mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-13 21:05:16 +00:00
f0cbcd4880
and SelectionDAGLowering classes, out of SelectionDAGISel.cpp and put it in a separate file, SelectionDAGBuild.cpp. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55701 91177308-0d34-0410-b5e6-96231b3b80d8
1029 lines
39 KiB
C++
1029 lines
39 KiB
C++
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "SelectionDAGBuild.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/ParameterAttributes.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetFrameInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
EnableValueProp("enable-value-prop", cl::Hidden);
|
|
static cl::opt<bool>
|
|
EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
|
|
static cl::opt<bool>
|
|
EnableFastISel("fast-isel", cl::Hidden,
|
|
cl::desc("Enable the experimental \"fast\" instruction selector"));
|
|
static cl::opt<bool>
|
|
DisableFastISelAbort("fast-isel-no-abort", cl::Hidden,
|
|
cl::desc("Use the SelectionDAGISel when \"fast\" instruction "
|
|
"selection fails"));
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the first "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize types"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the second "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewISelDAGs("view-isel-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show isel dags as they are selected"));
|
|
static cl::opt<bool>
|
|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
static cl::opt<bool>
|
|
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show SUnit dags after they are processed"));
|
|
#else
|
|
static const bool ViewDAGCombine1 = false,
|
|
ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
|
|
ViewDAGCombine2 = false,
|
|
ViewISelDAGs = false, ViewSchedDAGs = false,
|
|
ViewSUnitDAGs = false;
|
|
#endif
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// RegisterScheduler class - Track the registration of instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
MachinePassRegistry RegisterScheduler::Registry;
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// ISHeuristic command line option for instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
|
|
RegisterPassParser<RegisterScheduler> >
|
|
ISHeuristic("pre-RA-sched",
|
|
cl::init(&createDefaultScheduler),
|
|
cl::desc("Instruction schedulers available (before register"
|
|
" allocation):"));
|
|
|
|
static RegisterScheduler
|
|
defaultListDAGScheduler("default", " Best scheduler for the target",
|
|
createDefaultScheduler);
|
|
|
|
namespace llvm {
|
|
//===--------------------------------------------------------------------===//
|
|
/// createDefaultScheduler - This creates an instruction scheduler appropriate
|
|
/// for the target.
|
|
ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB,
|
|
bool Fast) {
|
|
TargetLowering &TLI = IS->getTargetLowering();
|
|
|
|
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
|
|
return createTDListDAGScheduler(IS, DAG, BB, Fast);
|
|
} else {
|
|
assert(TLI.getSchedulingPreference() ==
|
|
TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
|
|
return createBURRListDAGScheduler(IS, DAG, BB, Fast);
|
|
}
|
|
}
|
|
}
|
|
|
|
// EmitInstrWithCustomInserter - This method should be implemented by targets
|
|
// that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and the scheduler passes ownership of it to this method.
|
|
MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
cerr << "If a target marks an instruction with "
|
|
<< "'usesCustomDAGSchedInserter', it must implement "
|
|
<< "TargetLowering::EmitInstrWithCustomInserter!\n";
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAGISel code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
|
|
FunctionPass((intptr_t)&ID), TLI(tli),
|
|
FuncInfo(new FunctionLoweringInfo(TLI)),
|
|
CurDAG(new SelectionDAG(TLI, *FuncInfo)),
|
|
SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
|
|
GFI(),
|
|
Fast(fast),
|
|
DAGSize(0)
|
|
{}
|
|
|
|
SelectionDAGISel::~SelectionDAGISel() {
|
|
delete SDL;
|
|
delete CurDAG;
|
|
delete FuncInfo;
|
|
}
|
|
|
|
unsigned SelectionDAGISel::MakeReg(MVT VT) {
|
|
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<GCModuleInfo>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
|
|
// Get alias analysis for load/store combining.
