mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
8f48766286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31955 91177308-0d34-0410-b5e6-96231b3b80d8
772 lines
24 KiB
C++
772 lines
24 KiB
C++
//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Devang Patel and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LLVM Pass Manager infrastructure.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include <vector>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
/// CommonPassManagerImpl helps pass manager analysis required by
|
|
/// the managed passes. It provides methods to add/remove analysis
|
|
/// available and query if certain analysis is available or not.
|
|
class CommonPassManagerImpl {
|
|
|
|
public:
|
|
|
|
/// Return true IFF pass P's required analysis set does not required new
|
|
/// manager.
|
|
bool manageablePass(Pass *P);
|
|
|
|
Pass *getAnalysisPass(AnalysisID AID) const {
|
|
|
|
std::map<AnalysisID, Pass*>::const_iterator I =
|
|
AvailableAnalysis.find(AID);
|
|
|
|
if (I != AvailableAnalysis.end())
|
|
return NULL;
|
|
else
|
|
return I->second;
|
|
}
|
|
|
|
/// Augment RequiredAnalysis by adding analysis required by pass P.
|
|
void noteDownRequiredAnalysis(Pass *P);
|
|
|
|
/// Augment AvailableAnalysis by adding analysis made available by pass P.
|
|
void noteDownAvailableAnalysis(Pass *P);
|
|
|
|
/// Remove Analysis that is not preserved by the pass
|
|
void removeNotPreservedAnalysis(Pass *P);
|
|
|
|
/// Remove dead passes
|
|
void removeDeadPasses(Pass *P);
|
|
|
|
/// Add pass P into the PassVector. Update RequiredAnalysis and
|
|
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
|
|
void addPassToManager (Pass *P, bool ProcessAnalysis = true);
|
|
|
|
/// Clear analysis vectors RequiredAnalysis and AvailableAnalysis.
|
|
/// This is used before running passes managed by the manager.
|
|
void clearAnalysis() {
|
|
RequiredAnalysis.clear();
|
|
AvailableAnalysis.clear();
|
|
LastUser.clear();
|
|
}
|
|
|
|
// All Required analyses should be available to the pass as it runs! Here
|
|
// we fill in the AnalysisImpls member of the pass so that it can
|
|
// successfully use the getAnalysis() method to retrieve the
|
|
// implementations it needs.
|
|
//
|
|
void initializeAnalysisImpl(Pass *P);
|
|
|
|
inline std::vector<Pass *>::iterator passVectorBegin() {
|
|
return PassVector.begin();
|
|
}
|
|
|
|
inline std::vector<Pass *>::iterator passVectorEnd() {
|
|
return PassVector.end();
|
|
}
|
|
|
|
inline void setLastUser(Pass *P, Pass *LU) {
|
|
LastUser[P] = LU;
|
|
// TODO : Check if pass P is available.
|
|
}
|
|
|
|
private:
|
|
// Analysis required by the passes managed by this manager. This information
|
|
// used while selecting pass manager during addPass. If a pass does not
|
|
// preserve any analysis required by other passes managed by current
|
|
// pass manager then new pass manager is used.
|
|
std::vector<AnalysisID> RequiredAnalysis;
|
|
|
|
// Set of available Analysis. This information is used while scheduling
|
|
// pass. If a pass requires an analysis which is not not available then
|
|
// equired analysis pass is scheduled to run before the pass itself is
|
|
// scheduled to run.
|
|
std::map<AnalysisID, Pass*> AvailableAnalysis;
|
|
|
|
// Map to keep track of last user of the analysis pass.
|
|
// LastUser->second is the last user of Lastuser->first.
|
|
std::map<Pass *, Pass *> LastUser;
|
|
|
|
// Collection of pass that are managed by this manager
|
|
std::vector<Pass *> PassVector;
|
|
};
|
|
|
|
/// BasicBlockPassManager_New manages BasicBlockPass. It batches all the
|
|
/// pass together and sequence them to process one basic block before
|
|
/// processing next basic block.
|
|
class BasicBlockPassManager_New : public CommonPassManagerImpl,
|
|
public FunctionPass {
|
|
|
|
public:
|
|
BasicBlockPassManager_New() { }
|
|
|
|
/// Add a pass into a passmanager queue.
