llvm-6502/lib/Target/ARM/ARMInstrThumb.td
Evan Cheng 81c102ba66 Since we have moved unified assembly, switch to ADR instruction instead of a the difficult-to-read .set + add syntax to materialize pc-relative address.
Turns out this also fixed a poor code selection on Thumb1. I have no idea why we were using a mov + add to do the same thing as ADR before.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76889 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-23 18:26:03 +00:00

634 lines
23 KiB
TableGen

//===- ARMInstrThumb.td - Thumb support for ARM ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Thumb specific DAG Nodes.
//
def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
}]>;
def imm_comp_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
}]>;
/// imm0_7 predicate - True if the 32-bit immediate is in the range [0,7].
def imm0_7 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 8;
}]>;
def imm0_7_neg : PatLeaf<(i32 imm), [{
return (uint32_t)-N->getZExtValue() < 8;
}], imm_neg_XFORM>;
def imm0_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 256;
}]>;
def imm0_255_comp : PatLeaf<(i32 imm), [{
return ~((uint32_t)N->getZExtValue()) < 256;
}]>;
def imm8_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() >= 8 && (uint32_t)N->getZExtValue() < 256;
}]>;
def imm8_255_neg : PatLeaf<(i32 imm), [{
unsigned Val = -N->getZExtValue();
return Val >= 8 && Val < 256;
}], imm_neg_XFORM>;
// Break imm's up into two pieces: an immediate + a left shift.
// This uses thumb_immshifted to match and thumb_immshifted_val and
// thumb_immshifted_shamt to get the val/shift pieces.
def thumb_immshifted : PatLeaf<(imm), [{
return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
}]>;
def thumb_immshifted_val : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def thumb_immshifted_shamt : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
// Define Thumb specific addressing modes.
// t_addrmode_rr := reg + reg
//
def t_addrmode_rr : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
let PrintMethod = "printThumbAddrModeRROperand";
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
// t_addrmode_s4 := reg + reg
// reg + imm5 * 4
//
def t_addrmode_s4 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS4", []> {
let PrintMethod = "printThumbAddrModeS4Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_s2 := reg + reg
// reg + imm5 * 2
//
def t_addrmode_s2 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS2", []> {
let PrintMethod = "printThumbAddrModeS2Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_s1 := reg + reg
// reg + imm5
//
def t_addrmode_s1 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS1", []> {
let PrintMethod = "printThumbAddrModeS1Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
}
// t_addrmode_sp := sp + imm8 * 4
//
def t_addrmode_sp : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
let PrintMethod = "printThumbAddrModeSPOperand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
let Defs = [SP], Uses = [SP] in {
def tADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"@ tADJCALLSTACKUP $amt1",
[(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb1Only]>;
def tADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt),
"@ tADJCALLSTACKDOWN $amt",
[(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb1Only]>;
}
let isNotDuplicable = 1 in
def tPICADD : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, pclabel:$cp),
"$cp:\n\tadd $dst, pc",
[(set tGPR:$dst, (ARMpic_add tGPR:$lhs, imm:$cp))]>;
// PC relative add.
def tADDrPCi : T1I<(outs tGPR:$dst), (ins i32imm:$rhs),
"add $dst, pc, $rhs * 4", []>;
// ADD rd, sp, #imm8
// FIXME: hard code sp?
def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, i32imm:$rhs),
"add $dst, $sp, $rhs * 4 @ addrspi", []>;
// ADD sp, sp, #imm7
// FIXME: hard code sp?
def tADDspi : T1It<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
"add $dst, $rhs * 4", []>;
// FIXME: Make use of the following?
// ADD rm, sp, rm
// ADD sp, rm
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1 in {
def tBX_RET : TI<(outs), (ins), "bx lr", [(ARMretflag)]>;
// Alternative return instruction used by vararg functions.
def tBX_RET_vararg : TI<(outs), (ins tGPR:$target), "bx $target", []>;
}
// FIXME: remove when we have a way to marking a MI with these properties.
