mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 04:08:07 +00:00
4fa021a1a9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32758 91177308-0d34-0410-b5e6-96231b3b80d8
2194 lines
81 KiB
C++
2194 lines
81 KiB
C++
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Constant* classes...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "ConstantFolding.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Constant::destroyConstantImpl() {
|
|
// When a Constant is destroyed, there may be lingering
|
|
// references to the constant by other constants in the constant pool. These
|
|
// constants are implicitly dependent on the module that is being deleted,
|
|
// but they don't know that. Because we only find out when the CPV is
|
|
// deleted, we must now notify all of our users (that should only be
|
|
// Constants) that they are, in fact, invalid now and should be deleted.
|
|
//
|
|
while (!use_empty()) {
|
|
Value *V = use_back();
|
|
#ifndef NDEBUG // Only in -g mode...
|
|
if (!isa<Constant>(V))
|
|
DOUT << "While deleting: " << *this
|
|
<< "\n\nUse still stuck around after Def is destroyed: "
|
|
<< *V << "\n\n";
|
|
#endif
|
|
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
|
|
Constant *CV = cast<Constant>(V);
|
|
CV->destroyConstant();
|
|
|
|
// The constant should remove itself from our use list...
|
|
assert((use_empty() || use_back() != V) && "Constant not removed!");
|
|
}
|
|
|
|
// Value has no outstanding references it is safe to delete it now...
|
|
delete this;
|
|
}
|
|
|
|
/// canTrap - Return true if evaluation of this constant could trap. This is
|
|
/// true for things like constant expressions that could divide by zero.
|
|
bool Constant::canTrap() const {
|
|
assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
|
|
// The only thing that could possibly trap are constant exprs.
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
|
|
if (!CE) return false;
|
|
|
|
// ConstantExpr traps if any operands can trap.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (getOperand(i)->canTrap())
|
|
return true;
|
|
|
|
// Otherwise, only specific operations can trap.
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::FDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::FRem:
|
|
// Div and rem can trap if the RHS is not known to be non-zero.
|
|
if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Static constructor to create a '0' constant of arbitrary type...
|
|
Constant *Constant::getNullValue(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::BoolTyID: {
|
|
static Constant *NullBool = ConstantBool::get(false);
|
|
return NullBool;
|
|
}
|
|
case Type::SByteTyID: {
|
|
static Constant *NullSByte = ConstantInt::get(Type::SByteTy, 0);
|
|
return NullSByte;
|
|
}
|
|
case Type::UByteTyID: {
|
|
static Constant *NullUByte = ConstantInt::get(Type::UByteTy, 0);
|
|
return NullUByte;
|
|
}
|
|
case Type::ShortTyID: {
|
|
static Constant *NullShort = ConstantInt::get(Type::ShortTy, 0);
|
|
return NullShort;
|
|
}
|
|
case Type::UShortTyID: {
|
|
static Constant *NullUShort = ConstantInt::get(Type::UShortTy, 0);
|
|
return NullUShort;
|
|
}
|
|
case Type::IntTyID: {
|
|
static Constant *NullInt = ConstantInt::get(Type::IntTy, 0);
|
|
return NullInt;
|
|
}
|
|
case Type::UIntTyID: {
|
|
static Constant *NullUInt = ConstantInt::get(Type::UIntTy, 0);
|
|
return NullUInt;
|
|
}
|
|
case Type::LongTyID: {
|
|
static Constant *NullLong = ConstantInt::get(Type::LongTy, 0);
|
|
return NullLong;
|
|
}
|
|
case Type::ULongTyID: {
|
|
static Constant *NullULong = ConstantInt::get(Type::ULongTy, 0);
|
|
return NullULong;
|
|
}
|
|
|
|
case Type::FloatTyID: {
|
|
static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
|
|
return NullFloat;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
|
|
return NullDouble;
|
|
}
|
|
|
|
case Type::PointerTyID:
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::PackedTyID:
|
|
return ConstantAggregateZero::get(Ty);
|
|
default:
|
|
// Function, Label, or Opaque type?
