mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 20:34:38 +00:00
bb5b3f3359
promoting allocas to preferred alignments that exceed the natural alignment. This avoids some potentially expensive dynamic stack realignments. The natural stack alignment is set in target data strings via the "S<size>" option. Size is in bits and must be a multiple of 8. The natural stack alignment defaults to "unspecified" (represented by a zero value), and the "unspecified" value does not prevent any alignment promotions. Target maintainers that care about avoiding promotions should explicitly add the "S<size>" option to their target data strings. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141599 91177308-0d34-0410-b5e6-96231b3b80d8
2095 lines
54 KiB
Plaintext
2095 lines
54 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
One better solution for 1LL << x is:
|
|
xorl %eax, %eax
|
|
xorl %edx, %edx
|
|
testb $32, %cl
|
|
sete %al
|
|
setne %dl
|
|
sall %cl, %eax
|
|
sall %cl, %edx
|
|
|
|
But that requires good 8-bit subreg support.
|
|
|
|
Also, this might be better. It's an extra shift, but it's one instruction
|
|
shorter, and doesn't stress 8-bit subreg support.
|
|
(From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
|
|
but without the unnecessary and.)
|
|
movl %ecx, %eax
|
|
shrl $5, %eax
|
|
movl %eax, %edx
|
|
xorl $1, %edx
|
|
sall %cl, %eax
|
|
sall %cl. %edx
|
|
|
|
64-bit shifts (in general) expand to really bad code. Instead of using
|
|
cmovs, we should expand to a conditional branch like GCC produces.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
|
|
the coalescer how to deal with it though.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This:
|
|
|
|
void foo(void);
|
|
void bar(int x, int *P) {
|
|
x >>= 2;
|
|
if (x)
|
|
foo();
|
|
*P = x;
|
|
}
|
|
|
|
compiles into:
|
|
|
|
movq %rsi, %rbx
|
|
movl %edi, %r14d
|
|
sarl $2, %r14d
|
|
testl %r14d, %r14d
|
|
je LBB0_2
|
|
|
|
Instead of doing an explicit test, we can use the flags off the sar. This
|
|
occurs in a bigger testcase like this, which is pretty common:
|
|
|
|
#include <vector>
|
|
int test1(std::vector<int> &X) {
|
|
int Sum = 0;
|
|
for (long i = 0, e = X.size(); i != e; ++i)
|
|
X[i] = 0;
|
|
return Sum;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
define i32 @test1(i32 %X) {
|
|
%Y = sdiv i32 %X, 8
|
|
ret i32 %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
|
|
We should leave these as libcalls for everything over a much lower threshold,
|
|
since libc is hand tuned for medium and large mem ops (avoiding RFO for large
|
|
stores, TLB preheating, etc)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following tests perform worse with LSR:
|
|
|
|
lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Adding to the list of cmp / test poor codegen issues:
|
|
|
|
int test(__m128 *A, __m128 *B) {
|
|
if (_mm_comige_ss(*A, *B))
|
|
return 3;
|
|
else
|
|
return 4;
|
|
}
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
movaps (%eax), %xmm0
|
|
movl 4(%esp), %eax
|
|
movaps (%eax), %xmm1
|
|
comiss %xmm0, %xmm1
|
|
setae %al
|
|
movzbl %al, %ecx
|
|
movl $3, %eax
|
|
movl $4, %edx
|
|
cmpl $0, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
|
|
are a number of issues. 1) We are introducing a setcc between the result of the
|
|
intrisic call and select. 2) The intrinsic is expected to produce a i32 value
|
|
so a any extend (which becomes a zero extend) is added.
|
|
|
|
We probably need some kind of target DAG combine hook to fix this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate significantly worse code for this than GCC:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
|
|
|
|
There is also one case we do worse on PPC.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For this:
|
|
|
|
int test(int a)
|
|
{
|
|
return a * 3;
|
|
}
|
|
|
|
We currently emits
|
|
imull $3, 4(%esp), %eax
|
|
|
|
Perhaps this is what we really should generate is? Is imull three or four
|
|
cycles? Note: ICC generates this:
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,2), %eax
|
|
|
|
The current instruction priority is based on pattern complexity. The former is
|
|
more "complex" because it folds a load so the latter will not be emitted.
|
|
|
|
Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
|
|
should always try to match LEA first since the LEA matching code does some
|
|
estimate to determine whether the match is profitable.
|
|
|
|
However, if we care more about code size, then imull is better. It's two bytes
|
|
shorter than movl + leal.
|
|
|
|
On a Pentium M, both variants have the same characteristics with regard
|
|
to throughput; however, the multiplication has a latency of four cycles, as
|
|
opposed to two cycles for the movl+lea variant.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
__builtin_ffs codegen is messy.
|
|
|
|
int ffs_(unsigned X) { return __builtin_ffs(X); }
|
|
|
|
llvm produces:
|
|
ffs_:
|
|
movl 4(%esp), %ecx
|
|
bsfl %ecx, %eax
|
|
movl $32, %edx
|
|
cmove %edx, %eax
|
|
incl %eax
|
|
xorl %edx, %edx
|
|
testl %ecx, %ecx
|
|
cmove %edx, %eax
|
|
ret
|
|
|
|
vs gcc:
|
|
|
|
_ffs_:
|
|
movl $-1, %edx
|
|
bsfl 4(%esp), %eax
|
|
cmove %edx, %eax
|
|
addl $1, %eax
|
|
ret
|
|
|
|
Another example of __builtin_ffs (use predsimplify to eliminate a select):
|
|
|
|
int foo (unsigned long j) {
|
|
if (j)
|
|
return __builtin_ffs (j) - 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It appears gcc place string data with linkonce linkage in
|
|
.section __TEXT,__const_coal,coalesced instead of
|
|
.section __DATA,__const_coal,coalesced.
|
|
Take a look at darwin.h, there are other Darwin assembler directives that we
|
|
do not make use of.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
define i32 @foo(i32* %a, i32 %t) {
|
|
entry:
|
|
br label %cond_true
|
|
|
|
cond_true: ; preds = %cond_true, %entry
|
|
%x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3]
|
|
%t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1]
|
|
%tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1]
|
|
%tmp3 = load i32* %tmp2 ; <i32> [#uses=1]
|
|
%tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1]
|
|
%tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2]
|
|
%tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2]
|
|
%tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1]
|
|
br i1 %tmp, label %bb12, label %cond_true
|
|
|
|
bb12: ; preds = %cond_true
|
|
ret i32 %tmp7
|
|
}
|
|
is pessimized by -loop-reduce and -indvars
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
u32 to float conversion improvement:
|
|
|
|
float uint32_2_float( unsigned u ) {
|
|
float fl = (int) (u & 0xffff);
|
|
float fh = (int) (u >> 16);
|
|
fh *= 0x1.0p16f;
|
|
return fh + fl;
|
|
}
|
|
|
|
00000000 subl $0x04,%esp
|
|
00000003 movl 0x08(%esp,1),%eax
|
|
00000007 movl %eax,%ecx
|
|
00000009 shrl $0x10,%ecx
|
|
0000000c cvtsi2ss %ecx,%xmm0
|
|
00000010 andl $0x0000ffff,%eax
|
|
00000015 cvtsi2ss %eax,%xmm1
|
|
00000019 mulss 0x00000078,%xmm0
|
|
00000021 addss %xmm1,%xmm0
|
|
00000025 movss %xmm0,(%esp,1)
|
|
0000002a flds (%esp,1)
|
|
0000002d addl $0x04,%esp
|
|
00000030 ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When using fastcc abi, align stack slot of argument of type double on 8 byte
|
|
boundary to improve performance.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
|
|
simplifications for integer "x cmp y ? a : b".