|
|
bool addPass(Pass *p);
|
|
|
|
/// Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the function, and if so, return true.
|
|
bool runOnFunction(Function &F);
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *getAnalysisPassFromManager(AnalysisID AID);
|
|
|
|
private:
|
|
};
|
|
|
|
/// FunctionPassManagerImpl_New manages FunctionPasses and BasicBlockPassManagers.
|
|
/// It batches all function passes and basic block pass managers together and
|
|
/// sequence them to process one function at a time before processing next
|
|
/// function.
|
|
class FunctionPassManagerImpl_New : public CommonPassManagerImpl,
|
|
public ModulePass {
|
|
public:
|
|
FunctionPassManagerImpl_New(ModuleProvider *P) { /* TODO */ }
|
|
FunctionPassManagerImpl_New() {
|
|
activeBBPassManager = NULL;
|
|
}
|
|
~FunctionPassManagerImpl_New() { /* TODO */ };
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes
|
|
/// ownership of the Pass to the PassManager. When the
|
|
/// PassManager_X is destroyed, the pass will be destroyed as well, so
|
|
/// there is no need to delete the pass. (TODO delete passes.)
|
|
/// This implies that all passes MUST be allocated with 'new'.
|
|
void add(Pass *P) { /* TODO*/ }
|
|
|
|
/// Add pass into the pass manager queue.
|
|
bool addPass(Pass *P);
|
|
|
|
/// Execute all of the passes scheduled for execution. Keep
|
|
/// track of whether any of the passes modifies the function, and if
|
|
/// so, return true.
|
|
bool runOnModule(Module &M);
|
|
bool runOnFunction(Function &F);
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *getAnalysisPassFromManager(AnalysisID AID);
|
|
|
|
/// doInitialization - Run all of the initializers for the function passes.
|
|
///
|
|
bool doInitialization(Module &M);
|
|
|
|
/// doFinalization - Run all of the initializers for the function passes.
|
|
///
|
|
bool doFinalization(Module &M);
|
|
private:
|
|
// Active Pass Managers
|
|
BasicBlockPassManager_New *activeBBPassManager;
|
|
};
|
|
|
|
/// ModulePassManager_New manages ModulePasses and function pass managers.
|
|
/// It batches all Module passes passes and function pass managers together and
|
|
/// sequence them to process one module.
|
|
class ModulePassManager_New : public CommonPassManagerImpl {
|
|
|
|
public:
|
|
ModulePassManager_New() { activeFunctionPassManager = NULL; }
|
|
|
|
/// Add a pass into a passmanager queue.
|
|
bool addPass(Pass *p);
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool runOnModule(Module &M);
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *getAnalysisPassFromManager(AnalysisID AID);
|
|
|
|
private:
|
|
// Active Pass Manager
|
|
FunctionPassManagerImpl_New *activeFunctionPassManager;
|
|
};
|
|
|
|
/// PassManager_New manages ModulePassManagers
|
|
class PassManagerImpl_New : public CommonPassManagerImpl {
|
|
|
|
public:
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes ownership of
|
|
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
/// will be destroyed as well, so there is no need to delete the pass. This
|
|
/// implies that all passes MUST be allocated with 'new'.
|
|
void add(Pass *P);
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool run(Module &M);
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *getAnalysisPassFromManager(AnalysisID AID);
|
|
|
|
private:
|
|
|
|
/// Add a pass into a passmanager queue. This is used by schedulePasses
|
|
bool addPass(Pass *p);
|
|
|
|
/// Schedule pass P for execution. Make sure that passes required by
|
|
/// P are run before P is run. Update analysis info maintained by
|
|
/// the manager. Remove dead passes. This is a recursive function.
|
|
void schedulePass(Pass *P);
|
|
|
|
/// Schedule all passes collected in pass queue using add(). Add all the
|
|
/// schedule passes into various manager's queue using addPass().
|
|
void schedulePasses();
|
|
|
|
// Collection of pass managers
|
|
std::vector<ModulePassManager_New *> PassManagers;
|
|
|
|
// Active Pass Manager
|
|
ModulePassManager_New *activeManager;
|
|
};
|
|
|
|
} // End of llvm namespace
|
|
|
|
// CommonPassManagerImpl implementation
|
|
|
|
/// Return true IFF pass P's required analysis set does not required new
|
|
/// manager.
