llvm-6502/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
Philip Reames f016115f60 [RewriteStatepointsForGC] Delete dead code [NFC]
Before we had real liveness, we needed to track every value that base pointer
insertion code created because these now might be live.  We now just rerun 
the data flow liveness algorithm (which is actually faster!) and no longer 
need the associated code.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234827 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-14 00:41:34 +00:00

2193 lines
83 KiB
C++

//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Rewrite an existing set of gc.statepoints such that they make potential
// relocations performed by the garbage collector explicit in the IR.
//
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
using namespace llvm;
// Print tracing output
static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
cl::init(false));
// Print the liveset found at the insert location
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
cl::init(false));
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
cl::init(false));
// Print out the base pointers for debugging
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
cl::init(false));
#ifdef XDEBUG
static bool ClobberNonLive = true;
#else
static bool ClobberNonLive = false;
#endif
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
cl::location(ClobberNonLive),
cl::Hidden);
namespace {
struct RewriteStatepointsForGC : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
RewriteStatepointsForGC() : FunctionPass(ID) {
initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
// We add and rewrite a bunch of instructions, but don't really do much
// else. We could in theory preserve a lot more analyses here.
AU.addRequired<DominatorTreeWrapperPass>();
}
};
} // namespace
char RewriteStatepointsForGC::ID = 0;
FunctionPass *llvm::createRewriteStatepointsForGCPass() {
return new RewriteStatepointsForGC();
}
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
"Make relocations explicit at statepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
"Make relocations explicit at statepoints", false, false)
namespace {
struct GCPtrLivenessData {
/// Values defined in this block.
DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
/// Values used in this block (and thus live); does not included values
/// killed within this block.
DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
/// Values live into this basic block (i.e. used by any
/// instruction in this basic block or ones reachable from here)
DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
/// Values live out of this basic block (i.e. live into
/// any successor block)
DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
};
// The type of the internal cache used inside the findBasePointers family
// of functions. From the callers perspective, this is an opaque type and
// should not be inspected.
//
// In the actual implementation this caches two relations:
// - The base relation itself (i.e. this pointer is based on that one)
// - The base defining value relation (i.e. before base_phi insertion)
// Generally, after the execution of a full findBasePointer call, only the
// base relation will remain. Internally, we add a mixture of the two
// types, then update all the second type to the first type
typedef DenseMap<Value *, Value *> DefiningValueMapTy;
typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
struct PartiallyConstructedSafepointRecord {
/// The set of values known to be live accross this safepoint
StatepointLiveSetTy liveset;
/// Mapping from live pointers to a base-defining-value
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
/// The *new* gc.statepoint instruction itself. This produces the token
/// that normal path gc.relocates and the gc.result are tied to.
Instruction *StatepointToken;
/// Instruction to which exceptional gc relocates are attached
/// Makes it easier to iterate through them during relocationViaAlloca.
Instruction *UnwindToken;
};
}
/// Compute the live-in set for every basic block in the function
static void computeLiveInValues(DominatorTree &DT, Function &F,
GCPtrLivenessData &Data);
/// Given results from the dataflow liveness computation, find the set of live
/// Values at a particular instruction.
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
StatepointLiveSetTy &out);
// TODO: Once we can get to the GCStrategy, this becomes
// Optional<bool> isGCManagedPointer(const Value *V) const override {
static bool isGCPointerType(const Type *T) {
if (const PointerType *PT = dyn_cast<PointerType>(T))
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
// GC managed heap. We know that a pointer into this heap needs to be
// updated and that no other pointer does.
return (1 == PT->getAddressSpace());
return false;
}
// Return true if this type is one which a) is a gc pointer or contains a GC
// pointer and b) is of a type this code expects to encounter as a live value.
// (The insertion code will assert that a type which matches (a) and not (b)
// is not encountered.)
static bool isHandledGCPointerType(Type *T) {
// We fully support gc pointers
if (isGCPointerType(T))
return true;
// We partially support vectors of gc pointers. The code will assert if it
// can't handle something.
if (auto VT = dyn_cast<VectorType>(T))
if (isGCPointerType(VT->getElementType()))
return true;
return false;
}
#ifndef NDEBUG
/// Returns true if this type contains a gc pointer whether we know how to
/// handle that type or not.
static bool containsGCPtrType(Type *Ty) {
if (isGCPointerType(Ty))
return true;
if (VectorType *VT = dyn_cast<VectorType>(Ty))
return isGCPointerType(VT->getScalarType());
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
return containsGCPtrType(AT->getElementType());
if (StructType *ST = dyn_cast<StructType>(Ty))
return std::any_of(
ST->subtypes().begin(), ST->subtypes().end(),
[](Type *SubType) { return containsGCPtrType(SubType); });
return false;
}
// Returns true if this is a type which a) is a gc pointer or contains a GC
// pointer and b) is of a type which the code doesn't expect (i.e. first class
// aggregates). Used to trip assertions.
static bool isUnhandledGCPointerType(Type *Ty) {
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
}
#endif
static bool order_by_name(llvm::Value *a, llvm::Value *b) {
if (a->hasName() && b->hasName()) {
return -1 == a->getName().compare(b->getName());
} else if (a->hasName() && !b->hasName()) {
return true;
} else if (!a->hasName() && b->hasName()) {
return false;
} else {
// Better than nothing, but not stable
return a < b;
}
}
// Conservatively identifies any definitions which might be live at the
// given instruction. The analysis is performed immediately before the
// given instruction. Values defined by that instruction are not considered
// live. Values used by that instruction are considered live.
static void analyzeParsePointLiveness(
DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Instruction *inst = CS.getInstruction();
StatepointLiveSetTy liveset;
findLiveSetAtInst(inst, OriginalLivenessData, liveset);
if (PrintLiveSet) {
// Note: This output is used by several of the test cases
// The order of elemtns in a set is not stable, put them in a vec and sort
// by name
SmallVector<Value *, 64> temp;
temp.insert(temp.end(), liveset.begin(), liveset.end());
std::sort(temp.begin(), temp.end(), order_by_name);
errs() << "Live Variables:\n";
for (Value *V : temp) {
errs() << " " << V->getName(); // no newline
V->dump();
}
}
if (PrintLiveSetSize) {
errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
errs() << "Number live values: " << liveset.size() << "\n";
}
result.liveset = liveset;
}
/// If we can trivially determine that this vector contains only base pointers,
/// return the base instruction.
static Value *findBaseOfVector(Value *I) {
assert(I->getType()->isVectorTy() &&
cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
"Illegal to ask for the base pointer of a non-pointer type");
// Each case parallels findBaseDefiningValue below, see that code for
// detailed motivation.
if (isa<Argument>(I))
// An incoming argument to the function is a base pointer
return I;
// We shouldn't see the address of a global as a vector value?
assert(!isa<GlobalVariable>(I) &&
"unexpected global variable found in base of vector");
// inlining could possibly introduce phi node that contains
// undef if callee has multiple returns
if (isa<UndefValue>(I))
// utterly meaningless, but useful for dealing with partially optimized
// code.
return I;
// Due to inheritance, this must be _after_ the global variable and undef
// checks
if (Constant *Con = dyn_cast<Constant>(I)) {
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
"order of checks wrong!");
assert(Con->isNullValue() && "null is the only case which makes sense");
return Con;
}
if (isa<LoadInst>(I))
return I;
// Note: This code is currently rather incomplete. We are essentially only
// handling cases where the vector element is trivially a base pointer. We
// need to update the entire base pointer construction algorithm to know how
// to track vector elements and potentially scalarize, but the case which
// would motivate the work hasn't shown up in real workloads yet.
llvm_unreachable("no base found for vector element");
}
/// Helper function for findBasePointer - Will return a value which either a)
/// defines the base pointer for the input or b) blocks the simple search
/// (i.e. a PHI or Select of two derived pointers)
static Value *findBaseDefiningValue(Value *I) {
assert(I->getType()->isPointerTy() &&
"Illegal to ask for the base pointer of a non-pointer type");
// This case is a bit of a hack - it only handles extracts from vectors which
// trivially contain only base pointers. See note inside the function for
// how to improve this.