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider the expansion of:
|
|
|
|
define i32 @test3(i32 %X) {
|
|
%tmp1 = urem i32 %X, 255
|
|
ret i32 %tmp1
|
|
}
|
|
|
|
Currently it compiles to:
|
|
|
|
...
|
|
movl $2155905153, %ecx
|
|
movl 8(%esp), %esi
|
|
movl %esi, %eax
|
|
mull %ecx
|
|
...
|
|
|
|
This could be "reassociated" into:
|
|
|
|
movl $2155905153, %eax
|
|
movl 8(%esp), %ecx
|
|
mull %ecx
|
|
|
|
to avoid the copy. In fact, the existing two-address stuff would do this
|
|
except that mul isn't a commutative 2-addr instruction. I guess this has
|
|
to be done at isel time based on the #uses to mul?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Make sure the instruction which starts a loop does not cross a cacheline
|
|
boundary. This requires knowning the exact length of each machine instruction.
|
|
That is somewhat complicated, but doable. Example 256.bzip2:
|
|
|
|
In the new trace, the hot loop has an instruction which crosses a cacheline
|
|
boundary. In addition to potential cache misses, this can't help decoding as I
|
|
imagine there has to be some kind of complicated decoder reset and realignment
|
|
to grab the bytes from the next cacheline.
|
|
|
|
532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines
|
|
942 942 0x3d03 movl %dh, (1809(%esp, %esi)
|
|
937 937 0x3d0a incl %esi
|
|
3 3 0x3d0b cmpb %bl, %dl
|
|
27 27 0x3d0d jnz 0x000062db <main+11707>
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This could be a single 16-bit load.
|
|
|
|
int f(char *p) {
|
|
if ((p[0] == 1) & (p[1] == 2)) return 1;
|
|
return 0;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should inline lrintf and probably other libc functions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use the FLAGS values from arithmetic instructions more. For example, compile:
|
|
|
|
int add_zf(int *x, int y, int a, int b) {
|
|
if ((*x += y) == 0)
|
|
return a;
|
|
else
|
|
return b;
|
|
}
|
|
|
|
to:
|
|
addl %esi, (%rdi)
|
|
movl %edx, %eax
|
|
cmovne %ecx, %eax
|
|
ret
|
|
instead of:
|
|
|
|
_add_zf:
|
|
addl (%rdi), %esi
|
|
movl %esi, (%rdi)
|
|
testl %esi, %esi
|
|
cmove %edx, %ecx
|
|
movl %ecx, %eax
|
|
ret
|
|
|
|
As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll
|
|
without a test instruction.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These two functions have identical effects:
|
|
|
|
unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;}
|
|
unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
|
|
|
|
We currently compile them to:
|
|
|
|
_f:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
movl 8(%esp), %edx
|
|
cmpl %edx, %ecx
|
|
jne LBB1_2 #UnifiedReturnBlock
|
|
LBB1_1: #cond_true
|
|
addl $2, %eax
|
|
ret
|
|
LBB1_2: #UnifiedReturnBlock
|
|
movl %ecx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
incl %ecx
|
|
cmpl 8(%esp), %ecx
|
|
sete %cl
|
|
movzbl %cl, %ecx
|
|
leal 1(%ecx,%eax), %eax
|
|
ret
|
|
|
|
both of which are inferior to GCC's:
|
|
|
|
_f:
|
|
movl 4(%esp), %edx
|
|
leal 1(%edx), %eax
|
|
addl $2, %edx
|
|
cmpl 8(%esp), %eax
|
|
cmove %edx, %eax
|
|
ret
|
|
_f2:
|
|
movl 4(%esp), %eax
|
|
addl $1, %eax
|
|
xorl %edx, %edx
|
|
cmpl 8(%esp), %eax
|
|
sete %dl
|
|
addl %edx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
void test(int X) {
|
|
if (X) abort();
|
|
}
|
|
|
|
is currently compiled to:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne LBB1_1
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_1:
|
|
call L_abort$stub
|
|
|
|
It would be better to produce:
|
|
|
|
_test:
|
|
subl $12, %esp
|
|
cmpl $0, 16(%esp)
|
|
jne L_abort$stub
|
|
addl $12, %esp
|
|
ret
|
|
|
|
This can be applied to any no-return function call that takes no arguments etc.
|
|
Alternatively, the stack save/restore logic could be shrink-wrapped, producing
|
|
something like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
subl $12, %esp
|
|
call L_abort$stub
|
|
|
|
Both are useful in different situations. Finally, it could be shrink-wrapped
|
|
and tail called, like this:
|
|
|
|
_test:
|
|
cmpl $0, 4(%esp)
|
|
jne LBB1_1
|
|
ret
|
|
LBB1_1:
|
|
pop %eax # realign stack.
|
|
call L_abort$stub
|
|
|
|
Though this probably isn't worth it.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
|
|
a neg instead of a sub instruction. Consider:
|
|
|
|
int test(char X) { return 7-X; }
|
|
|
|
we currently produce:
|
|
_test:
|
|
movl $7, %eax
|
|
movsbl 4(%esp), %ecx
|
|
subl %ecx, %eax
|
|
ret
|
|
|
|
We would use one fewer register if codegen'd as:
|
|
|
|
movsbl 4(%esp), %eax
|
|
neg %eax
|
|
add $7, %eax
|
|
ret
|
|
|
|
Note that this isn't beneficial if the load can be folded into the sub. In
|
|
this case, we want a sub:
|
|
|
|
int test(int X) { return 7-X; }
|
|
_test:
|
|
movl $7, %eax
|
|
subl 4(%esp), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leaf functions that require one 4-byte spill slot have a prolog like this:
|
|
|
|
_foo:
|
|
pushl %esi
|
|
subl $4, %esp
|
|
...