|
|
bool CommonPassManagerImpl::manageablePass(Pass *P) {
|
|
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
|
|
// If this pass is not preserving information that is required by the other
|
|
// passes managed by this manager then use new manager
|
|
if (!AnUsage.getPreservesAll()) {
|
|
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
|
|
for (std::vector<AnalysisID>::iterator I = RequiredAnalysis.begin(),
|
|
E = RequiredAnalysis.end(); I != E; ++I) {
|
|
if (std::find(PreservedSet.begin(), PreservedSet.end(), *I) ==
|
|
PreservedSet.end())
|
|
// This analysis is not preserved. Need new manager.
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Augment RequiredAnalysis by adding analysis required by pass P.
|
|
void CommonPassManagerImpl::noteDownRequiredAnalysis(Pass *P) {
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
|
|
|
|
// FIXME: What about duplicates ?
|
|
RequiredAnalysis.insert(RequiredAnalysis.end(), RequiredSet.begin(),
|
|
RequiredSet.end());
|
|
|
|
initializeAnalysisImpl(P);
|
|
}
|
|
|
|
/// Augement AvailableAnalysis by adding analysis made available by pass P.
|
|
void CommonPassManagerImpl::noteDownAvailableAnalysis(Pass *P) {
|
|
|
|
if (const PassInfo *PI = P->getPassInfo()) {
|
|
AvailableAnalysis[PI] = P;
|
|
|
|
//TODO This pass is the current implementation of all of the interfaces it
|
|
//TODO implements as well.
|
|
//TODO
|
|
//TODO const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
|
|
//TODO for (unsigned i = 0, e = II.size(); i != e; ++i)
|
|
//TODO CurrentAnalyses[II[i]] = P;
|
|
}
|
|
}
|
|
|
|
/// Remove Analyss not preserved by Pass P
|
|
void CommonPassManagerImpl::removeNotPreservedAnalysis(Pass *P) {
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
|
|
|
|
for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
|
|
E = AvailableAnalysis.end(); I != E; ++I ) {
|
|
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) ==
|
|
PreservedSet.end()) {
|
|
// Remove this analysis
|
|
std::map<AnalysisID, Pass*>::iterator J = I++;
|
|
AvailableAnalysis.erase(J);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove analysis passes that are not used any longer
|
|
void CommonPassManagerImpl::removeDeadPasses(Pass *P) {
|
|
|
|
for (std::map<Pass *, Pass *>::iterator I = LastUser.begin(),
|
|
E = LastUser.end(); I !=E; ++I) {
|
|
if (I->second == P) {
|
|
Pass *deadPass = I->first;
|
|
deadPass->releaseMemory();
|
|
|
|
std::map<AnalysisID, Pass*>::iterator Pos =
|
|
AvailableAnalysis.find(deadPass->getPassInfo());
|
|
|
|
assert (Pos != AvailableAnalysis.end() &&
|
|
"Pass is not available");
|
|
AvailableAnalysis.erase(Pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add pass P into the PassVector. Update RequiredAnalysis and
|
|
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
|
|
void CommonPassManagerImpl::addPassToManager (Pass *P,
|
|
bool ProcessAnalysis) {
|
|
|
|
if (ProcessAnalysis) {
|
|
// Take a note of analysis required and made available by this pass
|
|
noteDownRequiredAnalysis(P);
|
|
noteDownAvailableAnalysis(P);
|
|
|
|
// Remove the analysis not preserved by this pass
|
|
removeNotPreservedAnalysis(P);
|
|
}
|
|
|
|
// Add pass
|
|
PassVector.push_back(P);
|
|
}
|
|
|
|
// All Required analyses should be available to the pass as it runs! Here
|
|
// we fill in the AnalysisImpls member of the pass so that it can
|
|
// successfully use the getAnalysis() method to retrieve the
|
|
// implementations it needs.
|
|
//
|
|
void CommonPassManagerImpl::initializeAnalysisImpl(Pass *P) {
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
|
|
for (std::vector<const PassInfo *>::const_iterator
|
|
I = AnUsage.getRequiredSet().begin(),
|
|
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
|
|
Pass *Impl = getAnalysisPass(*I);
|
|
if (Impl == 0)
|
|
assert(0 && "Analysis used but not available!");
|
|
// TODO: P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
|
|
}
|
|
}
|
|
|
|
/// BasicBlockPassManager implementation
|
|
|
|
/// Add pass P into PassVector and return true. If this pass is not
|
|
/// manageable by this manager then return false.
