mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
3f46a3abee
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97453 91177308-0d34-0410-b5e6-96231b3b80d8
364 lines
13 KiB
C++
364 lines
13 KiB
C++
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements bookkeeping for "interesting" users of expressions
|
|
// computed from induction variables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "iv-users"
|
|
#include "llvm/Analysis/IVUsers.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Assembly/AsmAnnotationWriter.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
char IVUsers::ID = 0;
|
|
static RegisterPass<IVUsers>
|
|
X("iv-users", "Induction Variable Users", false, true);
|
|
|
|
Pass *llvm::createIVUsersPass() {
|
|
return new IVUsers();
|
|
}
|
|
|
|
/// CollectSubexprs - Split S into subexpressions which can be pulled out into
|
|
/// separate registers.
|
|
static void CollectSubexprs(const SCEV *S,
|
|
SmallVectorImpl<const SCEV *> &Ops,
|
|
ScalarEvolution &SE) {
|
|
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
|
// Break out add operands.
|
|
for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
|
|
I != E; ++I)
|
|
CollectSubexprs(*I, Ops, SE);
|
|
return;
|
|
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
// Split a non-zero base out of an addrec.
|
|
if (!AR->getStart()->isZero()) {
|
|
CollectSubexprs(AR->getStart(), Ops, SE);
|
|
CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
|
|
AR->getStepRecurrence(SE),
|
|
AR->getLoop()), Ops, SE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise use the value itself.
|
|
Ops.push_back(S);
|
|
}
|
|
|
|
/// getSCEVStartAndStride - Compute the start and stride of this expression,
|
|
/// returning false if the expression is not a start/stride pair, or true if it
|
|
/// is. The stride must be a loop invariant expression, but the start may be
|
|
/// a mix of loop invariant and loop variant expressions. The start cannot,
|
|
/// however, contain an AddRec from a different loop, unless that loop is an
|
|
/// outer loop of the current loop.
|
|
static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop,
|
|
const SCEV *&Start, const SCEV *&Stride,
|
|
ScalarEvolution *SE, DominatorTree *DT) {
|
|
const SCEV *TheAddRec = Start; // Initialize to zero.
|
|
|
|
// If the outer level is an AddExpr, the operands are all start values except
|
|
// for a nested AddRecExpr.
|
|
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
|
|
for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
|
|
if (const SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(AE->getOperand(i)))
|
|
TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
|
|
else
|
|
Start = SE->getAddExpr(Start, AE->getOperand(i));
|
|
} else if (isa<SCEVAddRecExpr>(SH)) {
|
|
TheAddRec = SH;
|
|
} else {
|
|
return false; // not analyzable.
|
|
}
|
|
|
|
// Break down TheAddRec into its component parts.
|
|
SmallVector<const SCEV *, 4> Subexprs;
|
|
CollectSubexprs(TheAddRec, Subexprs, *SE);
|
|
|
|
// Look for an addrec on the current loop among the parts.
|
|
const SCEV *AddRecStride = 0;
|
|
for (SmallVectorImpl<const SCEV *>::iterator I = Subexprs.begin(),
|
|
E = Subexprs.end(); I != E; ++I) {
|
|
const SCEV *S = *I;
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
|
|
if (AR->getLoop() == L) {
|
|
*I = AR->getStart();
|
|
AddRecStride = AR->getStepRecurrence(*SE);
|
|
break;
|
|
}
|
|
}
|
|
if (!AddRecStride)
|
|
return false;
|
|
|
|
// Add up everything else into a start value (which may not be
|
|
// loop-invariant).
|
|
const SCEV *AddRecStart = SE->getAddExpr(Subexprs);
|
|
|
|
// Use getSCEVAtScope to attempt to simplify other loops out of
|
|
// the picture.
|
|
AddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop);
|
|
|
|
Start = SE->getAddExpr(Start, AddRecStart);
|
|
|
|
// If stride is an instruction, make sure it properly dominates the header.
|
|
// Otherwise we could end up with a use before def situation.
|
|
if (!isa<SCEVConstant>(AddRecStride)) {
|
|
BasicBlock *Header = L->getHeader();
|
|
if (!AddRecStride->properlyDominates(Header, DT))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "[";
|
|
WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
|
|
dbgs() << "] Variable stride: " << *AddRecStride << "\n");
|
|
}
|
|
|
|
Stride = AddRecStride;
|
|
return true;
|
|
}
|
|
|
|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
|
|
/// and now we need to decide whether the user should use the preinc or post-inc
|
|
/// value. If this user should use the post-inc version of the IV, return true.