if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
Value *VectorOperand = EEI->getVectorOperand();
Value *VectorBase = findBaseOfVector(VectorOperand);
(void)VectorBase;
assert(VectorBase && "extract element not known to be a trivial base");
return EEI;
}
if (isa<Argument>(I))
// An incoming argument to the function is a base pointer
// We should have never reached here if this argument isn't an gc value
return I;
if (isa<GlobalVariable>(I))
// base case
return I;
// inlining could possibly introduce phi node that contains
// undef if callee has multiple returns
if (isa<UndefValue>(I))
// utterly meaningless, but useful for dealing with
// partially optimized code.
return I;
// Due to inheritance, this must be _after_ the global variable and undef
// checks
if (Constant *Con = dyn_cast<Constant>(I)) {
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
"order of checks wrong!");
// Note: Finding a constant base for something marked for relocation
// doesn't really make sense. The most likely case is either a) some
// screwed up the address space usage or b) your validating against
// compiled C++ code w/o the proper separation. The only real exception
// is a null pointer. You could have generic code written to index of
// off a potentially null value and have proven it null. We also use
// null pointers in dead paths of relocation phis (which we might later
// want to find a base pointer for).
assert(isa<ConstantPointerNull>(Con) &&
"null is the only case which makes sense");
return Con;
}
if (CastInst *CI = dyn_cast<CastInst>(I)) {
Value *Def = CI->stripPointerCasts();
// If we find a cast instruction here, it means we've found a cast which is
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
// handle int->ptr conversion.
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
return findBaseDefiningValue(Def);
}
if (isa<LoadInst>(I))
return I; // The value loaded is an gc base itself
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
// The base of this GEP is the base
return findBaseDefiningValue(GEP->getPointerOperand());
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_gc_result_ptr:
default:
// fall through to general call handling
break;
case Intrinsic::experimental_gc_statepoint:
case Intrinsic::experimental_gc_result_float:
case Intrinsic::experimental_gc_result_int:
llvm_unreachable("these don't produce pointers");
case Intrinsic::experimental_gc_relocate: {
// Rerunning safepoint insertion after safepoints are already
// inserted is not supported. It could probably be made to work,
// but why are you doing this? There's no good reason.
llvm_unreachable("repeat safepoint insertion is not supported");
}
case Intrinsic::gcroot:
// Currently, this mechanism hasn't been extended to work with gcroot.
// There's no reason it couldn't be, but I haven't thought about the
// implications much.
llvm_unreachable(
"interaction with the gcroot mechanism is not supported");
}
}
// We assume that functions in the source language only return base
// pointers. This should probably be generalized via attributes to support
// both source language and internal functions.
if (isa<CallInst>(I) || isa<InvokeInst>(I))
return I;
// I have absolutely no idea how to implement this part yet. It's not
// neccessarily hard, I just haven't really looked at it yet.
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
if (isa<AtomicCmpXchgInst>(I))
// A CAS is effectively a atomic store and load combined under a
// predicate. From the perspective of base pointers, we just treat it
// like a load.
return I;
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
"binary ops which don't apply to pointers");
// The aggregate ops. Aggregates can either be in the heap or on the
// stack, but in either case, this is simply a field load. As a result,
// this is a defining definition of the base just like a load is.
if (isa<ExtractValueInst>(I))
return I;
// We should never see an insert vector since that would require we be
// tracing back a struct value not a pointer value.
assert(!isa<InsertValueInst>(I) &&
"Base pointer for a struct is meaningless");
// The last two cases here don't return a base pointer. Instead, they
// return a value which dynamically selects from amoung several base
// derived pointers (each with it's own base potentially). It's the job of
// the caller to resolve these.
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
"missing instruction case in findBaseDefiningValing");
return I;
}
/// Returns the base defining value for this value.
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
Value *&Cached = Cache[I];
if (!Cached) {
Cached = findBaseDefiningValue(I);
}
assert(Cache[I] != nullptr);
if (TraceLSP) {
dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
<< "\n";
}
return Cached;
}
/// Return a base pointer for this value if known. Otherwise, return it's
/// base defining value.
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
Value *Def = findBaseDefiningValueCached(I, Cache);
auto Found = Cache.find(Def);
if (Found != Cache.end()) {
// Either a base-of relation, or a self reference. Caller must check.
return Found->second;
}
// Only a BDV available
return Def;
}
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
/// is it known to be a base pointer? Or do we need to continue searching.
static bool isKnownBaseResult(Value *V) {
if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
// no recursion possible
return true;
}
if (isa<Instruction>(V) &&
cast<Instruction>(V)->getMetadata("is_base_value")) {
// This is a previously inserted base phi or select. We know
// that this is a base value.
return true;
}
// We need to keep searching
return false;
}
// TODO: find a better name for this
namespace {
class PhiState {
public:
enum Status { Unknown, Base, Conflict };
PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
assert(status != Base || b);
}
PhiState(Value *b) : status(Base), base(b) {}
PhiState() : status(Unknown), base(nullptr) {}
Status getStatus() const { return status; }
Value *getBase() const { return base; }
bool isBase() const { return getStatus() == Base; }
bool isUnknown() const { return getStatus() == Unknown; }
bool isConflict() const { return getStatus() == Conflict; }
bool operator==(const PhiState &other) const {
return base == other.base && status == other.status;
}
bool operator!=(const PhiState &other) const { return !(*this == other); }
void dump() {
errs() << status << " (" << base << " - "
<< (base ? base->getName() : "nullptr") << "): ";
}
private:
Status status;
Value *base; // non null only if status == base
};
typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
// Values of type PhiState form a lattice, and this is a helper
// class that implementes the meet operation. The meat of the meet
// operation is implemented in MeetPhiStates::pureMeet
class MeetPhiStates {
public:
// phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
: phiStates(phiStates) {}
// Destructively meet the current result with the base V. V can
// either be a merge instruction (SelectInst / PHINode), in which
// case its status is looked up in the phiStates map; or a regular
// SSA value, in which case it is assumed to be a base.
void meetWith(Value *V) {
PhiState otherState = getStateForBDV(V);
assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
MeetPhiStates::pureMeet(currentResult, otherState)) &&
"math is wrong: meet does not commute!");
currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
}
PhiState getResult() const { return currentResult; }
private:
const ConflictStateMapTy &phiStates;
PhiState currentResult;
/// Return a phi state for a base defining value. We'll generate a new
/// base state for known bases and expect to find a cached state otherwise
PhiState getStateForBDV(Value *baseValue) {
if (isKnownBaseResult(baseValue)) {
return PhiState(baseValue);
} else {
return lookupFromMap(baseValue);
}
}
PhiState lookupFromMap(Value *V) {
auto I = phiStates.find(V);
assert(I != phiStates.end() && "lookup failed!");
return I->second;
}
static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
switch (stateA.getStatus()) {
case PhiState::Unknown:
return stateB;
case PhiState::Base:
assert(stateA.getBase() && "can't be null");
if (stateB.isUnknown())
return stateA;
if (stateB.isBase()) {
if (stateA.getBase() == stateB.getBase()) {
assert(stateA == stateB && "equality broken!");
return stateA;
}
return PhiState(PhiState::Conflict);
}
assert(stateB.isConflict() && "only three states!");
return PhiState(PhiState::Conflict);
case PhiState::Conflict:
return stateA;
}
llvm_unreachable("only three states!");
}
};
}
/// For a given value or instruction, figure out what base ptr it's derived
/// from. For gc objects, this is simply itself. On success, returns a value
/// which is the base pointer. (This is reliable and can be used for
/// relocation.) On failure, returns nullptr.
static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Value *def = findBaseOrBDV(I, cache);
if (isKnownBaseResult(def)) {
return def;
}
// Here's the rough algorithm:
// - For every SSA value, construct a mapping to either an actual base
// pointer or a PHI which obscures the base pointer.
// - Construct a mapping from PHI to unknown TOP state. Use an
// optimistic algorithm to propagate base pointer information. Lattice
// looks like:
// UNKNOWN
// b1 b2 b3 b4
// CONFLICT
// When algorithm terminates, all PHIs will either have a single concrete
// base or be in a conflict state.