|
|
bool
|
|
BasicBlockPassManager_New::addPass(Pass *P) {
|
|
|
|
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
|
|
if (!BP)
|
|
return false;
|
|
|
|
// If this pass does not preserve anlysis that is used by other passes
|
|
// managed by this manager than it is not a suiable pass for this manager.
|
|
if (!manageablePass(P))
|
|
return false;
|
|
|
|
addPassToManager (BP);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
|
|
/// the function, and if so, return true.
|
|
bool
|
|
BasicBlockPassManager_New::runOnFunction(Function &F) {
|
|
|
|
bool Changed = false;
|
|
clearAnalysis();
|
|
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
noteDownAvailableAnalysis(P);
|
|
BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
|
|
Changed |= BP->runOnBasicBlock(*I);
|
|
removeNotPreservedAnalysis(P);
|
|
removeDeadPasses(P);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass * BasicBlockPassManager_New::getAnalysisPassFromManager(AnalysisID AID) {
|
|
return getAnalysisPass(AID);
|
|
}
|
|
|
|
// FunctionPassManager_New implementation
|
|
/// Create new Function pass manager
|
|
FunctionPassManager_New::FunctionPassManager_New() {
|
|
FPM = new FunctionPassManagerImpl_New();
|
|
}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes
|
|
/// ownership of the Pass to the PassManager. When the
|
|
/// PassManager_X is destroyed, the pass will be destroyed as well, so
|
|
/// there is no need to delete the pass. (TODO delete passes.)
|
|
/// This implies that all passes MUST be allocated with 'new'.
|
|
void FunctionPassManager_New::add(Pass *P) {
|
|
FPM->add(P);
|
|
}
|
|
|
|
/// Execute all of the passes scheduled for execution. Keep
|
|
/// track of whether any of the passes modifies the function, and if
|
|
/// so, return true.
|
|
bool FunctionPassManager_New::runOnModule(Module &M) {
|
|
return FPM->runOnModule(M);
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep
|
|
/// track of whether any of the passes modifies the function, and if
|
|
/// so, return true.
|
|
///
|
|
bool FunctionPassManager_New::run(Function &F) {
|
|
std::string errstr;
|
|
if (MP->materializeFunction(&F, &errstr)) {
|
|
llvm_cerr << "Error reading bytecode file: " << errstr << "\n";
|
|
abort();
|
|
}
|
|
return FPM->runOnFunction(F);
|
|
}
|
|
|
|
|
|
/// doInitialization - Run all of the initializers for the function passes.
|
|
///
|
|
bool FunctionPassManager_New::doInitialization() {
|
|
return FPM->doInitialization(*MP->getModule());
|
|
}
|
|
|
|
/// doFinalization - Run all of the initializers for the function passes.
|
|
///
|
|
bool FunctionPassManager_New::doFinalization() {
|
|
return FPM->doFinalization(*MP->getModule());
|
|
}
|
|
|
|
// FunctionPassManagerImpl_New implementation
|
|
|
|
// FunctionPassManager
|
|
|
|
/// Add pass P into the pass manager queue. If P is a BasicBlockPass then
|
|
/// either use it into active basic block pass manager or create new basic
|
|
/// block pass manager to handle pass P.
|
|
bool
|
|
FunctionPassManagerImpl_New::addPass(Pass *P) {
|
|
|
|
// If P is a BasicBlockPass then use BasicBlockPassManager_New.
|
|
if (BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P)) {
|
|
|
|
if (!activeBBPassManager
|
|
|| !activeBBPassManager->addPass(BP)) {
|
|
|
|
activeBBPassManager = new BasicBlockPassManager_New();
|
|
addPassToManager(activeBBPassManager, false);
|
|
if (!activeBBPassManager->addPass(BP))
|
|
assert(0 && "Unable to add Pass");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *FP = dynamic_cast<FunctionPass *>(P);
|
|
if (!FP)
|
|
return false;
|
|
|
|
// If this pass does not preserve anlysis that is used by other passes
|
|
// managed by this manager than it is not a suiable pass for this manager.