|
|
///
|
|
/// Choosing wrong here can break dominance properties (if we choose to use the
|
|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
|
|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
|
|
/// should use the post-inc value).
|
|
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
|
|
Loop *L, DominatorTree *DT) {
|
|
// If the user is in the loop, use the preinc value.
|
|
if (L->contains(User)) return false;
|
|
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
if (!LatchBlock)
|
|
return false;
|
|
|
|
// Ok, the user is outside of the loop. If it is dominated by the latch
|
|
// block, use the post-inc value.
|
|
if (DT->dominates(LatchBlock, User->getParent()))
|
|
return true;
|
|
|
|
// There is one case we have to be careful of: PHI nodes. These little guys
|
|
// can live in blocks that are not dominated by the latch block, but (since
|
|
// their uses occur in the predecessor block, not the block the PHI lives in)
|
|
// should still use the post-inc value. Check for this case now.
|
|
PHINode *PN = dyn_cast<PHINode>(User);
|
|
if (!PN) return false; // not a phi, not dominated by latch block.
|
|
|
|
// Look at all of the uses of IV by the PHI node. If any use corresponds to
|
|
// a block that is not dominated by the latch block, give up and use the
|
|
// preincremented value.
|
|
unsigned NumUses = 0;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == IV) {
|
|
++NumUses;
|
|
if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
|
|
return false;
|
|
}
|
|
|
|
// Okay, all uses of IV by PN are in predecessor blocks that really are
|
|
// dominated by the latch block. Use the post-incremented value.
|
|
return true;
|
|
}
|
|
|
|
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
|
|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
|
/// return true. Otherwise, return false.
|
|
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false; // Void and FP expressions cannot be reduced.
|
|
|
|
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
|
|
if (SE->getTypeSizeInBits(I->getType()) > 64)
|
|
return false;
|
|
|
|
if (!Processed.insert(I))
|
|
return true; // Instruction already handled.
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
const SCEV *ISE = SE->getSCEV(I);
|
|
if (isa<SCEVCouldNotCompute>(ISE)) return false;
|
|
|
|
// Get the start and stride for this expression.
|
|
Loop *UseLoop = LI->getLoopFor(I->getParent());
|
|
const SCEV *Start = SE->getIntegerSCEV(0, ISE->getType());
|
|
const SCEV *Stride = Start;
|
|
|
|
if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, SE, DT))
|
|
return false; // Non-reducible symbolic expression, bail out.
|
|
|
|
// Keep things simple. Don't touch loop-variant strides.
|
|
if (!Stride->isLoopInvariant(L) && L->contains(I))
|
|
return false;
|
|
|
|
SmallPtrSet<Instruction *, 4> UniqueUsers;
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (!UniqueUsers.insert(User))
|
|
continue;
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && Processed.count(User))
|
|
continue;
|
|
|
|
// Descend recursively, but not into PHI nodes outside the current loop.
|
|
// It's important to see the entire expression outside the loop to get
|
|
// choices that depend on addressing mode use right, although we won't
|
|
// consider references outside the loop in all cases.
|
|
// If User is already in Processed, we don't want to recurse into it again,
|
|
// but do want to record a second reference in the same instruction.
|
|
bool AddUserToIVUsers = false;
|
|
if (LI->getLoopFor(User->getParent()) != L) {
|
|
if (isa<PHINode>(User) || Processed.count(User) ||
|
|
!AddUsersIfInteresting(User)) {
|
|
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
} else if (Processed.count(User) ||
|
|
!AddUsersIfInteresting(User)) {
|
|
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
|
|
<< " OF SCEV: " << *ISE << '\n');
|
|
AddUserToIVUsers = true;
|
|
}
|
|
|
|
if (AddUserToIVUsers) {
|
|
// Okay, we found a user that we cannot reduce. Analyze the instruction
|
|
// and decide what to do with it. If we are a use inside of the loop, use
|
|
// the value before incrementation, otherwise use it after incrementation.
|
|
if (IVUseShouldUsePostIncValue(User, I, L, DT)) {
|
|
// The value used will be incremented by the stride more than we are
|
|
// expecting, so subtract this off.