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
|
|
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
|
|
if (MF.getFunction()->hasGC())
|
|
GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
|
|
else
|
|
GFI = 0;
|
|
RegInfo = &MF.getRegInfo();
|
|
DOUT << "\n\n\n=== " << Fn.getName() << "\n";
|
|
|
|
FuncInfo->set(Fn, MF, EnableFastISel);
|
|
CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
|
|
SDL->init(GFI, *AA);
|
|
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
|
|
// Mark landing pad.
|
|
FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
|
|
|
|
SelectAllBasicBlocks(Fn, MF);
|
|
|
|
// Add function live-ins to entry block live-in set.
|
|
BasicBlock *EntryBB = &Fn.getEntryBlock();
|
|
BB = FuncInfo->MBBMap[EntryBB];
|
|
if (!RegInfo->livein_empty())
|
|
for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
|
|
E = RegInfo->livein_end(); I != E; ++I)
|
|
BB->addLiveIn(I->first);
|
|
|
|
#ifndef NDEBUG
|
|
assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
|
|
"Not all catch info was assigned to a landing pad!");
|
|
#endif
|
|
|
|
FuncInfo->clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
|
|
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
|
|
for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
|
|
if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
|
|
// Apply the catch info to DestBB.
|
|
AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
|
|
#ifndef NDEBUG
|
|
if (!FLI.MBBMap[SrcBB]->isLandingPad())
|
|
FLI.CatchInfoFound.insert(EHSel);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
|
|
/// whether object offset >= 0.
|
|
static bool
|
|
IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
|
|
if (!isa<FrameIndexSDNode>(Op)) return false;
|
|
|
|
FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
|
|
int FrameIdx = FrameIdxNode->getIndex();
|
|
return MFI->isFixedObjectIndex(FrameIdx) &&
|
|
MFI->getObjectOffset(FrameIdx) >= 0;
|
|
}
|
|
|
|
/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
|
|
/// possibly be overwritten when lowering the outgoing arguments in a tail
|
|
/// call. Currently the implementation of this call is very conservative and
|
|
/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
|
|
/// virtual registers would be overwritten by direct lowering.
|
|
static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
|
|
MachineFrameInfo * MFI) {
|
|
RegisterSDNode * OpReg = NULL;
|
|
if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
|
|
(Op.getOpcode()== ISD::CopyFromReg &&
|
|
(OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
|
|
(OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
|
|
(Op.getOpcode() == ISD::LOAD &&
|
|
IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
|
|
(Op.getOpcode() == ISD::MERGE_VALUES &&
|
|
Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
|
|
IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
|
|
getOperand(1))))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
|
|
/// DAG and fixes their tailcall attribute operand.
|
|
static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
|
|
TargetLowering& TLI) {
|
|
SDNode * Ret = NULL;
|
|
SDValue Terminator = DAG.getRoot();
|
|
|
|
// Find RET node.
|
|
if (Terminator.getOpcode() == ISD::RET) {
|
|
Ret = Terminator.getNode();
|
|
}
|
|
|
|
// Fix tail call attribute of CALL nodes.
|
|
for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
|
|
BI = DAG.allnodes_end(); BI != BE; ) {
|
|
--BI;
|
|
if (BI->getOpcode() == ISD::CALL) {
|
|
SDValue OpRet(Ret, 0);
|
|
SDValue OpCall(BI, 0);
|
|
bool isMarkedTailCall =
|
|
cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
|
|
// If CALL node has tail call attribute set to true and the call is not
|
|
// eligible (no RET or the target rejects) the attribute is fixed to
|
|
// false. The TargetLowering::IsEligibleForTailCallOptimization function
|
|
// must correctly identify tail call optimizable calls.
|
|
if (!isMarkedTailCall) continue;
|
|
if (Ret==NULL ||
|
|
!TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
|
|
// Not eligible. Mark CALL node as non tail call.
|
|
SmallVector<SDValue, 32> Ops;
|
|
unsigned idx=0;
|
|
for(SDNode::op_iterator I =OpCall.getNode()->op_begin(),
|
|
E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
|
|
if (idx!=3)
|
|
Ops.push_back(*I);
|
|
else
|
|
Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
|
|
}
|
|
DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
|
|
} else {
|
|
// Look for tail call clobbered arguments. Emit a series of
|
|
// copyto/copyfrom virtual register nodes to protect them.