// - For every conflict, insert a dummy PHI node without arguments. Add
// these to the base[Instruction] = BasePtr mapping. For every
// non-conflict, add the actual base.
// - For every conflict, add arguments for the base[a] of each input
// arguments.
//
// Note: A simpler form of this would be to add the conflict form of all
// PHIs without running the optimistic algorithm. This would be
// analougous to pessimistic data flow and would likely lead to an
// overall worse solution.
ConflictStateMapTy states;
states[def] = PhiState();
// Recursively fill in all phis & selects reachable from the initial one
// for which we don't already know a definite base value for
// TODO: This should be rewritten with a worklist
bool done = false;
while (!done) {
done = true;
// Since we're adding elements to 'states' as we run, we can't keep
// iterators into the set.
SmallVector<Value *, 16> Keys;
Keys.reserve(states.size());
for (auto Pair : states) {
Value *V = Pair.first;
Keys.push_back(V);
}
for (Value *v : Keys) {
assert(!isKnownBaseResult(v) && "why did it get added?");
if (PHINode *phi = dyn_cast<PHINode>(v)) {
assert(phi->getNumIncomingValues() > 0 &&
"zero input phis are illegal");
for (Value *InVal : phi->incoming_values()) {
Value *local = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
states[local] = PhiState();
done = false;
}
}
} else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
states[local] = PhiState();
done = false;
}
local = findBaseOrBDV(sel->getFalseValue(), cache);
if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
states[local] = PhiState();
done = false;
}
}
}
}
if (TraceLSP) {
errs() << "States after initialization:\n";
for (auto Pair : states) {
Instruction *v = cast<Instruction>(Pair.first);
PhiState state = Pair.second;
state.dump();
v->dump();
}
}
// TODO: come back and revisit the state transitions around inputs which
// have reached conflict state. The current version seems too conservative.
bool progress = true;
while (progress) {
#ifndef NDEBUG
size_t oldSize = states.size();
#endif
progress = false;
// We're only changing keys in this loop, thus safe to keep iterators
for (auto Pair : states) {
MeetPhiStates calculateMeet(states);
Value *v = Pair.first;
assert(!isKnownBaseResult(v) && "why did it get added?");
if (SelectInst *select = dyn_cast<SelectInst>(v)) {
calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
} else
for (Value *Val : cast<PHINode>(v)->incoming_values())
calculateMeet.meetWith(findBaseOrBDV(Val, cache));
PhiState oldState = states[v];
PhiState newState = calculateMeet.getResult();
if (oldState != newState) {
progress = true;
states[v] = newState;
}
}
assert(oldSize <= states.size());
assert(oldSize == states.size() || progress);
}
if (TraceLSP) {
errs() << "States after meet iteration:\n";
for (auto Pair : states) {
Instruction *v = cast<Instruction>(Pair.first);
PhiState state = Pair.second;
state.dump();
v->dump();
}
}
// Insert Phis for all conflicts
// We want to keep naming deterministic in the loop that follows, so
// sort the keys before iteration. This is useful in allowing us to
// write stable tests. Note that there is no invalidation issue here.
SmallVector<Value *, 16> Keys;
Keys.reserve(states.size());
for (auto Pair : states) {
Value *V = Pair.first;
Keys.push_back(V);
}
std::sort(Keys.begin(), Keys.end(), order_by_name);
// TODO: adjust naming patterns to avoid this order of iteration dependency
for (Value *V : Keys) {
Instruction *v = cast<Instruction>(V);
PhiState state = states[V];
assert(!isKnownBaseResult(v) && "why did it get added?");
assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
if (!state.isConflict())
continue;
if (isa<PHINode>(v)) {
int num_preds =
std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
assert(num_preds > 0 && "how did we reach here");
PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
// Add metadata marking this as a base value
auto *const_1 = ConstantInt::get(
Type::getInt32Ty(
v->getParent()->getParent()->getParent()->getContext()),
1);
auto MDConst = ConstantAsMetadata::get(const_1);
MDNode *md = MDNode::get(
v->getParent()->getParent()->getParent()->getContext(), MDConst);
phi->setMetadata("is_base_value", md);
states[v] = PhiState(PhiState::Conflict, phi);
} else {
SelectInst *sel = cast<SelectInst>(v);
// The undef will be replaced later
UndefValue *undef = UndefValue::get(sel->getType());
SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
undef, "base_select", sel);
// Add metadata marking this as a base value
auto *const_1 = ConstantInt::get(
Type::getInt32Ty(
v->getParent()->getParent()->getParent()->getContext()),
1);
auto MDConst = ConstantAsMetadata::get(const_1);
MDNode *md = MDNode::get(
v->getParent()->getParent()->getParent()->getContext(), MDConst);
basesel->setMetadata("is_base_value", md);
states[v] = PhiState(PhiState::Conflict, basesel);
}
}
// Fixup all the inputs of the new PHIs
for (auto Pair : states) {
Instruction *v = cast<Instruction>(Pair.first);
PhiState state = Pair.second;
assert(!isKnownBaseResult(v) && "why did it get added?");
assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
if (!state.isConflict())
continue;
if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
PHINode *phi = cast<PHINode>(v);
unsigned NumPHIValues = phi->getNumIncomingValues();
for (unsigned i = 0; i < NumPHIValues; i++) {
Value *InVal = phi->getIncomingValue(i);
BasicBlock *InBB = phi->getIncomingBlock(i);
// If we've already seen InBB, add the same incoming value
// we added for it earlier. The IR verifier requires phi
// nodes with multiple entries from the same basic block
// to have the same incoming value for each of those
// entries. If we don't do this check here and basephi
// has a different type than base, we'll end up adding two
// bitcasts (and hence two distinct values) as incoming
// values for the same basic block.
int blockIndex = basephi->getBasicBlockIndex(InBB);
if (blockIndex != -1) {
Value *oldBase = basephi->getIncomingValue(blockIndex);
basephi->addIncoming(oldBase, InBB);
#ifndef NDEBUG
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown PhiState!");
}
// In essense this assert states: the only way two
// values incoming from the same basic block may be
// different is by being different bitcasts of the same
// value. A cleanup that remains TODO is changing
// findBaseOrBDV to return an llvm::Value of the correct
// type (and still remain pure). This will remove the
// need to add bitcasts.
assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
"sanity -- findBaseOrBDV should be pure!");
#endif
continue;
}
// Find either the defining value for the PHI or the normal base for
// a non-phi node
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown PhiState!");
}
assert(base && "can't be null");
// Must use original input BB since base may not be Instruction
// The cast is needed since base traversal may strip away bitcasts
if (base->getType() != basephi->getType()) {
base = new BitCastInst(base, basephi->getType(), "cast",
InBB->getTerminator());
}
basephi->addIncoming(base, InBB);
}
assert(basephi->getNumIncomingValues() == NumPHIValues);
} else {
SelectInst *basesel = cast<SelectInst>(state.getBase());
SelectInst *sel = cast<SelectInst>(v);
// Operand 1 & 2 are true, false path respectively. TODO: refactor to
// something more safe and less hacky.
for (int i = 1; i <= 2; i++) {
Value *InVal = sel->getOperand(i);
// Find either the defining value for the PHI or the normal base for
// a non-phi node
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown PhiState!");
}
assert(base && "can't be null");
// Must use original input BB since base may not be Instruction
// The cast is needed since base traversal may strip away bitcasts
if (base->getType() != basesel->getType()) {
base = new BitCastInst(base, basesel->getType(), "cast", basesel);
}
basesel->setOperand(i, base);
}
}
}
// Cache all of our results so we can cheaply reuse them
// NOTE: This is actually two caches: one of the base defining value
// relation and one of the base pointer relation! FIXME
for (auto item : states) {
Value *v = item.first;
Value *base = item.second.getBase();
assert(v && base);
assert(!isKnownBaseResult(v) && "why did it get added?");
if (TraceLSP) {
std::string fromstr =
cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
: "none";
errs() << "Updating base value cache"
<< " for: " << (v->hasName() ? v->getName() : "")
<< " from: " << fromstr
<< " to: " << (base->hasName() ? base->getName() : "") << "\n";
}
assert(isKnownBaseResult(base) &&
"must be something we 'know' is a base pointer");
if (cache.count(v)) {
// Once we transition from the BDV relation being store in the cache to
// the base relation being stored, it must be stable
assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
"base relation should be stable");
}
cache[v] = base;
}
assert(cache.find(def) != cache.end());
return cache[def];
}
// For a set of live pointers (base and/or derived), identify the base
// pointer of the object which they are derived from. This routine will
// mutate the IR graph as needed to make the 'base' pointer live at the
// definition site of 'derived'. This ensures that any use of 'derived' can
// also use 'base'. This may involve the insertion of a number of
// additional PHI nodes.