let isReturn = 1, isTerminator = 1 in
def tPOP_RET : T1I<(outs reglist:$dst1, variable_ops), (ins),
"pop $dst1", []>;
let isCall = 1,
Defs = [R0, R1, R2, R3, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D31, D31, CPSR] in {
def tBL : T1Ix2<(outs), (ins i32imm:$func, variable_ops),
"bl ${func:call}",
[(ARMtcall tglobaladdr:$func)]>;
// ARMv5T and above
def tBLXi : T1Ix2<(outs), (ins i32imm:$func, variable_ops),
"blx ${func:call}",
[(ARMcall tglobaladdr:$func)]>, Requires<[HasV5T]>;
def tBLXr : T1I<(outs), (ins tGPR:$func, variable_ops),
"blx $func",
[(ARMtcall tGPR:$func)]>, Requires<[HasV5T]>;
// ARMv4T
def tBX : T1Ix2<(outs), (ins tGPR:$func, variable_ops),
"mov lr, pc\n\tbx $func",
[(ARMcall_nolink tGPR:$func)]>;
}
let isBranch = 1, isTerminator = 1 in {
let isBarrier = 1 in {
let isPredicable = 1 in
def tB : T1I<(outs), (ins brtarget:$target), "b $target",
[(br bb:$target)]>;
// Far jump
def tBfar : T1Ix2<(outs), (ins brtarget:$target),
"bl $target\t@ far jump",[]>;
def tBR_JTr : T1JTI<(outs),
(ins tGPR:$target, jtblock_operand:$jt, i32imm:$id),
"mov pc, $target \n\t.align\t2\n$jt",
[(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>;
}
}
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
def tBcc : T1I<(outs), (ins brtarget:$target, pred:$cc), "b$cc $target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>;
//===----------------------------------------------------------------------===//
// Load Store Instructions.
//
let canFoldAsLoad = 1 in
def tLDR : T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr),
"ldr", " $dst, $addr",
[(set tGPR:$dst, (load t_addrmode_s4:$addr))]>;
def tLDRB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr),
"ldrb", " $dst, $addr",
[(set tGPR:$dst, (zextloadi8 t_addrmode_s1:$addr))]>;
def tLDRH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr),
"ldrh", " $dst, $addr",
[(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>;
let AddedComplexity = 10 in
def tLDRSB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr),
"ldrsb", " $dst, $addr",
[(set tGPR:$dst, (sextloadi8 t_addrmode_rr:$addr))]>;
let AddedComplexity = 10 in
def tLDRSH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_rr:$addr),
"ldrsh", " $dst, $addr",
[(set tGPR:$dst, (sextloadi16 t_addrmode_rr:$addr))]>;
let canFoldAsLoad = 1 in
def tLDRspi : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr),
"ldr", " $dst, $addr",
[(set tGPR:$dst, (load t_addrmode_sp:$addr))]>;
// Special instruction for restore. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
let canFoldAsLoad = 1, mayLoad = 1 in
def tRestore : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr),
"ldr", " $dst, $addr", []>;
// Load tconstpool
let canFoldAsLoad = 1 in
def tLDRpci : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr),
"ldr", " $dst, $addr",
[(set tGPR:$dst, (load (ARMWrapper tconstpool:$addr)))]>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1 in
def tLDRcp : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr),
"ldr", " $dst, $addr", []>;
def tSTR : T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr),
"str", " $src, $addr",
[(store tGPR:$src, t_addrmode_s4:$addr)]>;
def tSTRB : T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr),
"strb", " $src, $addr",
[(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>;
def tSTRH : T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr),
"strh", " $src, $addr",
[(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>;
def tSTRspi : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr),
"str", " $src, $addr",
[(store tGPR:$src, t_addrmode_sp:$addr)]>;
let mayStore = 1 in {
// Special instruction for spill. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
def tSpill : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr),
"str", " $src, $addr", []>;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
// TODO: A7-44: LDMIA - load multiple
// TODO: Allow these to be predicated
let mayLoad = 1 in
def tPOP : T1I<(outs reglist:$dst1, variable_ops), (ins),
"pop $dst1", []>;
let mayStore = 1 in
def tPUSH : T1I<(outs), (ins reglist:$src1, variable_ops),
"push $src1", []>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
// Add with carry register
let isCommutable = 1, Uses = [CPSR] in
def tADC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"adc", " $dst, $rhs",
[(set tGPR:$dst, (adde tGPR:$lhs, tGPR:$rhs))]>;
// Add immediate
def tADDi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"add", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm0_7:$rhs))]>;
def tADDi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"add", " $dst, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm8_255:$rhs))]>;
// Add register
let isCommutable = 1 in
def tADDrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"add", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, tGPR:$rhs))]>;
let neverHasSideEffects = 1 in
def tADDhirr : T1pIt<(outs tGPR:$dst), (ins GPR:$lhs, GPR:$rhs),
"add", " $dst, $rhs @ addhirr", []>;
// And register
let isCommutable = 1 in
def tAND : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"and", " $dst, $rhs",
[(set tGPR:$dst, (and tGPR:$lhs, tGPR:$rhs))]>;
// ASR immediate
def tASRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"asr", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (sra tGPR:$lhs, (i32 imm:$rhs)))]>;