|
|
assert(!"Cannot create a null constant of that type!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
// Static constructor to create an integral constant with all bits set
|
|
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::BoolTyID: return ConstantBool::getTrue();
|
|
case Type::SByteTyID:
|
|
case Type::ShortTyID:
|
|
case Type::IntTyID:
|
|
case Type::LongTyID: return ConstantInt::get(Ty, -1);
|
|
|
|
case Type::UByteTyID:
|
|
case Type::UShortTyID:
|
|
case Type::UIntTyID:
|
|
case Type::ULongTyID: {
|
|
// Calculate ~0 of the right type...
|
|
unsigned TypeBits = Ty->getPrimitiveSize()*8;
|
|
uint64_t Val = ~0ULL; // All ones
|
|
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
|
|
return ConstantInt::get(Ty, Val);
|
|
}
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantXXX Classes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Normal Constructors
|
|
|
|
ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V)
|
|
: Constant(Ty, VT, 0, 0), Val(V) {
|
|
}
|
|
|
|
ConstantBool::ConstantBool(bool V)
|
|
: ConstantIntegral(Type::BoolTy, ConstantBoolVal, uint64_t(V)) {
|
|
}
|
|
|
|
ConstantInt::ConstantInt(const Type *Ty, uint64_t V)
|
|
: ConstantIntegral(Ty, ConstantIntVal, V) {
|
|
}
|
|
|
|
ConstantFP::ConstantFP(const Type *Ty, double V)
|
|
: Constant(Ty, ConstantFPVal, 0, 0) {
|
|
assert(isValueValidForType(Ty, V) && "Value too large for type!");
|
|
Val = V;
|
|
}
|
|
|
|
ConstantArray::ConstantArray(const ArrayType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
|
|
assert(V.size() == T->getNumElements() &&
|
|
"Invalid initializer vector for constant array");
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType() ||
|
|
(T->isAbstract() &&
|
|
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
|
|
"Initializer for array element doesn't match array element type!");
|
|
OL->init(C, this);
|
|
}
|
|
}
|
|
|
|
ConstantArray::~ConstantArray() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
ConstantStruct::ConstantStruct(const StructType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
|
|
assert(V.size() == T->getNumElements() &&
|
|
"Invalid initializer vector for constant structure");
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType(I-V.begin()) ||
|
|
((T->getElementType(I-V.begin())->isAbstract() ||
|
|
C->getType()->isAbstract()) &&
|
|
T->getElementType(I-V.begin())->getTypeID() ==
|
|
C->getType()->getTypeID())) &&
|
|
"Initializer for struct element doesn't match struct element type!");
|
|
OL->init(C, this);
|
|
}
|
|
}
|
|
|
|
ConstantStruct::~ConstantStruct() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
|
|
ConstantPacked::ConstantPacked(const PackedType *T,
|
|
const std::vector<Constant*> &V)
|
|
: Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) {
|
|
Use *OL = OperandList;
|
|
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
|
|
I != E; ++I, ++OL) {
|
|
Constant *C = *I;
|
|
assert((C->getType() == T->getElementType() ||
|
|
(T->isAbstract() &&
|
|
C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
|
|
"Initializer for packed element doesn't match packed element type!");
|
|
OL->init(C, this);
|
|
}
|
|
}
|
|
|
|
ConstantPacked::~ConstantPacked() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
// We declare several classes private to this file, so use an anonymous
|
|
// namespace
|
|
namespace {
|
|
|
|
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement unary constant exprs.
|
|
class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
|
|
Use Op;
|
|
public:
|
|
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
|
|
: ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
|
|
};
|
|
|
|
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement binary constant exprs.
|
|
class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
|
|
Use Ops[2];
|
|
public:
|
|
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
|
|
: ConstantExpr(C1->getType(), Opcode, Ops, 2) {
|
|
Ops[0].init(C1, this);
|
|
Ops[1].init(C2, this);
|
|
}
|
|
};
|
|
|
|
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement select constant exprs.
|
|
class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
|
|
Use Ops[3];
|
|
public:
|
|
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
|
|
Ops[0].init(C1, this);
|
|
Ops[1].init(C2, this);
|
|
Ops[2].init(C3, this);
|
|
}
|
|
};
|
|
|
|
/// ExtractElementConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// extractelement constant exprs.