//
// preconditions: live is a set of pointer type Values
//
// side effects: may insert PHI nodes into the existing CFG, will preserve
// CFG, will not remove or mutate any existing nodes
//
// post condition: PointerToBase contains one (derived, base) pair for every
// pointer in live. Note that derived can be equal to base if the original
// pointer was a base pointer.
static void
findBasePointers(const StatepointLiveSetTy &live,
DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
DominatorTree *DT, DefiningValueMapTy &DVCache) {
// For the naming of values inserted to be deterministic - which makes for
// much cleaner and more stable tests - we need to assign an order to the
// live values. DenseSets do not provide a deterministic order across runs.
SmallVector<Value *, 64> Temp;
Temp.insert(Temp.end(), live.begin(), live.end());
std::sort(Temp.begin(), Temp.end(), order_by_name);
for (Value *ptr : Temp) {
Value *base = findBasePointer(ptr, DVCache);
assert(base && "failed to find base pointer");
PointerToBase[ptr] = base;
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
DT->dominates(cast<Instruction>(base)->getParent(),
cast<Instruction>(ptr)->getParent())) &&
"The base we found better dominate the derived pointer");
// If you see this trip and like to live really dangerously, the code should
// be correct, just with idioms the verifier can't handle. You can try
// disabling the verifier at your own substaintial risk.
assert(!isa<ConstantPointerNull>(base) &&
"the relocation code needs adjustment to handle the relocation of "
"a null pointer constant without causing false positives in the "
"safepoint ir verifier.");
}
}
/// Find the required based pointers (and adjust the live set) for the given
/// parse point.
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
const CallSite &CS,
PartiallyConstructedSafepointRecord &result) {
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
if (PrintBasePointers) {
// Note: Need to print these in a stable order since this is checked in
// some tests.
errs() << "Base Pairs (w/o Relocation):\n";
SmallVector<Value *, 64> Temp;
Temp.reserve(PointerToBase.size());
for (auto Pair : PointerToBase) {
Temp.push_back(Pair.first);
}
std::sort(Temp.begin(), Temp.end(), order_by_name);
for (Value *Ptr : Temp) {
Value *Base = PointerToBase[Ptr];
errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
<< "\n";
}
}
result.PointerToBase = PointerToBase;
}
/// Given an updated version of the dataflow liveness results, update the
/// liveset and base pointer maps for the call site CS.
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
const CallSite &CS,
PartiallyConstructedSafepointRecord &result);
static void recomputeLiveInValues(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
// TODO-PERF: reuse the original liveness, then simply run the dataflow
// again. The old values are still live and will help it stablize quickly.
GCPtrLivenessData RevisedLivenessData;
computeLiveInValues(DT, F, RevisedLivenessData);
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
const CallSite &CS = toUpdate[i];
recomputeLiveInValues(RevisedLivenessData, CS, info);
}
}
// When inserting gc.relocate calls, we need to ensure there are no uses
// of the original value between the gc.statepoint and the gc.relocate call.
// One case which can arise is a phi node starting one of the successor blocks.
// We also need to be able to insert the gc.relocates only on the path which
// goes through the statepoint. We might need to split an edge to make this
// possible.
static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) {
DominatorTree *DT = nullptr;
if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
DT = &DTP->getDomTree();
BasicBlock *Ret = BB;
if (!BB->getUniquePredecessor()) {
Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT);
}
// Now that 'ret' has unique predecessor we can safely remove all phi nodes
// from it
FoldSingleEntryPHINodes(Ret);
assert(!isa<PHINode>(Ret->begin()));
// At this point, we can safely insert a gc.relocate as the first instruction
// in Ret if needed.
return Ret;
}
static int find_index(ArrayRef<Value *> livevec, Value *val) {
auto itr = std::find(livevec.begin(), livevec.end(), val);
assert(livevec.end() != itr);
size_t index = std::distance(livevec.begin(), itr);
assert(index < livevec.size());
return index;
}
// Create new attribute set containing only attributes which can be transfered
// from original call to the safepoint.
static AttributeSet legalizeCallAttributes(AttributeSet AS) {
AttributeSet ret;
for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
unsigned index = AS.getSlotIndex(Slot);
if (index == AttributeSet::ReturnIndex ||
index == AttributeSet::FunctionIndex) {
for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
++it) {
Attribute attr = *it;
// Do not allow certain attributes - just skip them
// Safepoint can not be read only or read none.
if (attr.hasAttribute(Attribute::ReadNone) ||
attr.hasAttribute(Attribute::ReadOnly))
continue;
ret = ret.addAttributes(
AS.getContext(), index,
AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
}
}
// Just skip parameter attributes for now
}
return ret;
}
/// Helper function to place all gc relocates necessary for the given
/// statepoint.
/// Inputs:
/// liveVariables - list of variables to be relocated.
/// liveStart - index of the first live variable.
/// basePtrs - base pointers.
/// statepointToken - statepoint instruction to which relocates should be
/// bound.
/// Builder - Llvm IR builder to be used to construct new calls.
static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
const int liveStart,
ArrayRef<llvm::Value *> basePtrs,
Instruction *statepointToken,
IRBuilder<> Builder) {
SmallVector<Instruction *, 64> NewDefs;
NewDefs.reserve(liveVariables.size());
Module *M = statepointToken->getParent()->getParent()->getParent();
for (unsigned i = 0; i < liveVariables.size(); i++) {
// We generate a (potentially) unique declaration for every pointer type
// combination. This results is some blow up the function declarations in
// the IR, but removes the need for argument bitcasts which shrinks the IR
// greatly and makes it much more readable.
SmallVector<Type *, 1> types; // one per 'any' type
types.push_back(liveVariables[i]->getType()); // result type
Value *gc_relocate_decl = Intrinsic::getDeclaration(
M, Intrinsic::experimental_gc_relocate, types);
// Generate the gc.relocate call and save the result
Value *baseIdx =
ConstantInt::get(Type::getInt32Ty(M->getContext()),
liveStart + find_index(liveVariables, basePtrs[i]));
Value *liveIdx = ConstantInt::get(
Type::getInt32Ty(M->getContext()),
liveStart + find_index(liveVariables, liveVariables[i]));
// only specify a debug name if we can give a useful one
Value *reloc = Builder.CreateCall3(
gc_relocate_decl, statepointToken, baseIdx, liveIdx,
liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
: "");
// Trick CodeGen into thinking there are lots of free registers at this
// fake call.
cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
NewDefs.push_back(cast<Instruction>(reloc));
}
assert(NewDefs.size() == liveVariables.size() &&
"missing or extra redefinition at safepoint");
}
static void
makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
const SmallVectorImpl<llvm::Value *> &basePtrs,
const SmallVectorImpl<llvm::Value *> &liveVariables,
Pass *P,
PartiallyConstructedSafepointRecord &result) {
assert(basePtrs.size() == liveVariables.size());
assert(isStatepoint(CS) &&
"This method expects to be rewriting a statepoint");
BasicBlock *BB = CS.getInstruction()->getParent();
assert(BB);
Function *F = BB->getParent();
assert(F && "must be set");
Module *M = F->getParent();
(void)M;
assert(M && "must be set");
// We're not changing the function signature of the statepoint since the gc
// arguments go into the var args section.
Function *gc_statepoint_decl = CS.getCalledFunction();
// Then go ahead and use the builder do actually do the inserts. We insert
// immediately before the previous instruction under the assumption that all
// arguments will be available here. We can't insert afterwards since we may
// be replacing a terminator.
