llvm-6502/lib/Target/X86/X86TargetMachine.cpp
2003-12-20 01:22:19 +00:00

162 lines
5.4 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
using namespace llvm;
namespace {
cl::opt<bool> PrintCode("print-machineinstrs",
cl::desc("Print generated machine code"));
cl::opt<bool> NoPatternISel("disable-pattern-isel", cl::init(true),
cl::desc("Use the 'simple' X86 instruction selector"));
cl::opt<bool> NoSSAPeephole("disable-ssa-peephole", cl::init(true),
cl::desc("Disable the ssa-based peephole optimizer (defaults to disabled)"));
}
// allocateX86TargetMachine - Allocate and return a subclass of TargetMachine
// that implements the X86 backend.
//
TargetMachine *llvm::allocateX86TargetMachine(const Module &M) {
return new X86TargetMachine(M);
}
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M)
: TargetMachine("X86", true, 4, 4, 4, 4, 4),
FrameInfo(TargetFrameInfo::StackGrowsDown, 8/*16 for SSE*/, 4),
JITInfo(*this) {
}
// addPassesToEmitAssembly - We currently use all of the same passes as the JIT
// does to emit statically compiled machine code.
bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM,
std::ostream &Out) {
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: The code generator does not properly handle functions with
// unreachable basic blocks.
PM.add(createCFGSimplificationPass());
if (NoPatternISel)
PM.add(createX86SimpleInstructionSelector(*this));
else
PM.add(createX86PatternInstructionSelector(*this));
// Run optional SSA-based machine code optimizations next...
if (!NoSSAPeephole)
PM.add(createX86SSAPeepholeOptimizerPass());
// Print the instruction selected machine code...
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// kill floating point registers at the end of basic blocks. this is
// done because the floating point register stackifier cannot handle
// floating point regs that are live across basic blocks.
PM.add(createX86FloatingPointKillerPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
PM.add(createX86FloatingPointStackifierPass());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, *this));
PM.add(createX86CodePrinterPass(Out, *this));
return false; // success!
}
/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target. Return true if this is
/// not supported for this target.
///
void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: The code generator does not properly handle functions with
// unreachable basic blocks.
PM.add(createCFGSimplificationPass());
if (NoPatternISel)
PM.add(createX86SimpleInstructionSelector(TM));
else
PM.add(createX86PatternInstructionSelector(TM));
// Run optional SSA-based machine code optimizations next...
if (!NoSSAPeephole)
PM.add(createX86SSAPeepholeOptimizerPass());
// FIXME: Add SSA based peephole optimizer here.
// Print the instruction selected machine code...
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// kill floating point registers at the end of basic blocks. this is
// done because the floating point register stackifier cannot handle
// floating point regs that are live across basic blocks.
PM.add(createX86FloatingPointKillerPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
PM.add(createX86FloatingPointStackifierPass());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, TM));
}