llvm-6502/lib/Target/CBackend/CBackend.cpp
Chris Lattner e7f65d3b71 Fix anands changes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2806 91177308-0d34-0410-b5e6-96231b3b80d8
2002-06-30 16:07:20 +00:00

797 lines
25 KiB
C++

//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
//
// This library implements the functionality defined in llvm/Assembly/CWriter.h
//
// TODO : Recursive types.
//
//===-----------------------------------------------------------------------==//
#include "llvm/Assembly/CWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/SymbolTable.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/InstIterator.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <set>
using std::string;
using std::map;
using std::ostream;
static std::string getConstStrValue(const Constant* CPV);
static std::string getConstArrayStrValue(const Constant* CPV) {
std::string Result;
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = cast<ArrayType>(CPV->getType())->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
// Make sure the last character is a null char, as automatically added by C
if (CPV->getNumOperands() == 0 ||
!cast<Constant>(*(CPV->op_end()-1))->isNullValue())
isString = false;
if (isString) {
Result = "\"";
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPV->getNumOperands()-1; i != e; ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CPV->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CPV->getOperand(i))->getValue();
if (isprint(C)) {
Result += C;
} else {
switch (C) {
case '\n': Result += "\\n"; break;
case '\t': Result += "\\t"; break;
case '\r': Result += "\\r"; break;
case '\v': Result += "\\v"; break;
case '\a': Result += "\\a"; break;
default:
Result += "\\x";
Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
break;
}
}
}
Result += "\"";
} else {
Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
Result += " }";
}
return Result;
}
static std::string getConstStrValue(const Constant* CPV) {
switch (CPV->getType()->getPrimitiveID()) {
case Type::BoolTyID: return CPV == ConstantBool::False ? "0" : "1";
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID: return itostr(cast<ConstantSInt>(CPV)->getValue());
case Type::LongTyID: return itostr(cast<ConstantSInt>(CPV)->getValue())+"ll";
case Type::UByteTyID:
case Type::UShortTyID:return utostr(cast<ConstantUInt>(CPV)->getValue());
case Type::UIntTyID: return utostr(cast<ConstantUInt>(CPV)->getValue())+"u";
case Type::ULongTyID:return utostr(cast<ConstantUInt>(CPV)->getValue())+"ull";
case Type::FloatTyID:
case Type::DoubleTyID: return ftostr(cast<ConstantFP>(CPV)->getValue());
case Type::ArrayTyID: return getConstArrayStrValue(CPV);
case Type::StructTyID: {
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
return Result + " }";
}
default:
std::cerr << "Unknown constant type: " << CPV << "\n";
abort();
}
}
// Pass the Type* variable and and the variable name and this prints out the
// variable declaration.
//
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
const string &NameSoFar, bool ignoreName = false){
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return "void " + NameSoFar;
case Type::BoolTyID: return "bool " + NameSoFar;
case Type::UByteTyID: return "unsigned char " + NameSoFar;
case Type::SByteTyID: return "signed char " + NameSoFar;
case Type::UShortTyID: return "unsigned short " + NameSoFar;
case Type::ShortTyID: return "short " + NameSoFar;
case Type::UIntTyID: return "unsigned " + NameSoFar;
case Type::IntTyID: return "int " + NameSoFar;
case Type::ULongTyID: return "unsigned long long " + NameSoFar;
case Type::LongTyID: return "signed long long " + NameSoFar;
case Type::FloatTyID: return "float " + NameSoFar;
case Type::DoubleTyID: return "double " + NameSoFar;
default :
std::cerr << "Unknown primitive type: " << Ty << "\n";
abort();
}
// Check to see if the type is named.