Instruction *insertBefore = CS.getInstruction();
IRBuilder<> Builder(insertBefore);
// Copy all of the arguments from the original statepoint - this includes the
// target, call args, and deopt args
SmallVector<llvm::Value *, 64> args;
args.insert(args.end(), CS.arg_begin(), CS.arg_end());
// TODO: Clear the 'needs rewrite' flag
// add all the pointers to be relocated (gc arguments)
// Capture the start of the live variable list for use in the gc_relocates
const int live_start = args.size();
args.insert(args.end(), liveVariables.begin(), liveVariables.end());
// Create the statepoint given all the arguments
Instruction *token = nullptr;
AttributeSet return_attributes;
if (CS.isCall()) {
CallInst *toReplace = cast<CallInst>(CS.getInstruction());
CallInst *call =
Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
call->setTailCall(toReplace->isTailCall());
call->setCallingConv(toReplace->getCallingConv());
// Currently we will fail on parameter attributes and on certain
// function attributes.
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
// In case if we can handle this set of sttributes - set up function attrs
// directly on statepoint and return attrs later for gc_result intrinsic.
call->setAttributes(new_attrs.getFnAttributes());
return_attributes = new_attrs.getRetAttributes();
token = call;
// Put the following gc_result and gc_relocate calls immediately after the
// the old call (which we're about to delete)
BasicBlock::iterator next(toReplace);
assert(BB->end() != next && "not a terminator, must have next");
next++;
Instruction *IP = &*(next);
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
} else {
InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
// Insert the new invoke into the old block. We'll remove the old one in a
// moment at which point this will become the new terminator for the
// original block.
InvokeInst *invoke = InvokeInst::Create(
gc_statepoint_decl, toReplace->getNormalDest(),
toReplace->getUnwindDest(), args, "", toReplace->getParent());
invoke->setCallingConv(toReplace->getCallingConv());
// Currently we will fail on parameter attributes and on certain
// function attributes.
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
// In case if we can handle this set of sttributes - set up function attrs
// directly on statepoint and return attrs later for gc_result intrinsic.
invoke->setAttributes(new_attrs.getFnAttributes());
return_attributes = new_attrs.getRetAttributes();
token = invoke;
// Generate gc relocates in exceptional path
BasicBlock *unwindBlock = toReplace->getUnwindDest();
assert(!isa<PHINode>(unwindBlock->begin()) &&
unwindBlock->getUniquePredecessor() &&
"can't safely insert in this block!");
Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
// Extract second element from landingpad return value. We will attach
// exceptional gc relocates to it.
const unsigned idx = 1;
Instruction *exceptional_token =
cast<Instruction>(Builder.CreateExtractValue(
unwindBlock->getLandingPadInst(), idx, "relocate_token"));
result.UnwindToken = exceptional_token;
// Just throw away return value. We will use the one we got for normal
// block.
(void)CreateGCRelocates(liveVariables, live_start, basePtrs,
exceptional_token, Builder);
// Generate gc relocates and returns for normal block
BasicBlock *normalDest = toReplace->getNormalDest();
assert(!isa<PHINode>(normalDest->begin()) &&
normalDest->getUniquePredecessor() &&
"can't safely insert in this block!");
IP = &*(normalDest->getFirstInsertionPt());
Builder.SetInsertPoint(IP);
// gc relocates will be generated later as if it were regular call
// statepoint
}
assert(token);
// Take the name of the original value call if it had one.
token->takeName(CS.getInstruction());
// The GCResult is already inserted, we just need to find it
#ifndef NDEBUG
Instruction *toReplace = CS.getInstruction();
assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
"only valid use before rewrite is gc.result");
assert(!toReplace->hasOneUse() ||
isGCResult(cast<Instruction>(*toReplace->user_begin())));
#endif
// Update the gc.result of the original statepoint (if any) to use the newly
// inserted statepoint. This is safe to do here since the token can't be
// considered a live reference.
CS.getInstruction()->replaceAllUsesWith(token);
result.StatepointToken = token;
// Second, create a gc.relocate for every live variable
CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
}
namespace {
struct name_ordering {
Value *base;
Value *derived;
bool operator()(name_ordering const &a, name_ordering const &b) {
return -1 == a.derived->getName().compare(b.derived->getName());
}
};
}
static void stablize_order(SmallVectorImpl<Value *> &basevec,
SmallVectorImpl<Value *> &livevec) {
assert(basevec.size() == livevec.size());
SmallVector<name_ordering, 64> temp;
for (size_t i = 0; i < basevec.size(); i++) {
name_ordering v;
v.base = basevec[i];
v.derived = livevec[i];
temp.push_back(v);
}
std::sort(temp.begin(), temp.end(), name_ordering());
for (size_t i = 0; i < basevec.size(); i++) {
basevec[i] = temp[i].base;
livevec[i] = temp[i].derived;
}
}
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
// which make the relocations happening at this safepoint explicit.
//
// WARNING: Does not do any fixup to adjust users of the original live
// values. That's the callers responsibility.
static void
makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
PartiallyConstructedSafepointRecord &result) {
auto liveset = result.liveset;
auto PointerToBase = result.PointerToBase;
// Convert to vector for efficient cross referencing.
SmallVector<Value *, 64> basevec, livevec;
livevec.reserve(liveset.size());
basevec.reserve(liveset.size());
for (Value *L : liveset) {
livevec.push_back(L);
assert(PointerToBase.find(L) != PointerToBase.end());
Value *base = PointerToBase[L];
basevec.push_back(base);
}
assert(livevec.size() == basevec.size());
// To make the output IR slightly more stable (for use in diffs), ensure a
// fixed order of the values in the safepoint (by sorting the value name).
// The order is otherwise meaningless.
stablize_order(basevec, livevec);
// Do the actual rewriting and delete the old statepoint
makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
CS.getInstruction()->eraseFromParent();
}
// Helper function for the relocationViaAlloca.
// It receives iterator to the statepoint gc relocates and emits store to the
// assigned
// location (via allocaMap) for the each one of them.
// Add visited values into the visitedLiveValues set we will later use them
// for sanity check.
static void
insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
DenseMap<Value *, Value *> &allocaMap,
DenseSet<Value *> &visitedLiveValues) {
for (User *U : gcRelocs) {
if (!isa<IntrinsicInst>(U))
continue;
IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
// We only care about relocates
if (relocatedValue->getIntrinsicID() !=
Intrinsic::experimental_gc_relocate) {
continue;
}
GCRelocateOperands relocateOperands(relocatedValue);
Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
assert(allocaMap.count(originalValue));
Value *alloca = allocaMap[originalValue];
// Emit store into the related alloca
StoreInst *store = new StoreInst(relocatedValue, alloca);
store->insertAfter(relocatedValue);
#ifndef NDEBUG
visitedLiveValues.insert(originalValue);
#endif
}
}
/// do all the relocation update via allocas and mem2reg
static void relocationViaAlloca(
Function &F, DominatorTree &DT, ArrayRef<Value *> live,
ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
#ifndef NDEBUG
// record initial number of (static) allocas; we'll check we have the same
// number when we get done.
int InitialAllocaNum = 0;
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
I++)
if (isa<AllocaInst>(*I))
InitialAllocaNum++;
#endif
// TODO-PERF: change data structures, reserve
DenseMap<Value *, Value *> allocaMap;
SmallVector<AllocaInst *, 200> PromotableAllocas;
PromotableAllocas.reserve(live.size());
// emit alloca for each live gc pointer
for (unsigned i = 0; i < live.size(); i++) {
Value *liveValue = live[i];
AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
F.getEntryBlock().getFirstNonPHI());
allocaMap[liveValue] = alloca;
PromotableAllocas.push_back(alloca);
}
// The next two loops are part of the same conceptual operation. We need to
// insert a store to the alloca after the original def and at each
// redefinition. We need to insert a load before each use. These are split
// into distinct loops for performance reasons.
