mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
be24f1b7fb
Owen Anderson 2009-06-15: Remember to clear out our maps to prevent crashing. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73438 91177308-0d34-0410-b5e6-96231b3b80d8
168 lines
5.7 KiB
C++
168 lines
5.7 KiB
C++
//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a lazy liveness analysis as per "Fast Liveness Checking
|
|
// for SSA-form Programs," by Boissinot, et al.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "lazyliveness"
|
|
#include "llvm/CodeGen/LazyLiveness.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
using namespace llvm;
|
|
|
|
char LazyLiveness::ID = 0;
|
|
static RegisterPass<LazyLiveness> X("lazy-liveness", "Lazy Liveness Analysis");
|
|
|
|
void LazyLiveness::computeBackedgeChain(MachineFunction& mf,
|
|
MachineBasicBlock* MBB) {
|
|
SparseBitVector<128> tmp = rv[MBB];
|
|
tmp.set(preorder[MBB]);
|
|
tmp &= backedge_source;
|
|
calculated.set(preorder[MBB]);
|
|
|
|
for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) {
|
|
assert(rev_preorder.size() > *I && "Unknown block!");
|
|
|
|
MachineBasicBlock* SrcMBB = rev_preorder[*I];
|
|
|
|
for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin(),
|
|
SE = SrcMBB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock* TgtMBB = *SI;
|
|
|
|
if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) &&
|
|
!rv[MBB].test(preorder[TgtMBB])) {
|
|
if (!calculated.test(preorder[TgtMBB]))
|
|
computeBackedgeChain(mf, TgtMBB);
|
|
|
|
tv[MBB].set(preorder[TgtMBB]);
|
|
SparseBitVector<128> right = tv[TgtMBB];
|
|
tv[MBB] |= right;
|
|
}
|
|
}
|
|
|
|
tv[MBB].reset(preorder[MBB]);
|
|
}
|
|
}
|
|
|
|
bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) {
|
|
rv.clear();
|
|
tv.clear();
|
|
backedges.clear();
|
|
backedge_source.clear();
|
|
backedge_target.clear();
|
|
calculated.clear();
|
|
preorder.clear();
|
|
rev_preorder.clear();
|
|
|
|
rv.resize(mf.size());
|
|
tv.resize(mf.size());
|
|
preorder.resize(mf.size());
|
|
rev_preorder.reserve(mf.size());
|
|
|
|
MRI = &mf.getRegInfo();
|
|
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
|
|
|
|
// Step 0: Compute preorder numbering for all MBBs.
|
|
unsigned num = 0;
|
|
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT.getRootNode()),
|
|
DE = df_end(MDT.getRootNode()); DI != DE; ++DI) {
|
|
preorder[(*DI)->getBlock()] = num++;
|
|
rev_preorder.push_back((*DI)->getBlock());
|
|
}
|
|
|
|
// Step 1: Compute the transitive closure of the CFG, ignoring backedges.
|
|
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
|
|
POE = po_end(&*mf.begin()); POI != POE; ++POI) {
|
|
MachineBasicBlock* MBB = *POI;
|
|
SparseBitVector<128>& entry = rv[MBB];
|
|
entry.set(preorder[MBB]);
|
|
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI) {
|
|
DenseMap<MachineBasicBlock*, SparseBitVector<128> >::iterator SII =
|
|
rv.find(*SI);
|
|
|
|
// Because we're iterating in postorder, any successor that does not yet
|
|
// have an rv entry must be on a backedge.
|
|
if (SII != rv.end()) {
|
|
entry |= SII->second;
|
|
} else {
|
|
backedges.insert(std::make_pair(MBB, *SI));
|
|
backedge_source.set(preorder[MBB]);
|
|
backedge_target.set(preorder[*SI]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (SparseBitVector<128>::iterator I = backedge_source.begin();
|
|
I != backedge_source.end(); ++I)
|
|
computeBackedgeChain(mf, rev_preorder[*I]);
|
|
|
|
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
|
|
POE = po_end(&*mf.begin()); POI != POE; ++POI)
|
|
if (!backedge_target.test(preorder[*POI]))
|
|
for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(),
|
|
SE = (*POI)->succ_end(); SI != SE; ++SI)
|
|
if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) {
|
|
SparseBitVector<128> right = tv[*SI];
|
|
tv[*POI] |= right;
|
|
}
|
|
|
|
for (po_iterator<MachineBasicBlock*> POI = po_begin(&*mf.begin()),
|
|
POE = po_end(&*mf.begin()); POI != POE; ++POI)
|
|
tv[*POI].set(preorder[*POI]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) {
|
|
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
|
|
|
|
MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent();
|
|
unsigned def = preorder[DefMBB];
|
|
unsigned max_dom = 0;
|
|
for (df_iterator<MachineDomTreeNode*> DI = df_begin(MDT[DefMBB]),
|
|
DE = df_end(MDT[DefMBB]); DI != DE; ++DI) {
|
|
if (preorder[DI->getBlock()] > max_dom) {
|
|
max_dom = preorder[(*DI)->getBlock()];
|
|
}
|
|
}
|
|
|
|
if (preorder[MBB] <= def || max_dom < preorder[MBB])
|
|
return false;
|
|
|
|
SparseBitVector<128>::iterator I = tv[MBB].begin();
|
|
while (I != tv[MBB].end() && *I <= def) ++I;
|
|
while (I != tv[MBB].end() && *I < max_dom) {
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg),
|
|
UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) {
|
|
MachineBasicBlock* UseMBB = UI->getParent();
|
|
if (rv[rev_preorder[*I]].test(preorder[UseMBB]))
|
|
return true;
|
|
|
|
unsigned t_dom = 0;
|
|
for (df_iterator<MachineDomTreeNode*> DI =
|
|
df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]);
|
|
DI != DE; ++DI)
|
|
if (preorder[DI->getBlock()] > t_dom) {
|
|
max_dom = preorder[(*DI)->getBlock()];
|
|
}
|
|
I = tv[MBB].begin();
|
|
while (I != tv[MBB].end() && *I < t_dom) ++I;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|