if (!ignoreName) {
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar;
}
string Result;
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<FunctionType>(Ty);
Result += calcTypeNameVar(MTy->getReturnType(), TypeNames, "");
Result += " " + NameSoFar + " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
Result += calcTypeNameVar(*I, TypeNames, "");
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
Result += ", ";
Result += "...";
}
return Result + ")";
}
case Type::StructTyID: {
const StructType *STy = cast<const StructType>(Ty);
Result = NameSoFar + " {\n";
unsigned indx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += " " +calcTypeNameVar(*I, TypeNames, "field" + utostr(indx++));
Result += ";\n";
}
return Result + "}";
}
case Type::PointerTyID:
return calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeNames, "*" + NameSoFar);
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
return calcTypeNameVar(ATy->getElementType(), TypeNames,
NameSoFar + "[" + itostr(NumElements) + "]");
}
default:
assert(0 && "Unhandled case in getTypeProps!");
abort();
}
return Result;
}
namespace {
class CWriter : public InstVisitor<CWriter> {
ostream& Out;
SlotCalculator &Table;
const Module *TheModule;
map<const Type *, string> TypeNames;
std::set<const Value*> MangledGlobals;
public:
inline CWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
}
inline void write(Module *M) { printModule(M); }
ostream& printType(const Type *Ty, const string &VariableName = "") {
return Out << calcTypeNameVar(Ty, TypeNames, VariableName);
}
void writeOperand(Value *Operand);
void writeOperandInternal(Value *Operand);
string getValueName(const Value *V);
private :
void printModule(Module *M);
void printSymbolTable(const SymbolTable &ST);
void printGlobal(const GlobalVariable *GV);
void printFunctionSignature(const Function *F);
void printFunctionDecl(const Function *F); // Print just the forward decl
void printFunction(Function *);
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I))
return false;
// Only inline instruction it it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitPHINode(PHINode &I) {}
void visitNot(GenericUnaryInst &I);
void visitBinaryOperator(Instruction &I);
void visitCastInst (CastInst &I);
void visitCallInst (CallInst &I);
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
void visitMallocInst(MallocInst &I);
void visitAllocaInst(AllocaInst &I);
void visitFreeInst (FreeInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "C Writer does not know about " << I;
abort();
}
void outputLValue(Instruction *I) {
Out << " " << getValueName(I) << " = ";
}
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printIndexingExpr(MemAccessInst &MAI);
};
}
// We dont want identifier names with ., space, - in them.
// So we replace them with _
static string makeNameProper(string x) {
string tmp;
for (string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++)
switch (*sI) {
case '.': tmp += "d_"; break;
case ' ': tmp += "s_"; break;
case '-': tmp += "D_"; break;
default: tmp += *sI;
}
return tmp;
}
string CWriter::getValueName(const Value *V) {
if (V->hasName()) { // Print out the label if it exists...
if (isa<GlobalValue>(V) && // Do not mangle globals...
cast<GlobalValue>(V)->hasExternalLinkage() && // Unless it's internal or
!MangledGlobals.count(V)) // Unless the name would collide if we don't
return makeNameProper(V->getName());
return "l" + utostr(V->getType()->getUniqueID()) + "_" +
makeNameProper(V->getName());
}
int Slot = Table.getValSlot(V);
assert(Slot >= 0 && "Invalid value!");
return "ltmp_" + itostr(Slot) + "_" + utostr(V->getType()->getUniqueID());
}
void CWriter::writeOperandInternal(Value *Operand) {
if (Operand->hasName()) {
Out << getValueName(Operand);
} else if (Constant *CPV = dyn_cast<Constant>(Operand)) {
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(CPV->getType(), "");
Out << ")NULL)";
} else
Out << getConstStrValue(CPV);
} else {
int Slot = Table.getValSlot(Operand);
assert(Slot >= 0 && "Malformed LLVM!");
Out << "ltmp_" << Slot << "_" << Operand->getType()->getUniqueID();
}
}
void CWriter::writeOperand(Value *Operand) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
if (isInlinableInst(*I)) {
// Should we inline this instruction to build a tree?
Out << "(";
visit(*I);
Out << ")";
return;
}
if (isa<GlobalVariable>(Operand))
Out << "(&"; // Global variables are references as their addresses by llvm
writeOperandInternal(Operand);
if (isa<GlobalVariable>(Operand))
Out << ")";
}
void CWriter::printModule(Module *M) {
// Calculate which global values have names that will collide when we throw
// away type information.