|
|
SmallVector<SDValue, 32> Ops;
|
|
SDValue Chain = OpCall.getOperand(0), InFlag;
|
|
unsigned idx=0;
|
|
for(SDNode::op_iterator I = OpCall.getNode()->op_begin(),
|
|
E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
|
|
SDValue Arg = *I;
|
|
if (idx > 4 && (idx % 2)) {
|
|
bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
|
|
getArgFlags().isByVal();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
if (!isByVal &&
|
|
IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
|
|
MVT VT = Arg.getValueType();
|
|
unsigned VReg = MF.getRegInfo().
|
|
createVirtualRegister(TLI.getRegClassFor(VT));
|
|
Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
|
|
Chain = Arg.getValue(1);
|
|
InFlag = Arg.getValue(2);
|
|
}
|
|
}
|
|
Ops.push_back(Arg);
|
|
}
|
|
// Link in chain of CopyTo/CopyFromReg.
|
|
Ops[0] = Chain;
|
|
DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
|
|
BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End) {
|
|
SDL->setCurrentBasicBlock(BB);
|
|
|
|
MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
|
|
|
|
if (MMI && BB->isLandingPad()) {
|
|
// Add a label to mark the beginning of the landing pad. Deletion of the
|
|
// landing pad can thus be detected via the MachineModuleInfo.
|
|
unsigned LabelID = MMI->addLandingPad(BB);
|
|
CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
|
|
CurDAG->getEntryNode(), LabelID));
|
|
|
|
// Mark exception register as live in.
|
|
unsigned Reg = TLI.getExceptionAddressRegister();
|
|
if (Reg) BB->addLiveIn(Reg);
|
|
|
|
// Mark exception selector register as live in.
|
|
Reg = TLI.getExceptionSelectorRegister();
|
|
if (Reg) BB->addLiveIn(Reg);
|
|
|
|
// FIXME: Hack around an exception handling flaw (PR1508): the personality
|
|
// function and list of typeids logically belong to the invoke (or, if you
|
|
// like, the basic block containing the invoke), and need to be associated
|
|
// with it in the dwarf exception handling tables. Currently however the
|
|
// information is provided by an intrinsic (eh.selector) that can be moved
|
|
// to unexpected places by the optimizers: if the unwind edge is critical,
|
|
// then breaking it can result in the intrinsics being in the successor of
|
|
// the landing pad, not the landing pad itself. This results in exceptions
|
|
// not being caught because no typeids are associated with the invoke.
|
|
// This may not be the only way things can go wrong, but it is the only way
|
|
// we try to work around for the moment.
|
|
BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
|
|
|
|
if (Br && Br->isUnconditional()) { // Critical edge?
|
|
BasicBlock::iterator I, E;
|
|
for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
|
|
if (isa<EHSelectorInst>(I))
|
|
break;
|
|
|
|
if (I == E)
|
|
// No catch info found - try to extract some from the successor.
|
|
copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
|
|
}
|
|
}
|
|
|
|
// Lower all of the non-terminator instructions.
|
|
for (BasicBlock::iterator I = Begin; I != End; ++I)
|
|
if (!isa<TerminatorInst>(I))
|
|
SDL->visit(*I);
|
|
|
|
// Ensure that all instructions which are used outside of their defining
|
|
// blocks are available as virtual registers. Invoke is handled elsewhere.
|
|
for (BasicBlock::iterator I = Begin; I != End; ++I)
|
|
if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
|
|
DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
|
|
if (VMI != FuncInfo->ValueMap.end())
|
|
SDL->CopyValueToVirtualRegister(I, VMI->second);
|
|
}
|
|
|
|
// Handle PHI nodes in successor blocks.
|
|
if (End == LLVMBB->end())
|
|
HandlePHINodesInSuccessorBlocks(LLVMBB);
|
|
|
|
// Make sure the root of the DAG is up-to-date.
|
|
CurDAG->setRoot(SDL->getControlRoot());
|
|
|
|
// Check whether calls in this block are real tail calls. Fix up CALL nodes
|
|
// with correct tailcall attribute so that the target can rely on the tailcall
|
|
// attribute indicating whether the call is really eligible for tail call
|
|
// optimization.
|
|
CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
|
|
|
|
// Final step, emit the lowered DAG as machine code.