|
|
and an epilog like this:
|
|
addl $4, %esp
|
|
popl %esi
|
|
ret
|
|
|
|
It would be smaller, and potentially faster, to push eax on entry and to
|
|
pop into a dummy register instead of using addl/subl of esp. Just don't pop
|
|
into any return registers :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The X86 backend should fold (branch (or (setcc, setcc))) into multiple
|
|
branches. We generate really poor code for:
|
|
|
|
double testf(double a) {
|
|
return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
|
|
}
|
|
|
|
For example, the entry BB is:
|
|
|
|
_testf:
|
|
subl $20, %esp
|
|
pxor %xmm0, %xmm0
|
|
movsd 24(%esp), %xmm1
|
|
ucomisd %xmm0, %xmm1
|
|
setnp %al
|
|
sete %cl
|
|
testb %cl, %al
|
|
jne LBB1_5 # UnifiedReturnBlock
|
|
LBB1_1: # cond_true
|
|
|
|
|
|
it would be better to replace the last four instructions with:
|
|
|
|
jp LBB1_1
|
|
je LBB1_5
|
|
LBB1_1:
|
|
|
|
We also codegen the inner ?: into a diamond:
|
|
|
|
cvtss2sd LCPI1_0(%rip), %xmm2
|
|
cvtss2sd LCPI1_1(%rip), %xmm3
|
|
ucomisd %xmm1, %xmm0
|
|
ja LBB1_3 # cond_true
|
|
LBB1_2: # cond_true
|
|
movapd %xmm3, %xmm2
|
|
LBB1_3: # cond_true
|
|
movapd %xmm2, %xmm0
|
|
ret
|
|
|
|
We should sink the load into xmm3 into the LBB1_2 block. This should
|
|
be pretty easy, and will nuke all the copies.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This:
|
|
#include <algorithm>
|
|
inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
|
|
{ return std::make_pair(a + b, a + b < a); }
|
|
bool no_overflow(unsigned a, unsigned b)
|
|
{ return !full_add(a, b).second; }
|
|
|
|
Should compile to:
|
|
addl %esi, %edi
|
|
setae %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on x86-64, instead of the rather stupid-looking:
|
|
addl %esi, %edi
|
|
setb %al
|
|
xorb $1, %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The following code:
|
|
|
|
bb114.preheader: ; preds = %cond_next94
|
|
%tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1]
|
|
%tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1]
|
|
%tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1]
|
|
%tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1]
|
|
%tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1]
|
|
%tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2]
|
|
%tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1]
|
|
%tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1]
|
|
%tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1]
|
|
%tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1]
|
|
%tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1]
|
|
br label %bb114
|
|
|
|
produces:
|
|
|
|
LBB3_5: # bb114.preheader
|
|
movswl -68(%ebp), %eax
|
|
movl $32, %ecx
|
|
movl %ecx, -80(%ebp)
|
|
subl %eax, -80(%ebp)
|
|
movswl -52(%ebp), %eax
|
|
movl %ecx, -84(%ebp)
|
|
subl %eax, -84(%ebp)
|
|
movswl -70(%ebp), %eax
|
|
movl %ecx, -88(%ebp)
|
|
subl %eax, -88(%ebp)
|
|
movswl -50(%ebp), %eax
|
|
subl %eax, %ecx
|
|
movl %ecx, -76(%ebp)
|
|
movswl -42(%ebp), %eax
|
|
movl %eax, -92(%ebp)
|
|
movswl -66(%ebp), %eax
|
|
movl %eax, -96(%ebp)
|
|
movw $0, -98(%ebp)
|
|
|
|
This appears to be bad because the RA is not folding the store to the stack
|
|
slot into the movl. The above instructions could be:
|
|
movl $32, -80(%ebp)
|
|
...
|
|
movl $32, -84(%ebp)
|
|
...
|
|
This seems like a cross between remat and spill folding.
|
|
|
|
This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
|
|
change, so we could simply subtract %eax from %ecx first and then use %ecx (or
|
|
vice-versa).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
%tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp659, label %cond_true662, label %cond_next715
|
|
|
|
produces this:
|
|
|
|
testw %cx, %cx
|
|
movswl %cx, %esi
|
|
jns LBB4_109 # cond_next715
|
|
|
|
Shark tells us that using %cx in the testw instruction is sub-optimal. It
|
|
suggests using the 32-bit register (which is what ICC uses).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this:
|
|
|
|
void compare (long long foo) {
|
|
if (foo < 4294967297LL)
|
|
abort();
|
|
}
|
|
|
|
to:
|
|
|
|
compare:
|
|
subl $4, %esp
|
|
cmpl $0, 8(%esp)
|
|
setne %al
|
|
movzbw %al, %ax
|
|
cmpl $1, 12(%esp)
|
|
setg %cl
|
|
movzbw %cl, %cx
|
|
cmove %ax, %cx
|
|
testb $1, %cl
|
|
jne .LBB1_2 # UnifiedReturnBlock
|
|
.LBB1_1: # ifthen
|
|
call abort
|
|
.LBB1_2: # UnifiedReturnBlock
|
|
addl $4, %esp
|
|
ret
|
|
|
|
(also really horrible code on ppc). This is due to the expand code for 64-bit
|
|
compares. GCC produces multiple branches, which is much nicer:
|
|
|
|
compare:
|
|
subl $12, %esp
|
|
movl 20(%esp), %edx
|
|
movl 16(%esp), %eax
|
|
decl %edx
|
|
jle .L7
|
|
.L5:
|
|
addl $12, %esp
|
|
ret
|
|
.p2align 4,,7
|
|
.L7:
|
|
jl .L4
|
|
cmpl $0, %eax
|
|
.p2align 4,,8
|
|
ja .L5
|
|
.L4:
|
|
.p2align 4,,9
|
|
call abort
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail call optimization improvements: Tail call optimization currently
|
|
pushes all arguments on the top of the stack (their normal place for
|
|
non-tail call optimized calls) that source from the callers arguments
|
|
or that source from a virtual register (also possibly sourcing from
|
|
callers arguments).
|
|
This is done to prevent overwriting of parameters (see example
|
|
below) that might be used later.
|
|
|
|
example:
|
|
|
|
int callee(int32, int64);
|
|
int caller(int32 arg1, int32 arg2) {
|
|
int64 local = arg2 * 2;
|
|
return callee(arg2, (int64)local);
|
|
}
|
|
|
|
[arg1] [!arg2 no longer valid since we moved local onto it]
|
|
[arg2] -> [(int64)
|
|
[RETADDR] local ]
|
|
|
|
Moving arg1 onto the stack slot of callee function would overwrite
|
|
arg2 of the caller.
|
|
|
|
Possible optimizations:
|
|
|
|
|
|
- Analyse the actual parameters of the callee to see which would
|
|
overwrite a caller parameter which is used by the callee and only
|
|
push them onto the top of the stack.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg1,arg2);
|
|
}
|
|
|
|
Here we don't need to write any variables to the top of the stack
|
|
since they don't overwrite each other.
|
|
|
|
int callee (int32 arg1, int32 arg2);
|
|
int caller (int32 arg1, int32 arg2) {
|
|
return callee(arg2,arg1);
|
|
}
|
|
|
|
Here we need to push the arguments because they overwrite each
|
|
other.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
main ()
|
|
{
|
|
int i = 0;
|
|
unsigned long int z = 0;
|
|
|
|
do {
|
|
z -= 0x00004000;
|
|
i++;
|
|
if (i > 0x00040000)
|
|
abort ();
|
|
} while (z > 0);
|
|
exit (0);
|
|
}
|
|
|
|
gcc compiles this to:
|
|
|
|
_main:
|
|
subl $28, %esp
|
|
xorl %eax, %eax
|
|
jmp L2
|
|
L3:
|
|
cmpl $262144, %eax
|
|
je L10
|
|
L2:
|
|
addl $1, %eax
|
|
cmpl $262145, %eax
|
|
jne L3
|
|
call L_abort$stub
|
|
L10:
|
|
movl $0, (%esp)
|
|
call L_exit$stub
|
|
|
|
llvm:
|
|
|
|
_main:
|
|
subl $12, %esp
|
|
movl $1, %eax
|
|
movl $16384, %ecx
|
|
LBB1_1: # bb
|
|
cmpl $262145, %eax
|
|
jge LBB1_4 # cond_true
|
|
LBB1_2: # cond_next
|
|
incl %eax
|
|
addl $4294950912, %ecx
|
|
cmpl $16384, %ecx
|
|
jne LBB1_1 # bb
|
|
LBB1_3: # bb11
|
|
xorl %eax, %eax
|
|
addl $12, %esp
|
|
ret
|
|
LBB1_4: # cond_true
|
|
call L_abort$stub
|
|
|
|
1. LSR should rewrite the first cmp with induction variable %ecx.
|
|
2. DAG combiner should fold
|
|
leal 1(%eax), %edx
|
|
cmpl $262145, %edx
|
|
=>
|
|
cmpl $262144, %eax
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
define i64 @test(double %X) {
|
|
%Y = fptosi double %X to i64
|
|
ret i64 %Y
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_test:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl 4(%esp), %edx
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
#FP_REG_KILL
|
|
ret
|
|
|
|
This should just fldl directly from the input stack slot.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
int foo (int x) { return (x & 65535) | 255; }
|
|
|
|
Should compile into:
|
|
|
|
_foo:
|
|
movzwl 4(%esp), %eax
|
|
orl $255, %eax
|
|
ret
|
|
|
|
instead of:
|
|
_foo:
|
|
movl $65280, %eax
|
|
andl 4(%esp), %eax
|
|
orl $255, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We're codegen'ing multiply of long longs inefficiently:
|
|
|
|
unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
|
|
return arg1 * arg2;
|
|
}
|
|
|
|
We compile to (fomit-frame-pointer):
|
|
|
|
_LLM:
|
|
pushl %esi
|
|
movl 8(%esp), %ecx
|
|
movl 16(%esp), %esi
|
|
movl %esi, %eax
|
|
mull %ecx
|
|
imull 12(%esp), %esi
|
|
addl %edx, %esi
|
|
imull 20(%esp), %ecx
|
|
movl %esi, %edx
|
|
addl %ecx, %edx
|
|
popl %esi
|
|
ret
|
|
|
|
This looks like a scheduling deficiency and lack of remat of the load from
|
|
the argument area. ICC apparently produces:
|
|
|
|
movl 8(%esp), %ecx
|
|
imull 12(%esp), %ecx
|
|
movl 16(%esp), %eax
|
|
imull 4(%esp), %eax
|
|
addl %eax, %ecx
|
|
movl 4(%esp), %eax
|
|
mull 12(%esp)
|
|
addl %ecx, %edx
|
|
ret
|
|
|
|
Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We can fold a store into "zeroing a reg". Instead of:
|
|
|
|
xorl %eax, %eax
|
|
movl %eax, 124(%esp)
|
|
|
|
we should get:
|
|
|
|
movl $0, 124(%esp)
|
|
|
|
if the flags of the xor are dead.
|
|
|
|
Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should
|
|
be folded into: shl [mem], 1
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
|
|
or and instruction, for example:
|
|
|
|
xorpd LCPI1_0, %xmm2
|
|
|
|
However, if xmm2 gets spilled, we end up with really ugly code like this:
|
|
|
|
movsd (%esp), %xmm0
|
|
xorpd LCPI1_0, %xmm0
|
|
movsd %xmm0, (%esp)
|
|
|
|
Since we 'know' that this is a 'neg', we can actually "fold" the spill into
|
|
the neg/abs instruction, turning it into an *integer* operation, like this:
|
|
|
|
xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31)
|
|
|
|
you could also use xorb, but xorl is less likely to lead to a partial register
|
|
stall. Here is a contrived testcase:
|
|
|
|
double a, b, c;
|
|
void test(double *P) {
|
|
double X = *P;
|
|
a = X;
|
|
bar();
|
|
X = -X;
|
|
b = X;
|
|
bar();
|
|
c = X;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The generated code on x86 for checking for signed overflow on a multiply the
|
|
obvious way is much longer than it needs to be.
|
|
|
|
int x(int a, int b) {
|
|
long long prod = (long long)a*b;
|
|
return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
|
|
}
|
|
|
|
See PR2053 for more details.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should investigate using cdq/ctld (effect: edx = sar eax, 31)
|
|
more aggressively; it should cost the same as a move+shift on any modern
|
|
processor, but it's a lot shorter. Downside is that it puts more
|
|
pressure on register allocation because it has fixed operands.
|
|
|
|
Example:
|
|
int abs(int x) {return x < 0 ? -x : x;}
|
|
|
|
gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
|
|
abs:
|
|
movl 4(%esp), %eax
|
|
cltd
|
|
xorl %edx, %eax
|
|
subl %edx, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following code (from
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):
|
|
|
|
extern unsigned char first_one[65536];
|
|
int FirstOnet(unsigned long long arg1)
|
|
{
|
|
if (arg1 >> 48)
|
|
return (first_one[arg1 >> 48]);
|
|
return 0;
|
|
}
|
|
|
|
|
|
The following code is currently generated:
|
|
FirstOnet:
|
|
movl 8(%esp), %eax
|
|
cmpl $65536, %eax
|
|
movl 4(%esp), %ecx
|
|
jb .LBB1_2 # UnifiedReturnBlock
|
|
.LBB1_1: # ifthen
|
|
shrl $16, %eax
|
|
movzbl first_one(%eax), %eax
|
|
ret
|
|
.LBB1_2: # UnifiedReturnBlock
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this
|
|
lets us change the cmpl into a testl, which is shorter, and eliminate the shift.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this function:
|
|
|
|
define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind {
|
|
entry:
|
|
%tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp2, label %bb7, label %bb
|
|
|
|
bb: ; preds = %entry
|
|
%tmp6 = add i32 %b, %a ; <i32> [#uses=1]
|
|
ret i32 %tmp6
|
|
|
|
bb7: ; preds = %entry
|
|
%tmp10 = sub i32 %a, %c ; <i32> [#uses=1]
|
|
ret i32 %tmp10
|
|
}
|
|
|
|
to:
|
|
|
|
foo: # @foo
|
|
# BB#0: # %entry
|
|
movl 4(%esp), %ecx
|
|
cmpb $0, 16(%esp)
|
|
je .LBB0_2
|
|
# BB#1: # %bb
|
|
movl 8(%esp), %eax
|
|
addl %ecx, %eax
|
|
ret
|
|
.LBB0_2: # %bb7
|
|
movl 12(%esp), %edx
|
|
movl %ecx, %eax
|
|
subl %edx, %eax
|
|
ret
|
|
|
|
There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a
|
|
couple more movls by putting 4(%esp) into %eax instead of %ecx.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
See rdar://4653682.
