llvm-6502/lib/Target/X86/X86TargetMachine.cpp
Bill Wendling 98a366d547 Instead of passing in an unsigned value for the optimization level, use an enum,
which better identifies what the optimization is doing. And is more flexible for
future uses.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70440 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-29 23:29:43 +00:00

273 lines
9.8 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetMachineRegistry.h"
using namespace llvm;
/// X86TargetMachineModule - Note that this is used on hosts that cannot link
/// in a library unless there are references into the library. In particular,
/// it seems that it is not possible to get things to work on Win32 without
/// this. Though it is unused, do not remove it.
extern "C" int X86TargetMachineModule;
int X86TargetMachineModule = 0;
// Register the target.
static RegisterTarget<X86_32TargetMachine>
X("x86", "32-bit X86: Pentium-Pro and above");
static RegisterTarget<X86_64TargetMachine>
Y("x86-64", "64-bit X86: EM64T and AMD64");
// No assembler printer by default
X86TargetMachine::AsmPrinterCtorFn X86TargetMachine::AsmPrinterCtor = 0;
const TargetAsmInfo *X86TargetMachine::createTargetAsmInfo() const {
if (Subtarget.isFlavorIntel())
return new X86WinTargetAsmInfo(*this);
else
switch (Subtarget.TargetType) {
case X86Subtarget::isDarwin:
return new X86DarwinTargetAsmInfo(*this);
case X86Subtarget::isELF:
return new X86ELFTargetAsmInfo(*this);
case X86Subtarget::isMingw:
case X86Subtarget::isCygwin:
return new X86COFFTargetAsmInfo(*this);
case X86Subtarget::isWindows:
return new X86WinTargetAsmInfo(*this);
default:
return new X86GenericTargetAsmInfo(*this);
}
}
unsigned X86_32TargetMachine::getJITMatchQuality() {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
return 10;
#endif
return 0;
}
unsigned X86_64TargetMachine::getJITMatchQuality() {
#if defined(__x86_64__) || defined(_M_AMD64)
return 10;
#endif
return 0;
}
unsigned X86_32TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "i[3-9]86-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
TT[4] == '-' && TT[1] - '3' < 6)
return 20;
// If the target triple is something non-X86, we don't match.
if (!TT.empty()) return 0;
if (M.getEndianness() == Module::LittleEndian &&
M.getPointerSize() == Module::Pointer32)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
unsigned X86_64TargetMachine::getModuleMatchQuality(const Module &M) {
// We strongly match "x86_64-*".
std::string TT = M.getTargetTriple();
if (TT.size() >= 7 && TT[0] == 'x' && TT[1] == '8' && TT[2] == '6' &&
TT[3] == '_' && TT[4] == '6' && TT[5] == '4' && TT[6] == '-')
return 20;
// We strongly match "amd64-*".
if (TT.size() >= 6 && TT[0] == 'a' && TT[1] == 'm' && TT[2] == 'd' &&
TT[3] == '6' && TT[4] == '4' && TT[5] == '-')
return 20;
// If the target triple is something non-X86-64, we don't match.
if (!TT.empty()) return 0;
if (M.getEndianness() == Module::LittleEndian &&
M.getPointerSize() == Module::Pointer64)
return 10; // Weak match
else if (M.getEndianness() != Module::AnyEndianness ||
M.getPointerSize() != Module::AnyPointerSize)
return 0; // Match for some other target
return getJITMatchQuality()/2;
}
X86_32TargetMachine::X86_32TargetMachine(const Module &M, const std::string &FS)
: X86TargetMachine(M, FS, false) {
}
X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS)
: X86TargetMachine(M, FS, true) {
}
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS,
bool is64Bit)
: Subtarget(M, FS, is64Bit),
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
InstrInfo(*this), JITInfo(*this), TLInfo(*this) {
DefRelocModel = getRelocationModel();
// FIXME: Correctly select PIC model for Win64 stuff
if (getRelocationModel() == Reloc::Default) {
if (Subtarget.isTargetDarwin() ||
(Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64()))
setRelocationModel(Reloc::DynamicNoPIC);
else
setRelocationModel(Reloc::Static);
}
// ELF doesn't have a distinct dynamic-no-PIC model. Dynamic-no-PIC
// is defined as a model for code which may be used in static or
// dynamic executables but not necessarily a shared library. On ELF
// implement this by using the Static model.
if (Subtarget.isTargetELF() &&
getRelocationModel() == Reloc::DynamicNoPIC)
setRelocationModel(Reloc::Static);
if (Subtarget.is64Bit()) {
// No DynamicNoPIC support under X86-64.
if (getRelocationModel() == Reloc::DynamicNoPIC)
setRelocationModel(Reloc::PIC_);
// Default X86-64 code model is small.
if (getCodeModel() == CodeModel::Default)
setCodeModel(CodeModel::Small);
}
if (Subtarget.isTargetCygMing())
Subtarget.setPICStyle(PICStyles::WinPIC);
else if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
else
Subtarget.setPICStyle(PICStyles::Stub);
} else if (Subtarget.isTargetELF()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
else
Subtarget.setPICStyle(PICStyles::GOT);
}
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createX86ISelDag(*this, OptLevel));
// If we're using Fast-ISel, clean up the mess.
if (EnableFastISel)
PM.add(createDeadMachineInstructionElimPass());
// Install a pass to insert x87 FP_REG_KILL instructions, as needed.
PM.add(createX87FPRegKillInserterPass());
return false;
}
bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Calculate and set max stack object alignment early, so we can decide
// whether we will need stack realignment (and thus FP).
PM.add(createX86MaxStackAlignmentCalculatorPass());
return false; // -print-machineinstr shouldn't print after this.
}
bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86FloatingPointStackifierPass());
return true; // -print-machineinstr should print after this.
}
bool X86TargetMachine::addAssemblyEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
bool Verbose,
raw_ostream &Out) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(Out, *this, OptLevel, Verbose));
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
bool DumpAsm, MachineCodeEmitter &MCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
(!Subtarget.isTargetDarwin() || !Subtarget.is64Bit()))
setRelocationModel(Reloc::Static);
// 64-bit JIT places everything in the same buffer except external functions.
// On Darwin, use small code model but hack the call instruction for
// externals. Elsewhere, do not assume globals are in the lower 4G.
if (Subtarget.is64Bit()) {
if (Subtarget.isTargetDarwin())
setCodeModel(CodeModel::Small);
else
setCodeModel(CodeModel::Large);
}
PM.add(createX86CodeEmitterPass(*this, MCE));
if (DumpAsm) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true));
}
return false;
}
bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
bool DumpAsm,
MachineCodeEmitter &MCE) {
PM.add(createX86CodeEmitterPass(*this, MCE));
if (DumpAsm) {
assert(AsmPrinterCtor && "AsmPrinter was not linked in");
if (AsmPrinterCtor)
PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true));
}
return false;
}
/// symbolicAddressesAreRIPRel - Return true if symbolic addresses are
/// RIP-relative on this machine, taking into consideration the relocation
/// model and subtarget. RIP-relative addresses cannot have a separate
/// base or index register.
bool X86TargetMachine::symbolicAddressesAreRIPRel() const {
return getRelocationModel() != Reloc::Static &&
Subtarget.isPICStyleRIPRel();
}