// ASR register
def tASRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"asr", " $dst, $rhs",
[(set tGPR:$dst, (sra tGPR:$lhs, tGPR:$rhs))]>;
// BIC register
def tBIC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"bic", " $dst, $rhs",
[(set tGPR:$dst, (and tGPR:$lhs, (not tGPR:$rhs)))]>;
// CMN register
let Defs = [CPSR] in {
def tCMN : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs),
"cmn", " $lhs, $rhs",
[(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
def tCMNZ : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs),
"cmn", " $lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, (ineg tGPR:$rhs))]>;
}
// CMP immediate
let Defs = [CPSR] in {
def tCMPi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs),
"cmp", " $lhs, $rhs",
[(ARMcmp tGPR:$lhs, imm0_255:$rhs)]>;
def tCMPZi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs),
"cmp", " $lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, imm0_255:$rhs)]>;
}
// CMP register
let Defs = [CPSR] in {
def tCMPr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs),
"cmp", " $lhs, $rhs",
[(ARMcmp tGPR:$lhs, tGPR:$rhs)]>;
def tCMPZr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs),
"cmp", " $lhs, $rhs",
[(ARMcmpZ tGPR:$lhs, tGPR:$rhs)]>;
// TODO: Make use of the followings cmp hi regs
def tCMPhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs),
"cmp", " $lhs, $rhs", []>;
def tCMPZhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs),
"cmp", " $lhs, $rhs", []>;
}
// XOR register
let isCommutable = 1 in
def tEOR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"eor", " $dst, $rhs",
[(set tGPR:$dst, (xor tGPR:$lhs, tGPR:$rhs))]>;
// LSL immediate
def tLSLri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"lsl", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (shl tGPR:$lhs, (i32 imm:$rhs)))]>;
// LSL register
def tLSLrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"lsl", " $dst, $rhs",
[(set tGPR:$dst, (shl tGPR:$lhs, tGPR:$rhs))]>;
// LSR immediate
def tLSRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"lsr", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (srl tGPR:$lhs, (i32 imm:$rhs)))]>;
// LSR register
def tLSRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"lsr", " $dst, $rhs",
[(set tGPR:$dst, (srl tGPR:$lhs, tGPR:$rhs))]>;
// move register
def tMOVi8 : T1sI<(outs tGPR:$dst), (ins i32imm:$src),
"mov", " $dst, $src",
[(set tGPR:$dst, imm0_255:$src)]>;
// TODO: A7-73: MOV(2) - mov setting flag.
let neverHasSideEffects = 1 in {
// FIXME: Make this predicable.
def tMOVr : T1I<(outs tGPR:$dst), (ins tGPR:$src),
"mov $dst, $src", []>;
let Defs = [CPSR] in
def tMOVSr : T1I<(outs tGPR:$dst), (ins tGPR:$src),
"movs $dst, $src", []>;
// FIXME: Make these predicable.
def tMOVhir2lor : T1I<(outs tGPR:$dst), (ins GPR:$src),
"mov $dst, $src\t@ hir2lor", []>;
def tMOVlor2hir : T1I<(outs GPR:$dst), (ins tGPR:$src),
"mov $dst, $src\t@ lor2hir", []>;
def tMOVhir2hir : T1I<(outs GPR:$dst), (ins GPR:$src),
"mov $dst, $src\t@ hir2hir", []>;
} // neverHasSideEffects
// multiply register
let isCommutable = 1 in
def tMUL : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"mul", " $dst, $rhs",
[(set tGPR:$dst, (mul tGPR:$lhs, tGPR:$rhs))]>;
// move inverse register
def tMVN : T1sI<(outs tGPR:$dst), (ins tGPR:$src),
"mvn", " $dst, $src",
[(set tGPR:$dst, (not tGPR:$src))]>;
// bitwise or register
let isCommutable = 1 in
def tORR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"orr", " $dst, $rhs",
[(set tGPR:$dst, (or tGPR:$lhs, tGPR:$rhs))]>;
// swaps
def tREV : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"rev", " $dst, $src",
[(set tGPR:$dst, (bswap tGPR:$src))]>,
Requires<[IsThumb1Only, HasV6]>;
def tREV16 : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"rev16", " $dst, $src",
[(set tGPR:$dst,
(or (and (srl tGPR:$src, (i32 8)), 0xFF),
(or (and (shl tGPR:$src, (i32 8)), 0xFF00),
(or (and (srl tGPR:$src, (i32 8)), 0xFF0000),
(and (shl tGPR:$src, (i32 8)), 0xFF000000)))))]>,
Requires<[IsThumb1Only, HasV6]>;
def tREVSH : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"revsh", " $dst, $src",
[(set tGPR:$dst,
(sext_inreg
(or (srl (and tGPR:$src, 0xFFFF), (i32 8)),
(shl tGPR:$src, (i32 8))), i16))]>,
Requires<[IsThumb1Only, HasV6]>;
// rotate right register
def tROR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"ror", " $dst, $rhs",
[(set tGPR:$dst, (rotr tGPR:$lhs, tGPR:$rhs))]>;
// negate register
def tRSB : T1sI<(outs tGPR:$dst), (ins tGPR:$src),
"rsb", " $dst, $src, #0",
[(set tGPR:$dst, (ineg tGPR:$src))]>;
// Subtract with carry register
let Uses = [CPSR] in
def tSBC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"sbc", " $dst, $rhs",
[(set tGPR:$dst, (sube tGPR:$lhs, tGPR:$rhs))]>;
// Subtract immediate
def tSUBi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"sub", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm0_7_neg:$rhs))]>;
def tSUBi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
"sub", " $dst, $rhs",
[(set tGPR:$dst, (add tGPR:$lhs, imm8_255_neg:$rhs))]>;
// subtract register
def tSUBrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
"sub", " $dst, $lhs, $rhs",
[(set tGPR:$dst, (sub tGPR:$lhs, tGPR:$rhs))]>;
// TODO: A7-96: STMIA - store multiple.