|
|
|
|
From flops:
|
|
|
|
LBB1_15: # bb310
|
|
cvtss2sd LCPI1_0, %xmm1
|
|
addsd %xmm1, %xmm0
|
|
movsd 176(%esp), %xmm2
|
|
mulsd %xmm0, %xmm2
|
|
movapd %xmm2, %xmm3
|
|
mulsd %xmm3, %xmm3
|
|
movapd %xmm3, %xmm4
|
|
mulsd LCPI1_23, %xmm4
|
|
addsd LCPI1_24, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_25, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_26, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_27, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd LCPI1_28, %xmm4
|
|
mulsd %xmm3, %xmm4
|
|
addsd %xmm1, %xmm4
|
|
mulsd %xmm2, %xmm4
|
|
movsd 152(%esp), %xmm1
|
|
addsd %xmm4, %xmm1
|
|
movsd %xmm1, 152(%esp)
|
|
incl %eax
|
|
cmpl %eax, %esi
|
|
jge LBB1_15 # bb310
|
|
LBB1_16: # bb358.loopexit
|
|
movsd 152(%esp), %xmm0
|
|
addsd %xmm0, %xmm0
|
|
addsd LCPI1_22, %xmm0
|
|
movsd %xmm0, 152(%esp)
|
|
|
|
Rather than spilling the result of the last addsd in the loop, we should have
|
|
insert a copy to split the interval (one for the duration of the loop, one
|
|
extending to the fall through). The register pressure in the loop isn't high
|
|
enough to warrant the spill.
|
|
|
|
Also check why xmm7 is not used at all in the function.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following:
|
|
|
|
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-S128"
|
|
target triple = "i386-apple-darwin8"
|
|
@in_exit.4870.b = internal global i1 false ; <i1*> [#uses=2]
|
|
define fastcc void @abort_gzip() noreturn nounwind {
|
|
entry:
|
|
%tmp.b.i = load i1* @in_exit.4870.b ; <i1> [#uses=1]
|
|
br i1 %tmp.b.i, label %bb.i, label %bb4.i
|
|
bb.i: ; preds = %entry
|
|
tail call void @exit( i32 1 ) noreturn nounwind
|
|
unreachable
|
|
bb4.i: ; preds = %entry
|
|
store i1 true, i1* @in_exit.4870.b
|
|
tail call void @exit( i32 1 ) noreturn nounwind
|
|
unreachable
|
|
}
|
|
declare void @exit(i32) noreturn nounwind
|
|
|
|
This compiles into:
|
|
_abort_gzip: ## @abort_gzip
|
|
## BB#0: ## %entry
|
|
subl $12, %esp
|
|
movb _in_exit.4870.b, %al
|
|
cmpb $1, %al
|
|
jne LBB0_2
|
|
|
|
We somehow miss folding the movb into the cmpb.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile:
|
|
|
|
int test(int x, int y) {
|
|
return x-y-1;
|
|
}
|
|
|
|
into (-m64):
|
|
|
|
_test:
|
|
decl %edi
|
|
movl %edi, %eax
|
|
subl %esi, %eax
|
|
ret
|
|
|
|
it would be better to codegen as: x+~y (notl+addl)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
int foo(const char *str,...)
|
|
{
|
|
__builtin_va_list a; int x;
|
|
__builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
|
|
return x;
|
|
}
|
|
|
|
gets compiled into this on x86-64:
|
|
subq $200, %rsp
|
|
movaps %xmm7, 160(%rsp)
|
|
movaps %xmm6, 144(%rsp)
|
|
movaps %xmm5, 128(%rsp)
|
|
movaps %xmm4, 112(%rsp)
|
|
movaps %xmm3, 96(%rsp)
|
|
movaps %xmm2, 80(%rsp)
|
|
movaps %xmm1, 64(%rsp)
|
|
movaps %xmm0, 48(%rsp)
|
|
movq %r9, 40(%rsp)
|
|
movq %r8, 32(%rsp)
|
|
movq %rcx, 24(%rsp)
|
|
movq %rdx, 16(%rsp)
|
|
movq %rsi, 8(%rsp)
|
|
leaq (%rsp), %rax
|
|
movq %rax, 192(%rsp)
|
|
leaq 208(%rsp), %rax
|
|
movq %rax, 184(%rsp)
|
|
movl $48, 180(%rsp)
|
|
movl $8, 176(%rsp)
|
|
movl 176(%rsp), %eax
|
|
cmpl $47, %eax
|
|
jbe .LBB1_3 # bb
|
|
.LBB1_1: # bb3
|
|
movq 184(%rsp), %rcx
|
|
leaq 8(%rcx), %rax
|
|
movq %rax, 184(%rsp)
|
|
.LBB1_2: # bb4
|
|
movl (%rcx), %eax
|
|
addq $200, %rsp
|
|
ret
|
|
.LBB1_3: # bb
|
|
movl %eax, %ecx
|
|
addl $8, %eax
|
|
addq 192(%rsp), %rcx
|
|
movl %eax, 176(%rsp)
|
|
jmp .LBB1_2 # bb4
|
|
|
|
gcc 4.3 generates:
|
|
subq $96, %rsp
|
|
.LCFI0:
|
|
leaq 104(%rsp), %rax
|
|
movq %rsi, -80(%rsp)
|
|
movl $8, -120(%rsp)
|
|
movq %rax, -112(%rsp)
|
|
leaq -88(%rsp), %rax
|
|
movq %rax, -104(%rsp)
|
|
movl $8, %eax
|
|
cmpl $48, %eax
|
|
jb .L6
|
|
movq -112(%rsp), %rdx
|
|
movl (%rdx), %eax
|
|
addq $96, %rsp
|
|
ret
|
|
.p2align 4,,10
|
|
.p2align 3
|
|
.L6:
|
|
mov %eax, %edx
|
|
addq -104(%rsp), %rdx
|
|
addl $8, %eax
|
|
movl %eax, -120(%rsp)
|
|
movl (%rdx), %eax
|
|
addq $96, %rsp
|
|
ret
|
|
|
|
and it gets compiled into this on x86:
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
subl $4, %esp
|
|
leal 12(%ebp), %eax
|
|
movl %eax, -4(%ebp)
|
|
leal 16(%ebp), %eax
|
|
movl %eax, -4(%ebp)
|
|
movl 12(%ebp), %eax
|
|
addl $4, %esp
|
|
popl %ebp
|
|
ret
|
|
|
|
gcc 4.3 generates:
|
|
pushl %ebp
|
|
movl %esp, %ebp
|
|
movl 12(%ebp), %eax
|
|
popl %ebp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach tblgen not to check bitconvert source type in some cases. This allows us
|
|
to consolidate the following patterns in X86InstrMMX.td:
|
|
|
|
def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
|
|
(iPTR 0))))),
|
|
(v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
|
|
|
|
There are other cases in various td files.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take something like the following on x86-32:
|
|
unsigned a(unsigned long long x, unsigned y) {return x % y;}
|
|
|
|
We currently generate a libcall, but we really shouldn't: the expansion is
|
|
shorter and likely faster than the libcall. The expected code is something
|
|
like the following:
|
|
|
|
movl 12(%ebp), %eax
|
|
movl 16(%ebp), %ecx
|
|
xorl %edx, %edx
|
|
divl %ecx
|
|
movl 8(%ebp), %eax
|
|
divl %ecx
|
|
movl %edx, %eax
|
|
ret
|
|
|
|
A similar code sequence works for division.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These should compile to the same code, but the later codegen's to useless
|
|
instructions on X86. This may be a trivial dag combine (GCC PR7061):
|
|
|
|
struct s1 { unsigned char a, b; };
|
|
unsigned long f1(struct s1 x) {
|
|
return x.a + x.b;
|
|
}
|
|
struct s2 { unsigned a: 8, b: 8; };
|
|
unsigned long f2(struct s2 x) {
|
|
return x.a + x.b;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We currently compile this:
|
|
|
|
define i32 @func1(i32 %v1, i32 %v2) nounwind {