|
|
const SCEV *NewStart = SE->getMinusSCEV(Start, Stride);
|
|
IVUses.push_back(new IVStrideUse(this, Stride, NewStart, User, I));
|
|
IVUses.back().setIsUseOfPostIncrementedValue(true);
|
|
DEBUG(dbgs() << " USING POSTINC SCEV, START=" << *NewStart<< "\n");
|
|
} else {
|
|
IVUses.push_back(new IVStrideUse(this, Stride, Start, User, I));
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
IVStrideUse &IVUsers::AddUser(const SCEV *Stride, const SCEV *Offset,
|
|
Instruction *User, Value *Operand) {
|
|
IVUses.push_back(new IVStrideUse(this, Stride, Offset, User, Operand));
|
|
return IVUses.back();
|
|
}
|
|
|
|
IVUsers::IVUsers()
|
|
: LoopPass(&ID) {
|
|
}
|
|
|
|
void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
|
|
|
|
L = l;
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
|
|
// Find all uses of induction variables in this loop, and categorize
|
|
// them by stride. Start by finding all of the PHI nodes in the header for
|
|
// this loop. If they are induction variables, inspect their uses.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
|
AddUsersIfInteresting(I);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getReplacementExpr - Return a SCEV expression which computes the
|
|
/// value of the OperandValToReplace of the given IVStrideUse.
|
|
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const {
|
|
// Start with zero.
|
|
const SCEV *RetVal = SE->getIntegerSCEV(0, U.getStride()->getType());
|
|
// Create the basic add recurrence.
|
|
RetVal = SE->getAddRecExpr(RetVal, U.getStride(), L);
|
|
// Add the offset in a separate step, because it may be loop-variant.
|
|
RetVal = SE->getAddExpr(RetVal, U.getOffset());
|
|
// For uses of post-incremented values, add an extra stride to compute
|
|
// the actual replacement value.
|
|
if (U.isUseOfPostIncrementedValue())
|
|
RetVal = SE->getAddExpr(RetVal, U.getStride());
|
|
return RetVal;
|
|
}
|
|
|
|
/// getCanonicalExpr - Return a SCEV expression which computes the
|
|
/// value of the SCEV of the given IVStrideUse, ignoring the
|
|
/// isUseOfPostIncrementedValue flag.
|
|
const SCEV *IVUsers::getCanonicalExpr(const IVStrideUse &U) const {
|
|
// Start with zero.
|
|
const SCEV *RetVal = SE->getIntegerSCEV(0, U.getStride()->getType());
|
|
// Create the basic add recurrence.
|
|
RetVal = SE->getAddRecExpr(RetVal, U.getStride(), L);
|
|
// Add the offset in a separate step, because it may be loop-variant.
|
|
RetVal = SE->getAddExpr(RetVal, U.getOffset());
|
|
return RetVal;
|
|
}
|
|
|
|
void IVUsers::print(raw_ostream &OS, const Module *M) const {
|
|
OS << "IV Users for loop ";
|
|
WriteAsOperand(OS, L->getHeader(), false);
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
|
|
OS << " with backedge-taken count "
|
|
<< *SE->getBackedgeTakenCount(L);
|
|
}
|
|
OS << ":\n";
|
|
|
|
// Use a default AssemblyAnnotationWriter to suppress the default info
|
|
// comments, which aren't relevant here.
|
|
AssemblyAnnotationWriter Annotator;
|
|
for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
|
|
E = IVUses.end(); UI != E; ++UI) {
|
|
OS << " ";
|
|
WriteAsOperand(OS, UI->getOperandValToReplace(), false);
|
|
OS << " = "
|
|
<< *getReplacementExpr(*UI);
|
|
if (UI->isUseOfPostIncrementedValue())
|
|
OS << " (post-inc)";
|
|
OS << " in ";
|
|
UI->getUser()->print(OS, &Annotator);
|
|
OS << '\n';
|
|
}
|
|
}
|
|
|
|
void IVUsers::dump() const {
|
|
print(dbgs());
|
|
}
|
|
|
|
void IVUsers::releaseMemory() {
|
|
Processed.clear();
|
|
IVUses.clear();
|
|
}
|
|
|
|
void IVStrideUse::deleted() {
|
|
// Remove this user from the list.
|
|
Parent->IVUses.erase(this);
|
|
// this now dangles!
|
|
}
|