{ // Scope to delete the FoundNames set when we are done with it...
std::set<string> FoundNames;
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (I->hasName()) // If the global has a name...
if (FoundNames.count(I->getName())) // And the name is already used
MangledGlobals.insert(I); // Mangle the name
else
FoundNames.insert(I->getName()); // Otherwise, keep track of name
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
if (I->hasName()) // If the global has a name...
if (FoundNames.count(I->getName())) // And the name is already used
MangledGlobals.insert(I); // Mangle the name
else
FoundNames.insert(I->getName()); // Otherwise, keep track of name
}
// printing stdlib inclusion
// Out << "#include <stdlib.h>\n";
// get declaration for alloca
Out << "/* Provide Declarations */\n"
<< "#include <malloc.h>\n"
<< "#include <alloca.h>\n\n"
// Provide a definition for null if one does not already exist.
<< "#ifndef NULL\n#define NULL 0\n#endif\n\n"
<< "typedef unsigned char bool;\n"
<< "\n\n/* Global Symbols */\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
Out << "\n\n/* Global Data */\n";
for (Module::giterator I = M->gbegin(), E = M->gend(); I != E; ++I) {
if (I->hasInternalLinkage()) Out << "static ";
printType(I->getType()->getElementType(), getValueName(I));
if (I->hasInitializer()) {
Out << " = " ;
writeOperand(I->getInitializer());
}
Out << ";\n";
}
// First output all the declarations of the functions as C requires Functions
// be declared before they are used.
//
Out << "\n\n/* Function Declarations */\n";
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunctionDecl(I);
// Output all of the functions...
Out << "\n\n/* Function Bodies */\n";
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
// Assuming that symbol table has only types and constants.
void CWriter::printSymbolTable(const SymbolTable &ST) {
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I)
if (const Type *Ty = dyn_cast<StructType>(I->second)) {
string Name = "struct l_" + makeNameProper(I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(Ty, Name));
}
}
Out << "\n";
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const Type *Ty = dyn_cast<Type>(V)) {
string Name = "l_" + makeNameProper(I->first);
if (isa<StructType>(Ty))
Name = "struct " + makeNameProper(Name);
else
Out << "typedef ";
Out << calcTypeNameVar(Ty, TypeNames, Name, true) << ";\n";
}
}
}
}
// printFunctionDecl - Print function declaration
//
void CWriter::printFunctionDecl(const Function *F) {
printFunctionSignature(F);
Out << ";\n";
}
void CWriter::printFunctionSignature(const Function *F) {
if (F->hasInternalLinkage()) Out << "static ";
// Loop over the arguments, printing them...
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
// Print out the return type and name...
printType(F->getReturnType());
Out << getValueName(F) << "(";
if (!F->isExternal()) {
if (!F->aempty()) {
printType(F->afront().getType(), getValueName(F->abegin()));
for (Function::const_aiterator I = ++F->abegin(), E = F->aend();
I != E; ++I) {
Out << ", ";
printType(I->getType(), getValueName(I));
}
}
} else {
// Loop over the arguments, printing them...
for (FunctionType::ParamTypes::const_iterator I =
FT->getParamTypes().begin(),
E = FT->getParamTypes().end(); I != E; ++I) {
if (I != FT->getParamTypes().begin()) Out << ", ";
printType(*I);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")";
}
void CWriter::printFunction(Function *F) {
if (F->isExternal()) return;
Table.incorporateFunction(F);
printFunctionSignature(F);
Out << " {\n";
// print local variable information for the function
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) {
Out << " ";
printType((*I)->getType(), getValueName(*I));
Out << ";\n";
}
// print the basic blocks
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
BasicBlock *Prev = BB->getPrev();
// Don't print the label for the basic block if there are no uses, or if the
// only terminator use is the precessor basic block's terminator. We have
// to scan the use list because PHI nodes use basic blocks too but do not
// require a label to be generated.
//
bool NeedsLabel = false;
for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end();
UI != UE; ++UI)
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI))
if (TI != Prev->getTerminator()) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << getValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){
if (!isInlinableInst(*II) && !isa<PHINode>(*II)) {
if (II->getType() != Type::VoidTy)
outputLValue(II);
else
Out << " ";
visit(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator...
visit(*BB->getTerminator());
}
Out << "}\n\n";
Table.purgeFunction();
}
// Specific Instruction type classes... note that all of the casts are
// neccesary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << " ";
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
static bool isGotoCodeNeccessary(BasicBlock *From, BasicBlock *To) {
// If PHI nodes need copies, we need the copy code...
if (isa<PHINode>(To->front()) ||
From->getNext() != To) // Not directly successor, need goto
return true;
// Otherwise we don't need the code.
