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
char LoopInfo::ID = 0;
|
|
static RegisterPass<LoopInfo>
|
|
X("loops", "Natural Loop Information", true, true);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop implementation
|
|
//
|
|
|
|
/// isLoopInvariant - Return true if the specified value is loop invariant
|
|
///
|
|
bool Loop::isLoopInvariant(Value *V) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return isLoopInvariant(I);
|
|
return true; // All non-instructions are loop invariant
|
|
}
|
|
|
|
/// isLoopInvariant - Return true if the specified instruction is
|
|
/// loop-invariant.
|
|
///
|
|
bool Loop::isLoopInvariant(Instruction *I) const {
|
|
return !contains(I->getParent());
|
|
}
|
|
|
|
/// makeLoopInvariant - If the given value is an instruciton inside of the
|
|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
|
/// Return true if the value after any hoisting is loop invariant. This
|
|
/// function can be used as a slightly more aggressive replacement for
|
|
/// isLoopInvariant.
|
|
///
|
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
|
/// If null, the terminator of the loop preheader is used.
|
|
///
|
|
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
|
|
Instruction *InsertPt) const {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return makeLoopInvariant(I, Changed, InsertPt);
|
|
return true; // All non-instructions are loop-invariant.
|
|
}
|
|
|
|
/// makeLoopInvariant - If the given instruction is inside of the
|
|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
|
|
/// Return true if the instruction after any hoisting is loop invariant. This
|
|
/// function can be used as a slightly more aggressive replacement for
|
|
/// isLoopInvariant.
|
|
///
|
|
/// If InsertPt is specified, it is the point to hoist instructions to.
|
|
/// If null, the terminator of the loop preheader is used.
|
|
///
|
|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
|
|
Instruction *InsertPt) const {
|
|
// Test if the value is already loop-invariant.
|
|
if (isLoopInvariant(I))
|
|
return true;
|
|
if (!I->isSafeToSpeculativelyExecute())
|
|
return false;
|
|
if (I->mayReadFromMemory())
|
|
return false;
|
|
// Determine the insertion point, unless one was given.
|
|
if (!InsertPt) {
|
|
BasicBlock *Preheader = getLoopPreheader();
|
|
// Without a preheader, hoisting is not feasible.
|
|
if (!Preheader)
|
|
return false;
|
|
InsertPt = Preheader->getTerminator();
|
|
}
|
|
// Don't hoist instructions with loop-variant operands.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
|
|
return false;
|
|
// Hoist.
|
|
I->moveBefore(InsertPt);
|
|
Changed = true;
|
|
return true;
|
|
}
|
|
|
|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
|
|
/// induction variable: an integer recurrence that starts at 0 and increments
|
|
/// by one each time through the loop. If so, return the phi node that
|
|
/// corresponds to it.
|
|
///
|
|
/// The IndVarSimplify pass transforms loops to have a canonical induction
|
|
/// variable.
|
|
///
|
|
PHINode *Loop::getCanonicalInductionVariable() const {
|
|
BasicBlock *H = getHeader();
|
|
|
|
BasicBlock *Incoming = 0, *Backedge = 0;
|
|
typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
|
|
InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
|
|
assert(PI != InvBlockTraits::child_end(H) &&
|
|
"Loop must have at least one backedge!");
|
|
Backedge = *PI++;
|
|
if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
|
|
Incoming = *PI++;
|
|
if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
|
|
|
|
if (contains(Incoming)) {
|
|
if (contains(Backedge))
|
|
return 0;
|
|
std::swap(Incoming, Backedge);
|
|
} else if (!contains(Backedge))
|
|
return 0;
|
|
|
|
// Loop over all of the PHI nodes, looking for a canonical indvar.
|
|
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
if (ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
|
|
if (CI->isNullValue())
|
|
if (Instruction *Inc =
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
|
|
if (Inc->getOpcode() == Instruction::Add &&
|
|
Inc->getOperand(0) == PN)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
|
|
if (CI->equalsInt(1))
|
|
return PN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
|
|
/// the canonical induction variable value for the "next" iteration of the
|
|
/// loop. This always succeeds if getCanonicalInductionVariable succeeds.
|
|
///
|
|
Instruction *Loop::getCanonicalInductionVariableIncrement() const {
|
|
if (PHINode *PN = getCanonicalInductionVariable()) {
|
|
bool P1InLoop = contains(PN->getIncomingBlock(1));
|
|
return cast<Instruction>(PN->getIncomingValue(P1InLoop));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
|
|
/// times the loop will be executed. Note that this means that the backedge
|
|
/// of the loop executes N-1 times. If the trip-count cannot be determined,
|
|
/// this returns null.