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
}
|
|
|
|
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
|
|
SmallPtrSet<SDNode*, 128> VisitedNodes;
|
|
SmallVector<SDNode*, 128> Worklist;
|
|
|
|
Worklist.push_back(CurDAG->getRoot().getNode());
|
|
|
|
APInt Mask;
|
|
APInt KnownZero;
|
|
APInt KnownOne;
|
|
|
|
while (!Worklist.empty()) {
|
|
SDNode *N = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
// If we've already seen this node, ignore it.
|
|
if (!VisitedNodes.insert(N))
|
|
continue;
|
|
|
|
// Otherwise, add all chain operands to the worklist.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (N->getOperand(i).getValueType() == MVT::Other)
|
|
Worklist.push_back(N->getOperand(i).getNode());
|
|
|
|
// If this is a CopyToReg with a vreg dest, process it.
|
|
if (N->getOpcode() != ISD::CopyToReg)
|
|
continue;
|
|
|
|
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
continue;
|
|
|
|
// Ignore non-scalar or non-integer values.
|
|
SDValue Src = N->getOperand(2);
|
|
MVT SrcVT = Src.getValueType();
|
|
if (!SrcVT.isInteger() || SrcVT.isVector())
|
|
continue;
|
|
|
|
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
|
|
Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
|
|
CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
|
|
|
|
// Only install this information if it tells us something.
|
|
if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
|
|
DestReg -= TargetRegisterInfo::FirstVirtualRegister;
|
|
FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
|
|
if (DestReg >= FLI.LiveOutRegInfo.size())
|
|
FLI.LiveOutRegInfo.resize(DestReg+1);
|
|
FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
|
|
LOI.NumSignBits = NumSignBits;
|
|
LOI.KnownOne = NumSignBits;
|
|
LOI.KnownZero = NumSignBits;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::CodeGenAndEmitDAG() {
|
|
std::string GroupName;
|
|
if (TimePassesIsEnabled)
|
|
GroupName = "Instruction Selection and Scheduling";
|
|
std::string BlockName;
|
|
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
|
|
ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
|
|
BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
|
|
BB->getBasicBlock()->getName();
|
|
|
|
DOUT << "Initial selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in pre-legalize mode.
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("DAG Combining 1", GroupName);
|
|
CurDAG->Combine(false, *AA, Fast);
|
|
} else {
|
|
CurDAG->Combine(false, *AA, Fast);
|
|
}
|
|
|
|
DOUT << "Optimized lowered selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
if (EnableLegalizeTypes) {// Enable this some day.
|
|
if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
|
|
BlockName);
|
|
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("Type Legalization", GroupName);
|
|
CurDAG->LegalizeTypes();
|
|
} else {
|
|
CurDAG->LegalizeTypes();
|
|
}
|
|
|
|
DOUT << "Type-legalized selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
// TODO: enable a dag combine pass here.
|
|
}
|
|
|
|
if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
|
|
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("DAG Legalization", GroupName);
|
|
CurDAG->Legalize();
|
|
} else {
|
|
CurDAG->Legalize();
|
|
}
|
|
|
|
DOUT << "Legalized selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-legalize mode.
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("DAG Combining 2", GroupName);
|
|
CurDAG->Combine(true, *AA, Fast);
|
|
} else {
|
|
CurDAG->Combine(true, *AA, Fast);
|
|
}
|
|
|
|
DOUT << "Optimized legalized selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
|
|
|
|
if (!Fast && EnableValueProp)
|
|
ComputeLiveOutVRegInfo();
|
|
|
|
// Third, instruction select all of the operations to machine code, adding the
|
|
// code to the MachineBasicBlock.