// update gc pointer after each statepoint
// either store a relocated value or null (if no relocated value found for
// this gc pointer and it is not a gc_result)
// this must happen before we update the statepoint with load of alloca
// otherwise we lose the link between statepoint and old def
for (size_t i = 0; i < records.size(); i++) {
const struct PartiallyConstructedSafepointRecord &info = records[i];
Value *Statepoint = info.StatepointToken;
// This will be used for consistency check
DenseSet<Value *> visitedLiveValues;
// Insert stores for normal statepoint gc relocates
insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
// In case if it was invoke statepoint
// we will insert stores for exceptional path gc relocates.
if (isa<InvokeInst>(Statepoint)) {
insertRelocationStores(info.UnwindToken->users(), allocaMap,
visitedLiveValues);
}
if (ClobberNonLive) {
// As a debuging aid, pretend that an unrelocated pointer becomes null at
// the gc.statepoint. This will turn some subtle GC problems into
// slightly easier to debug SEGVs. Note that on large IR files with
// lots of gc.statepoints this is extremely costly both memory and time
// wise.
SmallVector<AllocaInst *, 64> ToClobber;
for (auto Pair : allocaMap) {
Value *Def = Pair.first;
AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
// This value was relocated
if (visitedLiveValues.count(Def)) {
continue;
}
ToClobber.push_back(Alloca);
}
auto InsertClobbersAt = [&](Instruction *IP) {
for (auto *AI : ToClobber) {
auto AIType = cast<PointerType>(AI->getType());
auto PT = cast<PointerType>(AIType->getElementType());
Constant *CPN = ConstantPointerNull::get(PT);
StoreInst *store = new StoreInst(CPN, AI);
store->insertBefore(IP);
}
};
// Insert the clobbering stores. These may get intermixed with the
// gc.results and gc.relocates, but that's fine.
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
} else {
BasicBlock::iterator Next(cast<CallInst>(Statepoint));
Next++;
InsertClobbersAt(Next);
}
}
}
// update use with load allocas and add store for gc_relocated
for (auto Pair : allocaMap) {
Value *def = Pair.first;
Value *alloca = Pair.second;
// we pre-record the uses of allocas so that we dont have to worry about
// later update
// that change the user information.
SmallVector<Instruction *, 20> uses;
// PERF: trade a linear scan for repeated reallocation
uses.reserve(std::distance(def->user_begin(), def->user_end()));
for (User *U : def->users()) {
if (!isa<ConstantExpr>(U)) {
// If the def has a ConstantExpr use, then the def is either a
// ConstantExpr use itself or null. In either case
// (recursively in the first, directly in the second), the oop
// it is ultimately dependent on is null and this particular
// use does not need to be fixed up.
uses.push_back(cast<Instruction>(U));
}
}
std::sort(uses.begin(), uses.end());
auto last = std::unique(uses.begin(), uses.end());
uses.erase(last, uses.end());
for (Instruction *use : uses) {
if (isa<PHINode>(use)) {
PHINode *phi = cast<PHINode>(use);
for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
if (def == phi->getIncomingValue(i)) {
LoadInst *load = new LoadInst(
alloca, "", phi->getIncomingBlock(i)->getTerminator());
phi->setIncomingValue(i, load);
}
}
} else {
LoadInst *load = new LoadInst(alloca, "", use);
use->replaceUsesOfWith(def, load);
}
}
// emit store for the initial gc value
// store must be inserted after load, otherwise store will be in alloca's
// use list and an extra load will be inserted before it
StoreInst *store = new StoreInst(def, alloca);
if (Instruction *inst = dyn_cast<Instruction>(def)) {
if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) {
// InvokeInst is a TerminatorInst so the store need to be inserted
// into its normal destination block.
BasicBlock *normalDest = invoke->getNormalDest();
store->insertBefore(normalDest->getFirstNonPHI());
} else {
assert(!inst->isTerminator() &&
"The only TerminatorInst that can produce a value is "
"InvokeInst which is handled above.");
store->insertAfter(inst);
}
} else {
assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
isa<ConstantPointerNull>(def)) &&
"Must be argument or global");
store->insertAfter(cast<Instruction>(alloca));
}
}
assert(PromotableAllocas.size() == live.size() &&
"we must have the same allocas with lives");
if (!PromotableAllocas.empty()) {
// apply mem2reg to promote alloca to SSA
PromoteMemToReg(PromotableAllocas, DT);
}
#ifndef NDEBUG
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
I++)
if (isa<AllocaInst>(*I))
InitialAllocaNum--;
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
#endif
}
/// Implement a unique function which doesn't require we sort the input
/// vector. Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
DenseSet<T> Seen;
SmallVector<T, 128> TempVec;
TempVec.reserve(Vec.size());
for (auto Element : Vec)
TempVec.push_back(Element);
Vec.clear();
for (auto V : TempVec) {
if (Seen.insert(V).second) {
Vec.push_back(V);
}
}
}
/// Insert holders so that each Value is obviously live through the entire
/// lifetime of the call.
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
SmallVectorImpl<CallInst *> &Holders) {
if (Values.empty())
// No values to hold live, might as well not insert the empty holder
return;
Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
// Use a dummy vararg function to actually hold the values live
Function *Func = cast<Function>(M->getOrInsertFunction(
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
if (CS.isCall()) {
// For call safepoints insert dummy calls right after safepoint
BasicBlock::iterator Next(CS.getInstruction());
Next++;
Holders.push_back(CallInst::Create(Func, Values, "", Next));
return;
}
// For invoke safepooints insert dummy calls both in normal and
// exceptional destination blocks
auto *II = cast<InvokeInst>(CS.getInstruction());
Holders.push_back(CallInst::Create(
Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
Holders.push_back(CallInst::Create(
Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
}
static void findLiveReferences(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
GCPtrLivenessData OriginalLivenessData;
computeLiveInValues(DT, F, OriginalLivenessData);
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
const CallSite &CS = toUpdate[i];
analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
}
}
/// Remove any vector of pointers from the liveset by scalarizing them over the
/// statepoint instruction. Adds the scalarized pieces to the liveset. It
/// would be preferrable to include the vector in the statepoint itself, but
/// the lowering code currently does not handle that. Extending it would be
/// slightly non-trivial since it requires a format change. Given how rare
/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
static void splitVectorValues(Instruction *StatepointInst,
StatepointLiveSetTy &LiveSet, DominatorTree &DT) {
SmallVector<Value *, 16> ToSplit;
for (Value *V : LiveSet)
if (isa<VectorType>(V->getType()))
ToSplit.push_back(V);
if (ToSplit.empty())
return;
Function &F = *(StatepointInst->getParent()->getParent());
DenseMap<Value *, AllocaInst *> AllocaMap;
// First is normal return, second is exceptional return (invoke only)
DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
for (Value *V : ToSplit) {
LiveSet.erase(V);
AllocaInst *Alloca =
new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
AllocaMap[V] = Alloca;
VectorType *VT = cast<VectorType>(V->getType());
IRBuilder<> Builder(StatepointInst);
SmallVector<Value *, 16> Elements;
for (unsigned i = 0; i < VT->getNumElements(); i++)
Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
LiveSet.insert(Elements.begin(), Elements.end());
auto InsertVectorReform = [&](Instruction *IP) {
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
Value *ResultVec = UndefValue::get(VT);
for (unsigned i = 0; i < VT->getNumElements(); i++)
ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
Builder.getInt32(i));
return ResultVec;
};
if (isa<CallInst>(StatepointInst)) {
BasicBlock::iterator Next(StatepointInst);
Next++;
Instruction *IP = &*(Next);
Replacements[V].first = InsertVectorReform(IP);
Replacements[V].second = nullptr;
} else {
InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
// We've already normalized - check that we don't have shared destination
// blocks
BasicBlock *NormalDest = Invoke->getNormalDest();
assert(!isa<PHINode>(NormalDest->begin()));
BasicBlock *UnwindDest = Invoke->getUnwindDest();
assert(!isa<PHINode>(UnwindDest->begin()));
// Insert insert element sequences in both successors
Instruction *IP = &*(NormalDest->getFirstInsertionPt());
Replacements[V].first = InsertVectorReform(IP);
IP = &*(UnwindDest->getFirstInsertionPt());
Replacements[V].second = InsertVectorReform(IP);
}
}
for (Value *V : ToSplit) {
AllocaInst *Alloca = AllocaMap[V];
// Capture all users before we start mutating use lists
SmallVector<Instruction *, 16> Users;
for (User *U : V->users())
Users.push_back(cast<Instruction>(U));
for (Instruction *I : Users) {
if (auto Phi = dyn_cast<PHINode>(I)) {
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
if (V == Phi->getIncomingValue(i)) {
LoadInst *Load = new LoadInst(
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Phi->setIncomingValue(i, Load);
}
} else {
LoadInst *Load = new LoadInst(Alloca, "", I);
I->replaceUsesOfWith(V, Load);
}
}
// Store the original value and the replacement value into the alloca
StoreInst *Store = new StoreInst(V, Alloca);
if (auto I = dyn_cast<Instruction>(V))
Store->insertAfter(I);
else
Store->insertAfter(Alloca);
// Normal return for invoke, or call return
Instruction *Replacement = cast<Instruction>(Replacements[V].first);
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
// Unwind return for invoke only
Replacement = cast_or_null<Instruction>(Replacements[V].second);
if (Replacement)
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
}
// apply mem2reg to promote alloca to SSA
SmallVector<AllocaInst *, 16> Allocas;
for (Value *V : ToSplit)
Allocas.push_back(AllocaMap[V]);
PromoteMemToReg(Allocas, DT);
}
static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
SmallVectorImpl<CallSite> &toUpdate) {
#ifndef NDEBUG
// sanity check the input
std::set<CallSite> uniqued;
uniqued.insert(toUpdate.begin(), toUpdate.end());
assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
for (size_t i = 0; i < toUpdate.size(); i++) {
CallSite &CS = toUpdate[i];
assert(CS.getInstruction()->getParent()->getParent() == &F);
assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
}
#endif
// When inserting gc.relocates for invokes, we need to be able to insert at
// the top of the successor blocks. See the comment on
// normalForInvokeSafepoint on exactly what is needed. Note that this step
// may restructure the CFG.