|
|
entry:
|
|
%t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
|
|
%sum = extractvalue {i32, i1} %t, 0
|
|
%obit = extractvalue {i32, i1} %t, 1
|
|
br i1 %obit, label %overflow, label %normal
|
|
normal:
|
|
ret i32 %sum
|
|
overflow:
|
|
call void @llvm.trap()
|
|
unreachable
|
|
}
|
|
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
|
|
declare void @llvm.trap()
|
|
|
|
to:
|
|
|
|
_func1:
|
|
movl 4(%esp), %eax
|
|
addl 8(%esp), %eax
|
|
jo LBB1_2 ## overflow
|
|
LBB1_1: ## normal
|
|
ret
|
|
LBB1_2: ## overflow
|
|
ud2
|
|
|
|
it would be nice to produce "into" someday.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
void vec_mpys1(int y[], const int x[], int scaler) {
|
|
int i;
|
|
for (i = 0; i < 150; i++)
|
|
y[i] += (((long long)scaler * (long long)x[i]) >> 31);
|
|
}
|
|
|
|
Compiles to this loop with GCC 3.x:
|
|
|
|
.L5:
|
|
movl %ebx, %eax
|
|
imull (%edi,%ecx,4)
|
|
shrdl $31, %edx, %eax
|
|
addl %eax, (%esi,%ecx,4)
|
|
incl %ecx
|
|
cmpl $149, %ecx
|
|
jle .L5
|
|
|
|
llvm-gcc compiles it to the much uglier:
|
|
|
|
LBB1_1: ## bb1
|
|
movl 24(%esp), %eax
|
|
movl (%eax,%edi,4), %ebx
|
|
movl %ebx, %ebp
|
|
imull %esi, %ebp
|
|
movl %ebx, %eax
|
|
mull %ecx
|
|
addl %ebp, %edx
|
|
sarl $31, %ebx
|
|
imull %ecx, %ebx
|
|
addl %edx, %ebx
|
|
shldl $1, %eax, %ebx
|
|
movl 20(%esp), %eax
|
|
addl %ebx, (%eax,%edi,4)
|
|
incl %edi
|
|
cmpl $150, %edi
|
|
jne LBB1_1 ## bb1
|
|
|
|
The issue is that we hoist the cast of "scaler" to long long outside of the
|
|
loop, the value comes into the loop as two values, and
|
|
RegsForValue::getCopyFromRegs doesn't know how to put an AssertSext on the
|
|
constructed BUILD_PAIR which represents the cast value.
|
|
|
|
This can be handled by making CodeGenPrepare sink the cast.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Test instructions can be eliminated by using EFLAGS values from arithmetic
|
|
instructions. This is currently not done for mul, and, or, xor, neg, shl,
|
|
sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
|
|
for read-modify-write instructions. It is also current not done if the
|
|
OF or CF flags are needed.
|
|
|
|
The shift operators have the complication that when the shift count is
|
|
zero, EFLAGS is not set, so they can only subsume a test instruction if
|
|
the shift count is known to be non-zero. Also, using the EFLAGS value
|
|
from a shift is apparently very slow on some x86 implementations.
|
|
|
|
In read-modify-write instructions, the root node in the isel match is
|
|
the store, and isel has no way for the use of the EFLAGS result of the
|
|
arithmetic to be remapped to the new node.
|
|
|
|
Add and subtract instructions set OF on signed overflow and CF on unsiged
|
|
overflow, while test instructions always clear OF and CF. In order to
|
|
replace a test with an add or subtract in a situation where OF or CF is
|
|
needed, codegen must be able to prove that the operation cannot see
|
|
signed or unsigned overflow, respectively.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
memcpy/memmove do not lower to SSE copies when possible. A silly example is:
|
|
define <16 x float> @foo(<16 x float> %A) nounwind {
|
|
%tmp = alloca <16 x float>, align 16
|
|
%tmp2 = alloca <16 x float>, align 16
|
|
store <16 x float> %A, <16 x float>* %tmp
|
|
%s = bitcast <16 x float>* %tmp to i8*
|
|
%s2 = bitcast <16 x float>* %tmp2 to i8*
|
|
call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
|
|
%R = load <16 x float>* %tmp2
|
|
ret <16 x float> %R
|
|
}
|
|
|
|
declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind
|
|
|
|
which compiles to:
|
|
|
|
_foo:
|
|
subl $140, %esp
|
|
movaps %xmm3, 112(%esp)
|
|
movaps %xmm2, 96(%esp)
|
|
movaps %xmm1, 80(%esp)
|
|
movaps %xmm0, 64(%esp)
|
|
movl 60(%esp), %eax
|
|
movl %eax, 124(%esp)
|
|
movl 56(%esp), %eax
|
|
movl %eax, 120(%esp)
|
|
movl 52(%esp), %eax
|
|
<many many more 32-bit copies>
|
|
movaps (%esp), %xmm0
|
|
movaps 16(%esp), %xmm1
|
|
movaps 32(%esp), %xmm2
|
|
movaps 48(%esp), %xmm3
|
|
addl $140, %esp
|
|
ret
|
|
|
|
On Nehalem, it may even be cheaper to just use movups when unaligned than to
|
|
fall back to lower-granularity chunks.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Implement processor-specific optimizations for parity with GCC on these
|
|
processors. GCC does two optimizations:
|
|
|
|
1. ix86_pad_returns inserts a noop before ret instructions if immediately
|
|
preceded by a conditional branch or is the target of a jump.
|
|
2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
|
|
code contains more than 3 branches.
|
|
|
|
The first one is done for all AMDs, Core2, and "Generic"
|
|
The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
|
|
Core 2, and "Generic"
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Testcase:
|
|
int a(int x) { return (x & 127) > 31; }
|
|
|
|
Current output:
|
|
movl 4(%esp), %eax
|
|
andl $127, %eax
|
|
cmpl $31, %eax
|
|
seta %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
Ideal output:
|
|
xorl %eax, %eax
|
|
testl $96, 4(%esp)
|
|
setne %al
|
|
ret
|
|
|
|
This should definitely be done in instcombine, canonicalizing the range
|
|
condition into a != condition. We get this IR:
|
|
|
|
define i32 @a(i32 %x) nounwind readnone {
|
|
entry:
|
|
%0 = and i32 %x, 127 ; <i32> [#uses=1]
|
|
%1 = icmp ugt i32 %0, 31 ; <i1> [#uses=1]
|
|
%2 = zext i1 %1 to i32 ; <i32> [#uses=1]
|
|
ret i32 %2
|
|
}
|
|
|
|
Instcombine prefers to strength reduce relational comparisons to equality
|
|
comparisons when possible, this should be another case of that. This could
|
|
be handled pretty easily in InstCombiner::visitICmpInstWithInstAndIntCst, but it
|
|
looks like InstCombiner::visitICmpInstWithInstAndIntCst should really already
|
|
be redesigned to use ComputeMaskedBits and friends.