|
|
if (!manageablePass(P))
|
|
return false;
|
|
|
|
addPassToManager (FP);
|
|
activeBBPassManager = NULL;
|
|
return true;
|
|
}
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnFunction method. Keep track of whether any of the passes modifies
|
|
/// the function, and if so, return true.
|
|
bool FunctionPassManagerImpl_New::runOnModule(Module &M) {
|
|
|
|
bool Changed = false;
|
|
clearAnalysis();
|
|
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
noteDownAvailableAnalysis(P);
|
|
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
|
|
Changed |= FP->runOnFunction(*I);
|
|
removeNotPreservedAnalysis(P);
|
|
removeDeadPasses(P);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnFunction method. Keep track of whether any of the passes modifies
|
|
/// the function, and if so, return true.
|
|
bool FunctionPassManagerImpl_New::runOnFunction(Function &F) {
|
|
|
|
bool Changed = false;
|
|
clearAnalysis();
|
|
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
noteDownAvailableAnalysis(P);
|
|
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
|
|
Changed |= FP->runOnFunction(F);
|
|
removeNotPreservedAnalysis(P);
|
|
removeDeadPasses(P);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *FunctionPassManagerImpl_New::getAnalysisPassFromManager(AnalysisID AID) {
|
|
|
|
Pass *P = getAnalysisPass(AID);
|
|
if (P)
|
|
return P;
|
|
|
|
if (activeBBPassManager &&
|
|
activeBBPassManager->getAnalysisPass(AID) != 0)
|
|
return activeBBPassManager->getAnalysisPass(AID);
|
|
|
|
// TODO : Check inactive managers
|
|
return NULL;
|
|
}
|
|
|
|
inline bool FunctionPassManagerImpl_New::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
|
|
Changed |= FP->doInitialization(M);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
inline bool FunctionPassManagerImpl_New::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
|
|
Changed |= FP->doFinalization(M);
|
|
}
|
|
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
// ModulePassManager implementation
|
|
|
|
/// Add P into pass vector if it is manageble. If P is a FunctionPass
|
|
/// then use FunctionPassManagerImpl_New to manage it. Return false if P
|
|
/// is not manageable by this manager.
|
|
bool
|
|
ModulePassManager_New::addPass(Pass *P) {
|
|
|
|
// If P is FunctionPass then use function pass maanager.
|
|
if (FunctionPass *FP = dynamic_cast<FunctionPass*>(P)) {
|
|
|
|
activeFunctionPassManager = NULL;
|
|
|
|
if (!activeFunctionPassManager
|
|
|| !activeFunctionPassManager->addPass(P)) {
|
|
|
|
activeFunctionPassManager = new FunctionPassManagerImpl_New();
|
|
addPassToManager(activeFunctionPassManager, false);
|
|
if (!activeFunctionPassManager->addPass(FP))
|
|
assert(0 && "Unable to add pass");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ModulePass *MP = dynamic_cast<ModulePass *>(P);
|
|
if (!MP)
|
|
return false;
|
|
|
|
// If this pass does not preserve anlysis that is used by other passes
|
|
// managed by this manager than it is not a suiable pass for this manager.
|
|
if (!manageablePass(P))
|
|
return false;
|
|
|
|
addPassToManager(MP);
|
|
activeFunctionPassManager = NULL;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnModule method. Keep track of whether any of the passes modifies
|
|
/// the module, and if so, return true.
|
|
bool
|
|
ModulePassManager_New::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
clearAnalysis();
|
|
|
|
for (std::vector<Pass *>::iterator itr = passVectorBegin(),
|
|
e = passVectorEnd(); itr != e; ++itr) {
|
|
Pass *P = *itr;
|
|
|
|
noteDownAvailableAnalysis(P);
|
|
ModulePass *MP = dynamic_cast<ModulePass*>(P);
|
|
Changed |= MP->runOnModule(M);
|
|
removeNotPreservedAnalysis(P);
|
|
removeDeadPasses(P);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *ModulePassManager_New::getAnalysisPassFromManager(AnalysisID AID) {
|
|
|
|
|
|
Pass *P = getAnalysisPass(AID);
|
|
if (P)
|
|
return P;
|
|
|
|
if (activeFunctionPassManager &&
|
|
activeFunctionPassManager->getAnalysisPass(AID) != 0)
|
|
return activeFunctionPassManager->getAnalysisPass(AID);
|
|
|
|
// TODO : Check inactive managers
|
|
return NULL;
|
|
}
|
|
|
|
/// Return true IFF AnalysisID AID is currently available.