for (CallSite CS : toUpdate) {
if (!CS.isInvoke())
continue;
InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
P);
normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
P);
}
// A list of dummy calls added to the IR to keep various values obviously
// live in the IR. We'll remove all of these when done.
SmallVector<CallInst *, 64> holders;
// Insert a dummy call with all of the arguments to the vm_state we'll need
// for the actual safepoint insertion. This ensures reference arguments in
// the deopt argument list are considered live through the safepoint (and
// thus makes sure they get relocated.)
for (size_t i = 0; i < toUpdate.size(); i++) {
CallSite &CS = toUpdate[i];
Statepoint StatepointCS(CS);
SmallVector<Value *, 64> DeoptValues;
for (Use &U : StatepointCS.vm_state_args()) {
Value *Arg = cast<Value>(&U);
assert(!isUnhandledGCPointerType(Arg->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(Arg->getType()))
DeoptValues.push_back(Arg);
}
insertUseHolderAfter(CS, DeoptValues, holders);
}
SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
records.reserve(toUpdate.size());
for (size_t i = 0; i < toUpdate.size(); i++) {
struct PartiallyConstructedSafepointRecord info;
records.push_back(info);
}
assert(records.size() == toUpdate.size());
// A) Identify all gc pointers which are staticly live at the given call
// site.
findLiveReferences(F, DT, P, toUpdate, records);
// Do a limited scalarization of any live at safepoint vector values which
// contain pointers. This enables this pass to run after vectorization at
// the cost of some possible performance loss. TODO: it would be nice to
// natively support vectors all the way through the backend so we don't need
// to scalarize here.
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
Instruction *statepoint = toUpdate[i].getInstruction();
splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
}
// B) Find the base pointers for each live pointer
/* scope for caching */ {
// Cache the 'defining value' relation used in the computation and
// insertion of base phis and selects. This ensures that we don't insert
// large numbers of duplicate base_phis.
DefiningValueMapTy DVCache;
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
findBasePointers(DT, DVCache, CS, info);
}
} // end of cache scope
// The base phi insertion logic (for any safepoint) may have inserted new
// instructions which are now live at some safepoint. The simplest such
// example is:
// loop:
// phi a <-- will be a new base_phi here
// safepoint 1 <-- that needs to be live here
// gep a + 1
// safepoint 2
// br loop
// We insert some dummy calls after each safepoint to definitely hold live
// the base pointers which were identified for that safepoint. We'll then
// ask liveness for _every_ base inserted to see what is now live. Then we
// remove the dummy calls.
holders.reserve(holders.size() + records.size());
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
SmallVector<Value *, 128> Bases;
for (auto Pair : info.PointerToBase) {
Bases.push_back(Pair.second);
}
insertUseHolderAfter(CS, Bases, holders);
}
// By selecting base pointers, we've effectively inserted new uses. Thus, we
// need to rerun liveness. We may *also* have inserted new defs, but that's
// not the key issue.
recomputeLiveInValues(F, DT, P, toUpdate, records);
if (PrintBasePointers) {
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
errs() << "Base Pairs: (w/Relocation)\n";
for (auto Pair : info.PointerToBase) {
errs() << " derived %" << Pair.first->getName() << " base %"
<< Pair.second->getName() << "\n";
}
}
}
for (size_t i = 0; i < holders.size(); i++) {
holders[i]->eraseFromParent();
holders[i] = nullptr;
}
holders.clear();
// Now run through and replace the existing statepoints with new ones with
// the live variables listed. We do not yet update uses of the values being
// relocated. We have references to live variables that need to
// survive to the last iteration of this loop. (By construction, the
// previous statepoint can not be a live variable, thus we can and remove
// the old statepoint calls as we go.)
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
makeStatepointExplicit(DT, CS, P, info);
}
toUpdate.clear(); // prevent accident use of invalid CallSites
// Do all the fixups of the original live variables to their relocated selves
SmallVector<Value *, 128> live;
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
// We can't simply save the live set from the original insertion. One of
// the live values might be the result of a call which needs a safepoint.
// That Value* no longer exists and we need to use the new gc_result.
// Thankfully, the liveset is embedded in the statepoint (and updated), so
// we just grab that.
Statepoint statepoint(info.StatepointToken);
live.insert(live.end(), statepoint.gc_args_begin(),
statepoint.gc_args_end());
#ifndef NDEBUG
// Do some basic sanity checks on our liveness results before performing
// relocation. Relocation can and will turn mistakes in liveness results
// into non-sensical code which is must harder to debug.
// TODO: It would be nice to test consistency as well
assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
"statepoint must be reachable or liveness is meaningless");
for (Value *V : statepoint.gc_args()) {
if (!isa<Instruction>(V))
// Non-instruction values trivial dominate all possible uses
continue;
auto LiveInst = cast<Instruction>(V);
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
"unreachable values should never be live");
assert(DT.dominates(LiveInst, info.StatepointToken) &&
"basic SSA liveness expectation violated by liveness analysis");
}
#endif
}
unique_unsorted(live);
#ifndef NDEBUG
// sanity check
for (auto ptr : live) {
assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
}
#endif
relocationViaAlloca(F, DT, live, records);
return !records.empty();
}
/// Returns true if this function should be rewritten by this pass. The main
/// point of this function is as an extension point for custom logic.
static bool shouldRewriteStatepointsIn(Function &F) {
// TODO: This should check the GCStrategy
if (F.hasGC()) {
const std::string StatepointExampleName("statepoint-example");
return StatepointExampleName == F.getGC();
} else
return false;
}
bool RewriteStatepointsForGC::runOnFunction(Function &F) {
// Nothing to do for declarations.
if (F.isDeclaration() || F.empty())
return false;
// Policy choice says not to rewrite - the most common reason is that we're
// compiling code without a GCStrategy.
if (!shouldRewriteStatepointsIn(F))
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
// Gather all the statepoints which need rewritten. Be careful to only
// consider those in reachable code since we need to ask dominance queries
// when rewriting. We'll delete the unreachable ones in a moment.