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("Instruction Selection", GroupName);
|
|
InstructionSelect();
|
|
} else {
|
|
InstructionSelect();
|
|
}
|
|
|
|
DOUT << "Selected selection DAG:\n";
|
|
DEBUG(CurDAG->dump());
|
|
|
|
if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
|
|
|
|
// Schedule machine code.
|
|
ScheduleDAG *Scheduler;
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("Instruction Scheduling", GroupName);
|
|
Scheduler = Schedule();
|
|
} else {
|
|
Scheduler = Schedule();
|
|
}
|
|
|
|
if (ViewSUnitDAGs) Scheduler->viewGraph();
|
|
|
|
// Emit machine code to BB. This can change 'BB' to the last block being
|
|
// inserted into.
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("Instruction Creation", GroupName);
|
|
BB = Scheduler->EmitSchedule();
|
|
} else {
|
|
BB = Scheduler->EmitSchedule();
|
|
}
|
|
|
|
// Free the scheduler state.
|
|
if (TimePassesIsEnabled) {
|
|
NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
|
|
delete Scheduler;
|
|
} else {
|
|
delete Scheduler;
|
|
}
|
|
|
|
DOUT << "Selected machine code:\n";
|
|
DEBUG(BB->dump());
|
|
}
|
|
|
|
void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
|
|
BasicBlock *LLVMBB = &*I;
|
|
BB = FuncInfo->MBBMap[LLVMBB];
|
|
|
|
BasicBlock::iterator Begin = LLVMBB->begin();
|
|
BasicBlock::iterator End = LLVMBB->end();
|
|
|
|
// Lower any arguments needed in this block if this is the entry block.
|
|
if (LLVMBB == &Fn.getEntryBlock())
|
|
LowerArguments(LLVMBB);
|
|
|
|
// Before doing SelectionDAG ISel, see if FastISel has been requested.
|
|
// FastISel doesn't support EH landing pads, which require special handling.
|
|
if (EnableFastISel && !BB->isLandingPad()) {
|
|
if (FastISel *F = TLI.createFastISel(*FuncInfo->MF)) {
|
|
// Emit code for any incoming arguments. This must happen before
|
|
// beginning FastISel on the entry block.
|
|
if (LLVMBB == &Fn.getEntryBlock()) {
|
|
CurDAG->setRoot(SDL->getControlRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
}
|
|
// Do FastISel on as many instructions as possible.
|
|
while (Begin != End) {
|
|
Begin = F->SelectInstructions(Begin, End, FuncInfo->ValueMap,
|
|
FuncInfo->MBBMap, BB);
|
|
|
|
// If the "fast" selector selected the entire block, we're done.
|
|
if (Begin == End)
|
|
break;
|
|
|
|
// Next, try calling the target to attempt to handle the instruction.
|
|
if (F->TargetSelectInstruction(Begin, FuncInfo->ValueMap,
|
|
FuncInfo->MBBMap, BB)) {
|
|
++Begin;
|
|
continue;
|
|
}
|
|
|
|
// Handle certain instructions as single-LLVM-Instruction blocks.
|
|
if (isa<CallInst>(Begin) || isa<LoadInst>(Begin) ||
|
|
isa<StoreInst>(Begin)) {
|
|
if (Begin->getType() != Type::VoidTy) {
|
|
unsigned &R = FuncInfo->ValueMap[Begin];
|
|
if (!R)
|
|
R = FuncInfo->CreateRegForValue(Begin);
|
|
}
|
|
|
|
SelectBasicBlock(LLVMBB, Begin, next(Begin));
|
|
++Begin;
|
|
continue;
|
|
}
|
|
|
|
if (!DisableFastISelAbort &&
|
|
// For now, don't abort on non-conditional-branch terminators.
|
|
(!isa<TerminatorInst>(Begin) ||
|
|
(isa<BranchInst>(Begin) &&
|
|
cast<BranchInst>(Begin)->isUnconditional()))) {
|
|
// The "fast" selector couldn't handle something and bailed.
|
|
// For the purpose of debugging, just abort.