|
|
Pass *PassManagerImpl_New::getAnalysisPassFromManager(AnalysisID AID) {
|
|
|
|
Pass *P = NULL;
|
|
for (std::vector<ModulePassManager_New *>::iterator itr = PassManagers.begin(),
|
|
e = PassManagers.end(); !P && itr != e; ++itr)
|
|
P = (*itr)->getAnalysisPassFromManager(AID);
|
|
return P;
|
|
}
|
|
|
|
/// Schedule pass P for execution. Make sure that passes required by
|
|
/// P are run before P is run. Update analysis info maintained by
|
|
/// the manager. Remove dead passes. This is a recursive function.
|
|
void PassManagerImpl_New::schedulePass(Pass *P) {
|
|
|
|
AnalysisUsage AnUsage;
|
|
P->getAnalysisUsage(AnUsage);
|
|
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
|
|
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
|
|
E = RequiredSet.end(); I != E; ++I) {
|
|
|
|
Pass *AnalysisPass = getAnalysisPassFromManager(*I);
|
|
if (!AnalysisPass) {
|
|
// Schedule this analysis run first.
|
|
AnalysisPass = (*I)->createPass();
|
|
schedulePass(AnalysisPass);
|
|
}
|
|
setLastUser (AnalysisPass, P);
|
|
|
|
// Prolong live range of analyses that are needed after an analysis pass
|
|
// is destroyed, for querying by subsequent passes
|
|
const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
|
|
for (std::vector<AnalysisID>::const_iterator I = IDs.begin(),
|
|
E = IDs.end(); I != E; ++I) {
|
|
Pass *AP = getAnalysisPassFromManager(*I);
|
|
assert (AP && "Analysis pass is not available");
|
|
setLastUser(AP, P);
|
|
}
|
|
}
|
|
addPass(P);
|
|
}
|
|
|
|
/// Schedule all passes from the queue by adding them in their
|
|
/// respective manager's queue.
|
|
void PassManagerImpl_New::schedulePasses() {
|
|
for (std::vector<Pass *>::iterator I = passVectorBegin(),
|
|
E = passVectorEnd(); I != E; ++I)
|
|
schedulePass (*I);
|
|
}
|
|
|
|
/// Add pass P to the queue of passes to run.
|
|
void PassManagerImpl_New::add(Pass *P) {
|
|
// Do not process Analysis now. Analysis is process while scheduling
|
|
// the pass vector.
|
|
addPassToManager(P, false);
|
|
}
|
|
|
|
// PassManager_New implementation
|
|
/// Add P into active pass manager or use new module pass manager to
|
|
/// manage it.
|
|
bool PassManagerImpl_New::addPass(Pass *P) {
|
|
|
|
if (!activeManager || !activeManager->addPass(P)) {
|
|
activeManager = new ModulePassManager_New();
|
|
PassManagers.push_back(activeManager);
|
|
}
|
|
|
|
return activeManager->addPass(P);
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool PassManagerImpl_New::run(Module &M) {
|
|
|
|
schedulePasses();
|
|
bool Changed = false;
|
|
for (std::vector<ModulePassManager_New *>::iterator itr = PassManagers.begin(),
|
|
e = PassManagers.end(); itr != e; ++itr) {
|
|
ModulePassManager_New *pm = *itr;
|
|
Changed |= pm->runOnModule(M);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Create new pass manager
|
|
PassManager_New::PassManager_New() {
|
|
PM = new PassManagerImpl_New();
|
|
}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes ownership of
|
|
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
/// will be destroyed as well, so there is no need to delete the pass. This
|
|
/// implies that all passes MUST be allocated with 'new'.
|
|
void
|
|
PassManager_New::add(Pass *P) {
|
|
PM->add(P);
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool
|
|
PassManager_New::run(Module &M) {
|
|
return PM->run(M);
|
|
}
|
|
|