SmallVector<CallSite, 64> ParsePointNeeded;
bool HasUnreachableStatepoint = false;
for (Instruction &I : inst_range(F)) {
// TODO: only the ones with the flag set!
if (isStatepoint(I)) {
if (DT.isReachableFromEntry(I.getParent()))
ParsePointNeeded.push_back(CallSite(&I));
else
HasUnreachableStatepoint = true;
}
}
bool MadeChange = false;
// Delete any unreachable statepoints so that we don't have unrewritten
// statepoints surviving this pass. This makes testing easier and the
// resulting IR less confusing to human readers. Rather than be fancy, we
// just reuse a utility function which removes the unreachable blocks.
if (HasUnreachableStatepoint)
MadeChange |= removeUnreachableBlocks(F);
// Return early if no work to do.
if (ParsePointNeeded.empty())
return MadeChange;
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
// These are created by LCSSA. They have the effect of increasing the size
// of liveness sets for no good reason. It may be harder to do this post
// insertion since relocations and base phis can confuse things.
for (BasicBlock &BB : F)
if (BB.getUniquePredecessor()) {
MadeChange = true;
FoldSingleEntryPHINodes(&BB);
}
MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
return MadeChange;
}
// liveness computation via standard dataflow
// -------------------------------------------------------------------
// TODO: Consider using bitvectors for liveness, the set of potentially
// interesting values should be small and easy to pre-compute.
/// Is this value a constant consisting of entirely null values?
static bool isConstantNull(Value *V) {
return isa<Constant>(V) && cast<Constant>(V)->isNullValue();
}
/// Compute the live-in set for the location rbegin starting from
/// the live-out set of the basic block
static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
BasicBlock::reverse_iterator rend,
DenseSet<Value *> &LiveTmp) {
for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
Instruction *I = &*ritr;
// KILL/Def - Remove this definition from LiveIn
LiveTmp.erase(I);
// Don't consider *uses* in PHI nodes, we handle their contribution to
// predecessor blocks when we seed the LiveOut sets
if (isa<PHINode>(I))
continue;
// USE - Add to the LiveIn set for this instruction
for (Value *V : I->operands()) {
assert(!isUnhandledGCPointerType(V->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) &&
!isa<UndefValue>(V)) {
// The choice to exclude null and undef is arbitrary here. Reconsider?
LiveTmp.insert(V);
}
}
}
}
static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
for (BasicBlock *Succ : successors(BB)) {
const BasicBlock::iterator E(Succ->getFirstNonPHI());
for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
PHINode *Phi = cast<PHINode>(&*I);
Value *V = Phi->getIncomingValueForBlock(BB);
assert(!isUnhandledGCPointerType(V->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) &&
!isa<UndefValue>(V)) {
// The choice to exclude null and undef is arbitrary here. Reconsider?
LiveTmp.insert(V);
}
}
}
}
static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
DenseSet<Value *> KillSet;
for (Instruction &I : *BB)
if (isHandledGCPointerType(I.getType()))
KillSet.insert(&I);
return KillSet;
}
#ifndef NDEBUG
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
/// sanity check for the liveness computation.
static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
TerminatorInst *TI, bool TermOkay = false) {
for (Value *V : Live) {
if (auto *I = dyn_cast<Instruction>(V)) {
// The terminator can be a member of the LiveOut set. LLVM's definition
// of instruction dominance states that V does not dominate itself. As
// such, we need to special case this to allow it.
if (TermOkay && TI == I)
continue;
assert(DT.dominates(I, TI) &&
"basic SSA liveness expectation violated by liveness analysis");
}
}
}
/// Check that all the liveness sets used during the computation of liveness
/// obey basic SSA properties. This is useful for finding cases where we miss
/// a def.
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
BasicBlock &BB) {
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
}
#endif
static void computeLiveInValues(DominatorTree &DT, Function &F,
GCPtrLivenessData &Data) {
SmallSetVector<BasicBlock *, 200> Worklist;
auto AddPredsToWorklist = [&](BasicBlock *BB) {
// We use a SetVector so that we don't have duplicates in the worklist.
Worklist.insert(pred_begin(BB), pred_end(BB));
};
auto NextItem = [&]() {
BasicBlock *BB = Worklist.back();
Worklist.pop_back();
return BB;
};
// Seed the liveness for each individual block
for (BasicBlock &BB : F) {
Data.KillSet[&BB] = computeKillSet(&BB);
Data.LiveSet[&BB].clear();
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
#ifndef NDEBUG
for (Value *Kill : Data.KillSet[&BB])
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
#endif
Data.LiveOut[&BB] = DenseSet<Value *>();
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
Data.LiveIn[&BB] = Data.LiveSet[&BB];
set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
if (!Data.LiveIn[&BB].empty())
AddPredsToWorklist(&BB);
}
// Propagate that liveness until stable
while (!Worklist.empty()) {
BasicBlock *BB = NextItem();
// Compute our new liveout set, then exit early if it hasn't changed
// despite the contribution of our successor.
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
const auto OldLiveOutSize = LiveOut.size();
for (BasicBlock *Succ : successors(BB)) {
assert(Data.LiveIn.count(Succ));
set_union(LiveOut, Data.LiveIn[Succ]);
}
// assert OutLiveOut is a subset of LiveOut
if (OldLiveOutSize == LiveOut.size()) {
// If the sets are the same size, then we didn't actually add anything
// when unioning our successors LiveIn Thus, the LiveIn of this block
// hasn't changed.
continue;
}
Data.LiveOut[BB] = LiveOut;
// Apply the effects of this basic block
DenseSet<Value *> LiveTmp = LiveOut;
set_union(LiveTmp, Data.LiveSet[BB]);
set_subtract(LiveTmp, Data.KillSet[BB]);
assert(Data.LiveIn.count(BB));
const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
// assert: OldLiveIn is a subset of LiveTmp
if (OldLiveIn.size() != LiveTmp.size()) {
Data.LiveIn[BB] = LiveTmp;
AddPredsToWorklist(BB);
}
} // while( !worklist.empty() )
#ifndef NDEBUG
// Sanity check our ouput against SSA properties. This helps catch any
// missing kills during the above iteration.
for (BasicBlock &BB : F) {
checkBasicSSA(DT, Data, BB);
}
#endif
}
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
StatepointLiveSetTy &Out) {
BasicBlock *BB = Inst->getParent();
// Note: The copy is intentional and required
assert(Data.LiveOut.count(BB));
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
// We want to handle the statepoint itself oddly. It's
// call result is not live (normal), nor are it's arguments
// (unless they're used again later). This adjustment is
// specifically what we need to relocate
BasicBlock::reverse_iterator rend(Inst);
computeLiveInValues(BB->rbegin(), rend, LiveOut);
LiveOut.erase(Inst);
Out.insert(LiveOut.begin(), LiveOut.end());
}
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
const CallSite &CS,
PartiallyConstructedSafepointRecord &Info) {
Instruction *Inst = CS.getInstruction();
StatepointLiveSetTy Updated;
findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
#ifndef NDEBUG
DenseSet<Value *> Bases;
for (auto KVPair : Info.PointerToBase) {
Bases.insert(KVPair.second);
}
#endif
// We may have base pointers which are now live that weren't before. We need
// to update the PointerToBase structure to reflect this.
for (auto V : Updated)
if (!Info.PointerToBase.count(V)) {
assert(Bases.count(V) && "can't find base for unexpected live value");
Info.PointerToBase[V] = V;
continue;
}
#ifndef NDEBUG
for (auto V : Updated) {
assert(Info.PointerToBase.count(V) &&
"must be able to find base for live value");
}
#endif
// Remove any stale base mappings - this can happen since our liveness is
// more precise then the one inherent in the base pointer analysis
DenseSet<Value *> ToErase;
for (auto KVPair : Info.PointerToBase)
if (!Updated.count(KVPair.first))
ToErase.insert(KVPair.first);
for (auto V : ToErase)
Info.PointerToBase.erase(V);
#ifndef NDEBUG
for (auto KVPair : Info.PointerToBase)
assert(Updated.count(KVPair.first) && "record for non-live value");
#endif
Info.liveset = Updated;
}