return false;
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
for (BasicBlock::iterator I = Succ->begin();
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
// now we have to do the printing
Out << string(Indent, ' ');
outputLValue(PN);
writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB)));
Out << "; /* for PHI node */\n";
}
if (CurBB->getNext() != Succ) {
Out << string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Brach instruction printing - Avoid printing out a brach to a basic block that
// immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNeccessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not neccesary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
void CWriter::visitNot(GenericUnaryInst &I) {
Out << "~";
writeOperand(I.getOperand(0));
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
if (isa<PointerType>(I.getType())) {
Out << "(";
printType(I.getType());
Out << ")";
}
if (isa<PointerType>(I.getType())) Out << "(long long)";
writeOperand(I.getOperand(0));
switch (I.getOpcode()) {
case Instruction::Add: Out << " + "; break;
case Instruction::Sub: Out << " - "; break;
case Instruction::Mul: Out << "*"; break;
case Instruction::Div: Out << "/"; break;
case Instruction::Rem: Out << "%"; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::SetEQ: Out << " == "; break;
case Instruction::SetNE: Out << " != "; break;
case Instruction::SetLE: Out << " <= "; break;
case Instruction::SetGE: Out << " >= "; break;
case Instruction::SetLT: Out << " < "; break;
case Instruction::SetGT: Out << " > "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::Shr : Out << " >> "; break;
default: std::cerr << "Invalid operator type!" << I; abort();
}
if (isa<PointerType>(I.getType())) Out << "(long long)";
writeOperand(I.getOperand(1));
}
void CWriter::visitCastInst(CastInst &I) {
Out << "(";
printType(I.getType());
Out << ")";
writeOperand(I.getOperand(0));
}
void CWriter::visitCallInst(CallInst &I) {
const PointerType *PTy = cast<PointerType>(I.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
Out << getValueName(I.getOperand(0)) << "(";
if (I.getNumOperands() > 1) {
writeOperand(I.getOperand(1));
for (unsigned op = 2, Eop = I.getNumOperands(); op != Eop; ++op) {
Out << ", ";
writeOperand(I.getOperand(op));
}
}
Out << ")";
}
void CWriter::visitMallocInst(MallocInst &I) {
Out << "(";
printType(I.getType());
Out << ")malloc(sizeof(";
printType(I.getType()->getElementType());
Out << ")";
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ")";
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << "(";
printType(I.getType());
Out << ") alloca(sizeof(";
printType(I.getType()->getElementType());
Out << ")";
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ")";
}
void CWriter::visitFreeInst(FreeInst &I) {
Out << "free(";
writeOperand(I.getOperand(0));
Out << ")";
}
void CWriter::printIndexingExpr(MemAccessInst &MAI) {
MemAccessInst::op_iterator I = MAI.idx_begin(), E = MAI.idx_end();
if (I == E) {
// If accessing a global value with no indexing, avoid *(&GV) syndrome
if (GlobalValue *V = dyn_cast<GlobalValue>(MAI.getPointerOperand())) {
writeOperandInternal(V);
return;
}
Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
}
writeOperand(MAI.getPointerOperand());
if (I == E) return;
// Print out the -> operator if possible...
const Constant *CI = dyn_cast<Constant>(I->get());
if (CI && CI->isNullValue() && I+1 != E &&
(*(I+1))->getType() == Type::UByteTy) {
Out << "->field" << cast<ConstantUInt>(*(I+1))->getValue();
I += 2;
}
for (; I != E; ++I)
if ((*I)->getType() == Type::UIntTy) {
Out << "[";
writeOperand(*I);
Out << "]";
} else {
Out << ".field" << cast<ConstantUInt>(*I)->getValue();
}
}
void CWriter::visitLoadInst(LoadInst &I) {
printIndexingExpr(I);
}
void CWriter::visitStoreInst(StoreInst &I) {
printIndexingExpr(I);
Out << " = ";
writeOperand(I.getOperand(0));
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Out << "&";
printIndexingExpr(I);
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
void WriteToC(const Module *M, ostream &Out) {
assert(M && "You can't write a null module!!");
SlotCalculator SlotTable(M, false);
CWriter W(Out, SlotTable, M);
W.write((Module*)M);
Out.flush();
}