def tSUBspi : T1It<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
"sub $dst, $rhs * 4", []>;
// sign-extend byte
def tSXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"sxtb", " $dst, $src",
[(set tGPR:$dst, (sext_inreg tGPR:$src, i8))]>,
Requires<[IsThumb1Only, HasV6]>;
// sign-extend short
def tSXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"sxth", " $dst, $src",
[(set tGPR:$dst, (sext_inreg tGPR:$src, i16))]>,
Requires<[IsThumb1Only, HasV6]>;
// test
let isCommutable = 1, Defs = [CPSR] in
def tTST : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs),
"tst", " $lhs, $rhs",
[(ARMcmpZ (and tGPR:$lhs, tGPR:$rhs), 0)]>;
// zero-extend byte
def tUXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"uxtb", " $dst, $src",
[(set tGPR:$dst, (and tGPR:$src, 0xFF))]>,
Requires<[IsThumb1Only, HasV6]>;
// zero-extend short
def tUXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src),
"uxth", " $dst, $src",
[(set tGPR:$dst, (and tGPR:$src, 0xFFFF))]>,
Requires<[IsThumb1Only, HasV6]>;
// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC DAG operation.
// Expanded by the scheduler into a branch sequence.
// FIXME: Add actual movcc in IT blocks for Thumb2.
let usesCustomDAGSchedInserter = 1 in // Expanded by the scheduler.
def tMOVCCr :
PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc),
"@ tMOVCCr $cc",
[/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.
def tLEApcrel : T1I<(outs tGPR:$dst), (ins i32imm:$label),
"adr $dst, #$label", []>;
def tLEApcrelJT : T1I<(outs tGPR:$dst), (ins i32imm:$label, i32imm:$id),
"adr $dst, #${label}_${id:no_hash}", []>;
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1,
Defs = [R0, LR] in {
def tTPsoft : T1Ix2<(outs), (ins),
"bl __aeabi_read_tp",
[(set R0, ARMthread_pointer)]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// Add with carry
def : TPat<(addc tGPR:$lhs, imm0_7:$rhs),
(tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
def : TPat<(addc tGPR:$lhs, imm8_255:$rhs),
(tADDi3 tGPR:$lhs, imm8_255:$rhs)>;
def : TPat<(addc tGPR:$lhs, tGPR:$rhs),
(tADDrr tGPR:$lhs, tGPR:$rhs)>;
// Subtract with carry
def : TPat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
(tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
def : TPat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
(tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
def : TPat<(subc tGPR:$lhs, tGPR:$rhs),
(tSUBrr tGPR:$lhs, tGPR:$rhs)>;
// ConstantPool, GlobalAddress
def : TPat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
def : TPat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
// JumpTable
def : TPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(tLEApcrelJT tjumptable:$dst, imm:$id)>;
// Direct calls
def : TPat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>;
// Indirect calls to ARM routines
def : Tv5Pat<(ARMcall tGPR:$dst), (tBLXr tGPR:$dst)>;
// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_s1:$addr),
(tLDRB t_addrmode_s1:$addr)>;
// extload -> zextload
def : T1Pat<(extloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_s2:$addr), (tLDRH t_addrmode_s2:$addr)>;
// If it's possible to use [r,r] address mode for sextload, select to
// ldr{b|h} + sxt{b|h} instead.
def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
(tSXTB (tLDRB t_addrmode_s1:$addr))>;
def : T1Pat<(sextloadi16 t_addrmode_s2:$addr),
(tSXTH (tLDRH t_addrmode_s2:$addr))>;
// Large immediate handling.
// Two piece imms.
def : T1Pat<(i32 thumb_immshifted:$src),
(tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
(thumb_immshifted_shamt imm:$src))>;
def : T1Pat<(i32 imm0_255_comp:$src),
(tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;