|
|
///
|
|
/// The IndVarSimplify pass transforms loops to have a form that this
|
|
/// function easily understands.
|
|
///
|
|
Value *Loop::getTripCount() const {
|
|
// Canonical loops will end with a 'cmp ne I, V', where I is the incremented
|
|
// canonical induction variable and V is the trip count of the loop.
|
|
Instruction *Inc = getCanonicalInductionVariableIncrement();
|
|
if (Inc == 0) return 0;
|
|
PHINode *IV = cast<PHINode>(Inc->getOperand(0));
|
|
|
|
BasicBlock *BackedgeBlock =
|
|
IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
|
|
if (BI->isConditional()) {
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
|
|
if (ICI->getOperand(0) == Inc) {
|
|
if (BI->getSuccessor(0) == getHeader()) {
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
|
|
return ICI->getOperand(1);
|
|
} else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
|
|
return ICI->getOperand(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// getSmallConstantTripCount - Returns the trip count of this loop as a
|
|
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
|
|
/// of not constant. Will also return 0 if the trip count is very large
|
|
/// (>= 2^32)
|
|
unsigned Loop::getSmallConstantTripCount() const {
|
|
Value* TripCount = this->getTripCount();
|
|
if (TripCount) {
|
|
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
|
|
// Guard against huge trip counts.
|
|
if (TripCountC->getValue().getActiveBits() <= 32) {
|
|
return (unsigned)TripCountC->getZExtValue();
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
|
|
/// trip count of this loop as a normal unsigned value, if possible. This
|
|
/// means that the actual trip count is always a multiple of the returned
|
|
/// value (don't forget the trip count could very well be zero as well!).
|
|
///
|
|
/// Returns 1 if the trip count is unknown or not guaranteed to be the
|
|
/// multiple of a constant (which is also the case if the trip count is simply
|
|
/// constant, use getSmallConstantTripCount for that case), Will also return 1
|
|
/// if the trip count is very large (>= 2^32).
|
|
unsigned Loop::getSmallConstantTripMultiple() const {
|
|
Value* TripCount = this->getTripCount();
|
|
// This will hold the ConstantInt result, if any
|
|
ConstantInt *Result = NULL;
|
|
if (TripCount) {
|
|
// See if the trip count is constant itself
|
|
Result = dyn_cast<ConstantInt>(TripCount);
|
|
// if not, see if it is a multiplication
|
|
if (!Result)
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
|
|
switch (BO->getOpcode()) {
|
|
case BinaryOperator::Mul:
|
|
Result = dyn_cast<ConstantInt>(BO->getOperand(1));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Guard against huge trip counts.
|
|
if (Result && Result->getValue().getActiveBits() <= 32) {
|
|
return (unsigned)Result->getZExtValue();
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/// isLCSSAForm - Return true if the Loop is in LCSSA form
|
|
bool Loop::isLCSSAForm() const {
|
|
// Sort the blocks vector so that we can use binary search to do quick
|
|
// lookups.
|
|
SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
|
|
|
|
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
|
|
BasicBlock *BB = *BI;
|
|
for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
|
|
++UI) {
|
|
BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
|
|
if (PHINode *P = dyn_cast<PHINode>(*UI)) {
|
|
UserBB = P->getIncomingBlock(UI);
|
|
}
|
|
|
|
// Check the current block, as a fast-path. Most values are used in
|
|
// the same block they are defined in.
|
|
if (UserBB != BB && !LoopBBs.count(UserBB))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isLoopSimplifyForm - Return true if the Loop is in the form that
|
|
/// the LoopSimplify form transforms loops to, which is sometimes called
|
|
/// normal form.
|
|
bool Loop::isLoopSimplifyForm() const {
|
|
// Normal-form loops have a preheader.
|
|
if (!getLoopPreheader())
|
|
return false;
|
|
// Normal-form loops have a single backedge.
|
|
if (!getLoopLatch())
|
|
return false;
|
|
// Each predecessor of each exit block of a normal loop is contained
|
|
// within the loop.
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
getExitBlocks(ExitBlocks);
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
for (pred_iterator PI = pred_begin(ExitBlocks[i]),
|
|
PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
|
|
if (!contains(*PI))
|
|
return false;
|
|
// All the requirements are met.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopInfo implementation
|
|
//
|
|
bool LoopInfo::runOnFunction(Function &) {
|
|
releaseMemory();
|
|
LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
|
|
return false;
|
|
}
|
|
|
|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
|
|
void LoopInfo::print(raw_ostream &OS, const Module*) const {
|
|
LI.print(OS);
|
|
}
|
|
|