|
|
#ifndef NDEBUG
|
|
Begin->dump();
|
|
#endif
|
|
assert(0 && "FastISel didn't select the entire block");
|
|
}
|
|
break;
|
|
}
|
|
delete F;
|
|
}
|
|
}
|
|
|
|
// Run SelectionDAG instruction selection on the remainder of the block
|
|
// not handled by FastISel. If FastISel is not run, this is the entire
|
|
// block. If FastISel is run and happens to handle all of the
|
|
// LLVM Instructions in the block, [Begin,End) will be an empty range,
|
|
// but we still need to run this so that
|
|
// HandlePHINodesInSuccessorBlocks is called and any resulting code
|
|
// is emitted.
|
|
SelectBasicBlock(LLVMBB, Begin, End);
|
|
|
|
FinishBasicBlock();
|
|
}
|
|
}
|
|
|
|
void
|
|
SelectionDAGISel::FinishBasicBlock() {
|
|
|
|
// Perform target specific isel post processing.
|
|
InstructionSelectPostProcessing();
|
|
|
|
DOUT << "Target-post-processed machine code:\n";
|
|
DEBUG(BB->dump());
|
|
|
|
DOUT << "Total amount of phi nodes to update: "
|
|
<< SDL->PHINodesToUpdate.size() << "\n";
|
|
DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
|
|
DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
|
|
<< ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
|
|
|
|
// Next, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
if (SDL->SwitchCases.empty() &&
|
|
SDL->JTCases.empty() &&
|
|
SDL->BitTestCases.empty()) {
|
|
for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(BB));
|
|
}
|
|
SDL->PHINodesToUpdate.clear();
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!SDL->BitTestCases[i].Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SDL->BitTestCases[i].Parent;
|
|
SDL->setCurrentBasicBlock(BB);
|
|
// Emit the code
|
|
SDL->visitBitTestHeader(SDL->BitTestCases[i]);
|
|
CurDAG->setRoot(SDL->getRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
}
|
|
|
|
for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SDL->BitTestCases[i].Cases[j].ThisBB;
|
|
SDL->setCurrentBasicBlock(BB);
|
|
// Emit the code
|
|
if (j+1 != ej)
|
|
SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
|
|
SDL->BitTestCases[i].Reg,
|
|
SDL->BitTestCases[i].Cases[j]);
|
|
else
|
|
SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
|
|
SDL->BitTestCases[i].Reg,
|
|
SDL->BitTestCases[i].Cases[j]);
|
|
|
|
|
|
CurDAG->setRoot(SDL->getRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
}
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
|
|
MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// This is "default" BB. We have two jumps to it. From "header" BB and
|
|
// from last "case" BB.
|
|
if (PHIBB == SDL->BitTestCases[i].Default) {
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
|
|
back().ThisBB));
|
|
}
|
|
// One of "cases" BB.
|
|
for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
|
|
j != ej; ++j) {
|
|
MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
|
|
if (cBB->succ_end() !=
|
|
std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(cBB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SDL->BitTestCases.clear();
|
|
|
|
// If the JumpTable record is filled in, then we need to emit a jump table.
|
|
// Updating the PHI nodes is tricky in this case, since we need to determine
|
|
// whether the PHI is a successor of the range check MBB or the jump table MBB
|
|
for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!SDL->JTCases[i].first.Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SDL->JTCases[i].first.HeaderBB;
|
|
SDL->setCurrentBasicBlock(BB);
|
|
// Emit the code
|
|
SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
|
|
CurDAG->setRoot(SDL->getRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
}
|
|
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SDL->JTCases[i].second.MBB;
|
|
SDL->setCurrentBasicBlock(BB);
|
|
// Emit the code
|
|
SDL->visitJumpTable(SDL->JTCases[i].second);
|
|
CurDAG->setRoot(SDL->getRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
|
|
MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// "default" BB. We can go there only from header BB.
|
|
if (PHIBB == SDL->JTCases[i].second.Default) {
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
|
|
}
|
|
// JT BB. Just iterate over successors here
|
|
if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(BB));
|
|
}
|
|
}
|
|
}
|
|
SDL->JTCases.clear();
|
|
|
|
// If the switch block involved a branch to one of the actual successors, we
|
|
// need to update PHI nodes in that block.
|
|
for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
if (BB->isSuccessor(PHI->getParent())) {
|
|
PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(BB));
|
|
}
|
|
}
|
|
|
|
// If we generated any switch lowering information, build and codegen any
|
|
// additional DAGs necessary.