|
|
class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
|
|
Use Ops[2];
|
|
public:
|
|
ExtractElementConstantExpr(Constant *C1, Constant *C2)
|
|
: ConstantExpr(cast<PackedType>(C1->getType())->getElementType(),
|
|
Instruction::ExtractElement, Ops, 2) {
|
|
Ops[0].init(C1, this);
|
|
Ops[1].init(C2, this);
|
|
}
|
|
};
|
|
|
|
/// InsertElementConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// insertelement constant exprs.
|
|
class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
|
|
Use Ops[3];
|
|
public:
|
|
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(C1->getType(), Instruction::InsertElement,
|
|
Ops, 3) {
|
|
Ops[0].init(C1, this);
|
|
Ops[1].init(C2, this);
|
|
Ops[2].init(C3, this);
|
|
}
|
|
};
|
|
|
|
/// ShuffleVectorConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// shufflevector constant exprs.
|
|
class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
|
|
Use Ops[3];
|
|
public:
|
|
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(C1->getType(), Instruction::ShuffleVector,
|
|
Ops, 3) {
|
|
Ops[0].init(C1, this);
|
|
Ops[1].init(C2, this);
|
|
Ops[2].init(C3, this);
|
|
}
|
|
};
|
|
|
|
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
|
|
/// used behind the scenes to implement getelementpr constant exprs.
|
|
struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
|
|
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
|
|
const Type *DestTy)
|
|
: ConstantExpr(DestTy, Instruction::GetElementPtr,
|
|
new Use[IdxList.size()+1], IdxList.size()+1) {
|
|
OperandList[0].init(C, this);
|
|
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
|
|
OperandList[i+1].init(IdxList[i], this);
|
|
}
|
|
~GetElementPtrConstantExpr() {
|
|
delete [] OperandList;
|
|
}
|
|
};
|
|
|
|
// CompareConstantExpr - This class is private to Constants.cpp, and is used
|
|
// behind the scenes to implement ICmp and FCmp constant expressions. This is
|
|
// needed in order to store the predicate value for these instructions.
|
|
struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
|
|
unsigned short predicate;
|
|
Use Ops[2];
|
|
CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred,
|
|
Constant* LHS, Constant* RHS)
|
|
: ConstantExpr(Type::BoolTy, opc, Ops, 2), predicate(pred) {
|
|
OperandList[0].init(LHS, this);
|
|
OperandList[1].init(RHS, this);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
// Utility function for determining if a ConstantExpr is a CastOp or not. This
|
|
// can't be inline because we don't want to #include Instruction.h into
|
|
// Constant.h
|
|
bool ConstantExpr::isCast() const {
|
|
return Instruction::isCast(getOpcode());
|
|
}
|
|
|
|
bool ConstantExpr::isCompare() const {
|
|
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
|
|
}
|
|
|
|
/// ConstantExpr::get* - Return some common constants without having to
|
|
/// specify the full Instruction::OPCODE identifier.
|
|
///
|
|
Constant *ConstantExpr::getNeg(Constant *C) {
|
|
if (!C->getType()->isFloatingPoint())
|
|
return get(Instruction::Sub, getNullValue(C->getType()), C);
|
|
else
|
|
return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
|
|
}
|
|
Constant *ConstantExpr::getNot(Constant *C) {
|
|
assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
|
|
return get(Instruction::Xor, C,
|
|
ConstantIntegral::getAllOnesValue(C->getType()));
|
|
}
|
|
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Add, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Sub, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Mul, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
|
|
return get(Instruction::UDiv, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
|
|
return get(Instruction::SDiv, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
|
|
return get(Instruction::FDiv, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
|
|
return get(Instruction::URem, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
|
|
return get(Instruction::SRem, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
|
|
return get(Instruction::FRem, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
|
|
return get(Instruction::And, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Or, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Xor, C1, C2);
|
|
}
|
|
unsigned ConstantExpr::getPredicate() const {
|
|
assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp);
|
|
return dynamic_cast<const CompareConstantExpr*>(this)->predicate;
|
|
}
|
|
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
|
|
return get(Instruction::Shl, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
|
|
return get(Instruction::LShr, C1, C2);
|
|
}
|
|
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
|
|
return get(Instruction::AShr, C1, C2);
|
|
}
|
|
|
|
/// getWithOperandReplaced - Return a constant expression identical to this
|
|
/// one, but with the specified operand set to the specified value.