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
Testcase:
|
|
int x(int a) { return (a&0xf0)>>4; }
|
|
|
|
Current output:
|
|
movl 4(%esp), %eax
|
|
shrl $4, %eax
|
|
andl $15, %eax
|
|
ret
|
|
|
|
Ideal output:
|
|
movzbl 4(%esp), %eax
|
|
shrl $4, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
|
|
properly.
|
|
|
|
When the return value is not used (i.e. only care about the value in the
|
|
memory), x86 does not have to use add to implement these. Instead, it can use
|
|
add, sub, inc, dec instructions with the "lock" prefix.
|
|
|
|
This is currently implemented using a bit of instruction selection trick. The
|
|
issue is the target independent pattern produces one output and a chain and we
|
|
want to map it into one that just output a chain. The current trick is to select
|
|
it into a MERGE_VALUES with the first definition being an implicit_def. The
|
|
proper solution is to add new ISD opcodes for the no-output variant. DAG
|
|
combiner can then transform the node before it gets to target node selection.
|
|
|
|
Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
|
|
fact these instructions are identical to the non-lock versions. We need a way to
|
|
add target specific information to target nodes and have this information
|
|
carried over to machine instructions. Asm printer (or JIT) can use this
|
|
information to add the "lock" prefix.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
struct B {
|
|
unsigned char y0 : 1;
|
|
};
|
|
|
|
int bar(struct B* a) { return a->y0; }
|
|
|
|
define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize {
|
|
%1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0
|
|
%2 = load i8* %1, align 1
|
|
%3 = and i8 %2, 1
|
|
%4 = zext i8 %3 to i32
|
|
ret i32 %4
|
|
}
|
|
|
|
bar: # @bar
|
|
# BB#0:
|
|
movb (%rdi), %al
|
|
andb $1, %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
Missed optimization: should be movl+andl.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The x86_64 abi says:
|
|
|
|
Booleans, when stored in a memory object, are stored as single byte objects the
|
|
value of which is always 0 (false) or 1 (true).
|
|
|
|
We are not using this fact:
|
|
|
|
int bar(_Bool *a) { return *a; }
|
|
|
|
define i32 @bar(i8* nocapture %a) nounwind readonly optsize {
|
|
%1 = load i8* %a, align 1, !tbaa !0
|
|
%tmp = and i8 %1, 1
|
|
%2 = zext i8 %tmp to i32
|
|
ret i32 %2
|
|
}
|
|
|
|
bar:
|
|
movb (%rdi), %al
|
|
andb $1, %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
GCC produces
|
|
|
|
bar:
|
|
movzbl (%rdi), %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider the following two functions compiled with clang:
|
|
_Bool foo(int *x) { return !(*x & 4); }
|
|
unsigned bar(int *x) { return !(*x & 4); }
|
|
|
|
foo:
|
|
movl 4(%esp), %eax
|
|
testb $4, (%eax)
|
|
sete %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
bar:
|
|
movl 4(%esp), %eax
|
|
movl (%eax), %eax
|
|
shrl $2, %eax
|
|
andl $1, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
The second function generates more code even though the two functions are
|
|
are functionally identical.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Take the following C code:
|
|
int f(int a, int b) { return (unsigned char)a == (unsigned char)b; }
|
|
|
|
We generate the following IR with clang:
|
|
define i32 @f(i32 %a, i32 %b) nounwind readnone {
|
|
entry:
|
|
%tmp = xor i32 %b, %a ; <i32> [#uses=1]
|
|
%tmp6 = and i32 %tmp, 255 ; <i32> [#uses=1]
|
|
%cmp = icmp eq i32 %tmp6, 0 ; <i1> [#uses=1]
|
|
%conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
|
|
ret i32 %conv5
|
|
}
|
|
|
|
And the following x86 code:
|
|
xorl %esi, %edi
|
|
testb $-1, %dil
|
|
sete %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
A cmpb instead of the xorl+testb would be one instruction shorter.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Given the following C code:
|
|
int f(int a, int b) { return (signed char)a == (signed char)b; }
|
|
|
|
We generate the following IR with clang:
|
|
define i32 @f(i32 %a, i32 %b) nounwind readnone {
|
|
entry:
|
|
%sext = shl i32 %a, 24 ; <i32> [#uses=1]
|
|
%conv1 = ashr i32 %sext, 24 ; <i32> [#uses=1]
|
|
%sext6 = shl i32 %b, 24 ; <i32> [#uses=1]
|
|
%conv4 = ashr i32 %sext6, 24 ; <i32> [#uses=1]
|
|
%cmp = icmp eq i32 %conv1, %conv4 ; <i1> [#uses=1]
|
|
%conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
|
|
ret i32 %conv5
|
|
}
|
|
|
|
And the following x86 code:
|
|
movsbl %sil, %eax
|
|
movsbl %dil, %ecx
|
|
cmpl %eax, %ecx
|
|
sete %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
|
|
It should be possible to eliminate the sign extensions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
LLVM misses a load+store narrowing opportunity in this code:
|
|
|
|
%struct.bf = type { i64, i16, i16, i32 }
|
|
|
|
@bfi = external global %struct.bf* ; <%struct.bf**> [#uses=2]
|
|
|
|
define void @t1() nounwind ssp {
|
|
entry:
|
|
%0 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
|
|
%1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1]
|
|
%2 = bitcast i16* %1 to i32* ; <i32*> [#uses=2]
|
|
%3 = load i32* %2, align 1 ; <i32> [#uses=1]
|
|
%4 = and i32 %3, -65537 ; <i32> [#uses=1]
|
|
store i32 %4, i32* %2, align 1
|
|
%5 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
|
|
%6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1]
|
|
%7 = bitcast i16* %6 to i32* ; <i32*> [#uses=2]
|
|
%8 = load i32* %7, align 1 ; <i32> [#uses=1]
|
|
%9 = and i32 %8, -131073 ; <i32> [#uses=1]
|
|
store i32 %9, i32* %7, align 1
|
|
ret void
|
|
}
|
|
|
|
LLVM currently emits this:
|
|
|
|
movq bfi(%rip), %rax
|
|
andl $-65537, 8(%rax)
|
|
movq bfi(%rip), %rax
|
|
andl $-131073, 8(%rax)
|
|
ret
|
|
|
|
It could narrow the loads and stores to emit this:
|
|
|
|
movq bfi(%rip), %rax
|
|
andb $-2, 10(%rax)
|
|
movq bfi(%rip), %rax
|
|
andb $-3, 10(%rax)
|
|
ret
|
|
|
|
The trouble is that there is a TokenFactor between the store and the
|
|
load, making it non-trivial to determine if there's anything between
|
|
the load and the store which would prohibit narrowing.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
void foo(unsigned x) {
|
|
if (x == 0) bar();
|
|
else if (x == 1) qux();
|
|
}
|
|
|
|
currently compiles into:
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
je LBB0_3
|
|
testl %eax, %eax
|
|
jne LBB0_4
|
|
|
|
the testl could be removed:
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
je LBB0_3
|
|
jb LBB0_4
|
|
|
|
0 is the only unsigned number < 1.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This code:
|
|
|
|
%0 = type { i32, i1 }
|
|
|
|
define i32 @add32carry(i32 %sum, i32 %x) nounwind readnone ssp {
|
|
entry:
|
|
%uadd = tail call %0 @llvm.uadd.with.overflow.i32(i32 %sum, i32 %x)
|
|
%cmp = extractvalue %0 %uadd, 1
|
|
%inc = zext i1 %cmp to i32
|
|
%add = add i32 %x, %sum
|
|
%z.0 = add i32 %add, %inc
|
|
ret i32 %z.0
|
|
}
|
|
|
|
declare %0 @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone
|
|
|
|
compiles to:
|
|
|
|
_add32carry: ## @add32carry
|
|
addl %esi, %edi
|
|
sbbl %ecx, %ecx
|
|
movl %edi, %eax
|
|
subl %ecx, %eax
|
|
ret
|
|
|
|
But it could be:
|
|
|
|
_add32carry:
|
|
leal (%rsi,%rdi), %eax
|
|
cmpl %esi, %eax
|
|
adcl $0, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The hot loop of 256.bzip2 contains code that looks a bit like this:
|
|
|
|
int foo(char *P, char *Q, int x, int y) {
|
|
if (P[0] != Q[0])
|
|
return P[0] < Q[0];
|
|
if (P[1] != Q[1])
|
|
return P[1] < Q[1];
|
|
if (P[2] != Q[2])
|
|
return P[2] < Q[2];
|
|
return P[3] < Q[3];
|
|
}
|
|
|
|
In the real code, we get a lot more wrong than this. However, even in this
|
|
code we generate:
|
|
|
|
_foo: ## @foo
|
|
## BB#0: ## %entry
|
|
movb (%rsi), %al
|
|
movb (%rdi), %cl
|
|
cmpb %al, %cl
|
|
je LBB0_2
|
|
LBB0_1: ## %if.then
|
|
cmpb %al, %cl
|
|
jmp LBB0_5
|
|
LBB0_2: ## %if.end
|
|
movb 1(%rsi), %al
|
|
movb 1(%rdi), %cl
|
|
cmpb %al, %cl
|
|
jne LBB0_1
|
|
## BB#3: ## %if.end38
|
|
movb 2(%rsi), %al
|
|
movb 2(%rdi), %cl
|
|
cmpb %al, %cl
|
|
jne LBB0_1
|
|
## BB#4: ## %if.end60
|
|
movb 3(%rdi), %al
|
|
cmpb 3(%rsi), %al
|
|
LBB0_5: ## %if.end60
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
Note that we generate jumps to LBB0_1 which does a redundant compare. The
|
|
redundant compare also forces the register values to be live, which prevents
|
|
folding one of the loads into the compare. In contrast, GCC 4.2 produces:
|
|
|
|
_foo:
|
|
movzbl (%rsi), %eax
|
|
cmpb %al, (%rdi)
|
|
jne L10
|
|
L12:
|
|
movzbl 1(%rsi), %eax
|
|
cmpb %al, 1(%rdi)
|
|
jne L10
|
|
movzbl 2(%rsi), %eax
|
|
cmpb %al, 2(%rdi)
|
|
jne L10
|
|
movzbl 3(%rdi), %eax
|
|
cmpb 3(%rsi), %al
|
|
L10:
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
which is "perfect".
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For the branch in the following code:
|
|
int a();
|
|
int b(int x, int y) {
|
|
if (x & (1<<(y&7)))
|
|
return a();
|
|
return y;
|
|
}
|
|
|
|
We currently generate:
|
|
movb %sil, %al
|
|
andb $7, %al
|
|
movzbl %al, %eax
|
|
btl %eax, %edi
|
|
jae .LBB0_2
|
|
|
|
movl+andl would be shorter than the movb+andb+movzbl sequence.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For the following:
|
|
struct u1 {
|
|
float x, y;
|
|
};
|
|
float foo(struct u1 u) {
|
|
return u.x + u.y;
|
|
}
|
|
|
|
We currently generate:
|
|
movdqa %xmm0, %xmm1
|
|
pshufd $1, %xmm0, %xmm0 # xmm0 = xmm0[1,0,0,0]
|
|
addss %xmm1, %xmm0
|
|
ret
|
|
|
|
We could save an instruction here by commuting the addss.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This (from PR9661):
|
|
|
|
float clamp_float(float a) {
|
|
if (a > 1.0f)
|
|
return 1.0f;
|
|
else if (a < 0.0f)
|
|
return 0.0f;
|
|
else
|
|
return a;
|
|
}
|
|
|
|
Could compile to:
|
|
|
|
clamp_float: # @clamp_float
|
|
movss .LCPI0_0(%rip), %xmm1
|
|
minss %xmm1, %xmm0
|
|
pxor %xmm1, %xmm1
|
|
maxss %xmm1, %xmm0
|
|
ret
|
|
|
|
with -ffast-math.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This function (from PR9803):
|
|
|
|
int clamp2(int a) {
|
|
if (a > 5)
|
|
a = 5;
|
|
if (a < 0)
|
|
return 0;
|
|
return a;
|
|
}
|
|
|
|
Compiles to:
|
|
|
|
_clamp2: ## @clamp2
|
|
pushq %rbp
|
|
movq %rsp, %rbp
|
|
cmpl $5, %edi
|
|
movl $5, %ecx
|
|
cmovlel %edi, %ecx
|
|
testl %ecx, %ecx
|
|
movl $0, %eax
|
|
cmovnsl %ecx, %eax
|
|
popq %rbp
|
|
ret
|
|
|
|
The move of 0 could be scheduled above the test to make it is xor reg,reg.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
GCC PR48986. We currently compile this:
|
|
|
|
void bar(void);
|
|
void yyy(int* p) {
|
|
if (__sync_fetch_and_add(p, -1) == 1)
|
|
bar();
|
|
}
|
|
|
|
into:
|
|
movl $-1, %eax
|
|
lock
|
|
xaddl %eax, (%rdi)
|
|
cmpl $1, %eax
|
|
je LBB0_2
|
|
|
|
Instead we could generate:
|
|
|
|
lock
|
|
dec %rdi
|
|
je LBB0_2
|
|
|
|
The trick is to match "fetch_and_add(X, -C) == C".
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
unsigned log2(unsigned x) {
|
|
return x > 1 ? 32-__builtin_clz(x-1) : 0;
|
|
}
|
|
|
|
generates (x86_64):
|
|
xorl %eax, %eax
|
|
cmpl $2, %edi
|
|
jb LBB0_2
|
|
## BB#1:
|
|
decl %edi
|
|
movl $63, %ecx
|
|
bsrl %edi, %eax
|
|
cmovel %ecx, %eax
|
|
xorl $-32, %eax
|
|
addl $33, %eax
|
|
LBB0_2:
|
|
ret
|
|
|
|
The cmov and the early test are redundant:
|
|
xorl %eax, %eax
|
|
cmpl $2, %edi
|
|
jb LBB0_2
|
|
## BB#1:
|
|
decl %edi
|
|
bsrl %edi, %eax
|
|
xorl $-32, %eax
|
|
addl $33, %eax
|
|
LBB0_2:
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|