|
|
for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
BB = SDL->SwitchCases[i].ThisBB;
|
|
SDL->setCurrentBasicBlock(BB);
|
|
|
|
// Emit the code
|
|
SDL->visitSwitchCase(SDL->SwitchCases[i]);
|
|
CurDAG->setRoot(SDL->getRoot());
|
|
CodeGenAndEmitDAG();
|
|
SDL->clear();
|
|
|
|
// Handle any PHI nodes in successors of this chunk, as if we were coming
|
|
// from the original BB before switch expansion. Note that PHI nodes can
|
|
// occur multiple times in PHINodesToUpdate. We have to be very careful to
|
|
// handle them the right number of times.
|
|
while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
|
|
for (MachineBasicBlock::iterator Phi = BB->begin();
|
|
Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
|
|
// This value for this PHI node is recorded in PHINodesToUpdate, get it.
|
|
for (unsigned pn = 0; ; ++pn) {
|
|
assert(pn != SDL->PHINodesToUpdate.size() &&
|
|
"Didn't find PHI entry!");
|
|
if (SDL->PHINodesToUpdate[pn].first == Phi) {
|
|
Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
|
|
second, false));
|
|
Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't process RHS if same block as LHS.
|
|
if (BB == SDL->SwitchCases[i].FalseBB)
|
|
SDL->SwitchCases[i].FalseBB = 0;
|
|
|
|
// If we haven't handled the RHS, do so now. Otherwise, we're done.
|
|
SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
|
|
SDL->SwitchCases[i].FalseBB = 0;
|
|
}
|
|
assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
|
|
}
|
|
SDL->SwitchCases.clear();
|
|
|
|
SDL->PHINodesToUpdate.clear();
|
|
}
|
|
|
|
|
|
/// Schedule - Pick a safe ordering for instructions for each
|
|
/// target node in the graph.
|
|
///
|
|
ScheduleDAG *SelectionDAGISel::Schedule() {
|
|
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
|
|
|
|
if (!Ctor) {
|
|
Ctor = ISHeuristic;
|
|
RegisterScheduler::setDefault(Ctor);
|
|
}
|
|
|
|
ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
|
|
Scheduler->Run();
|
|
|
|
return Scheduler;
|
|
}
|
|
|
|
|
|
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
|
|
return new HazardRecognizer();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions used by the generated instruction selector.
|
|
//===----------------------------------------------------------------------===//
|
|
// Calls to these methods are generated by tblgen.
|
|
|
|
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
|
|
APInt KnownZero, KnownOne;
|
|
CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
|
|
|
|
// If all the missing bits in the or are already known to be set, match!
|
|
if ((NeededMask & KnownOne) == NeededMask)
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
|
|
/// by tblgen. Others should not call it.
|
|
void SelectionDAGISel::
|
|
SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
|
|
std::vector<SDValue> InOps;
|
|
std::swap(InOps, Ops);
|
|
|
|
Ops.push_back(InOps[0]); // input chain.
|
|
Ops.push_back(InOps[1]); // input asm string.
|
|
|
|
unsigned i = 2, e = InOps.size();
|
|
if (InOps[e-1].getValueType() == MVT::Flag)
|
|
--e; // Don't process a flag operand if it is here.
|
|
|
|
while (i != e) {
|
|
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
|
|
if ((Flags & 7) != 4 /*MEM*/) {
|
|
// Just skip over this operand, copying the operands verbatim.
|
|
Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
|
|
i += (Flags >> 3) + 1;
|
|
} else {
|
|
assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
|
|
// Otherwise, this is a memory operand. Ask the target to select it.
|
|
std::vector<SDValue> SelOps;
|
|
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
|
|
cerr << "Could not match memory address. Inline asm failure!\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Add this to the output node.
|
|
MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
|
|
Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
|
|
IntPtrTy));
|
|
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
// Add the flag input back if present.
|
|
if (e != InOps.size())
|
|
Ops.push_back(InOps.back());
|
|
}
|
|
|
|
char SelectionDAGISel::ID = 0;
|