|
|
Constant *
|
|
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
|
|
assert(OpNo < getNumOperands() && "Operand num is out of range!");
|
|
assert(Op->getType() == getOperand(OpNo)->getType() &&
|
|
"Replacing operand with value of different type!");
|
|
if (getOperand(OpNo) == Op)
|
|
return const_cast<ConstantExpr*>(this);
|
|
|
|
Constant *Op0, *Op1, *Op2;
|
|
switch (getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
return ConstantExpr::getCast(getOpcode(), Op, getType());
|
|
case Instruction::Select:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getSelect(Op0, Op1, Op2);
|
|
case Instruction::InsertElement:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getInsertElement(Op0, Op1, Op2);
|
|
case Instruction::ExtractElement:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
return ConstantExpr::getExtractElement(Op0, Op1);
|
|
case Instruction::ShuffleVector:
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
Op2 = (OpNo == 2) ? Op : getOperand(2);
|
|
return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
case Instruction::GetElementPtr: {
|
|
std::vector<Constant*> Ops;
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
|
|
Ops.push_back(getOperand(i));
|
|
if (OpNo == 0)
|
|
return ConstantExpr::getGetElementPtr(Op, Ops);
|
|
Ops[OpNo-1] = Op;
|
|
return ConstantExpr::getGetElementPtr(getOperand(0), Ops);
|
|
}
|
|
default:
|
|
assert(getNumOperands() == 2 && "Must be binary operator?");
|
|
Op0 = (OpNo == 0) ? Op : getOperand(0);
|
|
Op1 = (OpNo == 1) ? Op : getOperand(1);
|
|
return ConstantExpr::get(getOpcode(), Op0, Op1);
|
|
}
|
|
}
|
|
|
|
/// getWithOperands - This returns the current constant expression with the
|
|
/// operands replaced with the specified values. The specified operands must
|
|
/// match count and type with the existing ones.
|
|
Constant *ConstantExpr::
|
|
getWithOperands(const std::vector<Constant*> &Ops) const {
|
|
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
|
|
bool AnyChange = false;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
assert(Ops[i]->getType() == getOperand(i)->getType() &&
|
|
"Operand type mismatch!");
|
|
AnyChange |= Ops[i] != getOperand(i);
|
|
}
|
|
if (!AnyChange) // No operands changed, return self.
|
|
return const_cast<ConstantExpr*>(this);
|
|
|
|
switch (getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
|
|
case Instruction::Select:
|
|
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::InsertElement:
|
|
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ExtractElement:
|
|
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
|
|
case Instruction::ShuffleVector:
|
|
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::GetElementPtr: {
|
|
std::vector<Constant*> ActualOps(Ops.begin()+1, Ops.end());
|
|
return ConstantExpr::getGetElementPtr(Ops[0], ActualOps);
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
|
|
default:
|
|
assert(getNumOperands() == 2 && "Must be binary operator?");
|
|
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// isValueValidForType implementations
|
|
|
|
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
|
|
switch (Ty->getTypeID()) {
|
|
default: return false; // These can't be represented as integers!
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return Val <= UINT8_MAX;
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID:return Val <= UINT16_MAX;
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID: return Val <= UINT32_MAX;
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return true; // always true, has to fit in largest type
|
|
}
|
|
}
|
|
|
|
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
|
|
switch (Ty->getTypeID()) {
|
|
default: return false; // These can't be represented as integers!
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return (Val >= INT8_MIN && Val <= INT8_MAX);
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID:return (Val >= INT16_MIN && Val <= UINT16_MAX);
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID: return (Val >= INT32_MIN && Val <= UINT32_MAX);
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return true; // always true, has to fit in largest type
|
|
}
|
|
}
|
|
|
|
bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
|
|
switch (Ty->getTypeID()) {
|
|
default:
|
|
return false; // These can't be represented as floating point!
|
|
|
|
// TODO: Figure out how to test if a double can be cast to a float!
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
return true; // This is the largest type...
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Factory Function Implementation
|
|
|
|
// ConstantCreator - A class that is used to create constants by
|
|
// ValueMap*. This class should be partially specialized if there is
|
|
// something strange that needs to be done to interface to the ctor for the
|
|
// constant.
|
|
//
|
|
namespace llvm {
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
struct VISIBILITY_HIDDEN ConstantCreator {
|
|
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
|
|
return new ConstantClass(Ty, V);
|
|
}
|
|
};
|
|
|
|
template<class ConstantClass, class TypeClass>
|
|
struct VISIBILITY_HIDDEN ConvertConstantType {
|
|
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
|
|
assert(0 && "This type cannot be converted!\n");
|
|
abort();
|
|
}
|
|
};
|
|
|
|
template<class ValType, class TypeClass, class ConstantClass,
|
|
bool HasLargeKey = false /*true for arrays and structs*/ >
|
|
class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
|
|
public:
|
|
typedef std::pair<const Type*, ValType> MapKey;
|
|
typedef std::map<MapKey, Constant *> MapTy;
|
|
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
|
|
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
|
|
private:
|
|
/// Map - This is the main map from the element descriptor to the Constants.
|
|
/// This is the primary way we avoid creating two of the same shape
|
|
/// constant.
|
|
MapTy Map;
|
|
|
|
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
|
/// from the constants to their element in Map. This is important for
|
|
/// removal of constants from the array, which would otherwise have to scan
|
|
/// through the map with very large keys.
|
|
InverseMapTy InverseMap;
|
|
|
|
/// AbstractTypeMap - Map for abstract type constants.
|
|
///
|
|
AbstractTypeMapTy AbstractTypeMap;
|
|
|
|
private:
|
|
void clear(std::vector<Constant *> &Constants) {
|
|
for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I)
|
|
Constants.push_back(I->second);
|
|
Map.clear();
|
|
AbstractTypeMap.clear();
|
|
InverseMap.clear();
|
|
}
|
|
|
|
public:
|
|
typename MapTy::iterator map_end() { return Map.end(); }
|
|
|
|
/// InsertOrGetItem - Return an iterator for the specified element.
|
|
/// If the element exists in the map, the returned iterator points to the
|
|
/// entry and Exists=true. If not, the iterator points to the newly
|
|
/// inserted entry and returns Exists=false. Newly inserted entries have
|
|
/// I->second == 0, and should be filled in.
|
|
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
|
|
&InsertVal,
|
|
bool &Exists) {
|
|
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
|
Exists = !IP.second;
|
|
return IP.first;
|
|
}
|
|
|
|
private:
|
|
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
|
if (HasLargeKey) {
|
|
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
|
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
|
IMI->second->second == CP &&
|
|
"InverseMap corrupt!");
|
|
return IMI->second;
|
|
}
|
|
|
|
typename MapTy::iterator I =
|
|
Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
|
|
if (I == Map.end() || I->second != CP) {
|
|
// FIXME: This should not use a linear scan. If this gets to be a
|
|
// performance problem, someone should look at this.
|
|
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
|
/* empty */;
|
|
}
|
|
return I;
|
|
}
|
|
public:
|
|
|
|
/// getOrCreate - Return the specified constant from the map, creating it if
|
|
/// necessary.
|
|
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
|
|
MapKey Lookup(Ty, V);
|
|
typename MapTy::iterator I = Map.lower_bound(Lookup);
|
|
// Is it in the map?
|
|
if (I != Map.end() && I->first == Lookup)
|
|
return static_cast<ConstantClass *>(I->second);
|
|
|
|
// If no preexisting value, create one now...
|
|
ConstantClass *Result =
|
|
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
|
|
|
/// FIXME: why does this assert fail when loading 176.gcc?
|
|
//assert(Result->getType() == Ty && "Type specified is not correct!");
|
|
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
InverseMap.insert(std::make_pair(Result, I));
|
|
|
|
// If the type of the constant is abstract, make sure that an entry exists
|
|
// for it in the AbstractTypeMap.
|
|
if (Ty->isAbstract()) {
|
|
typename AbstractTypeMapTy::iterator TI =
|
|
AbstractTypeMap.lower_bound(Ty);
|
|
|
|
if (TI == AbstractTypeMap.end() || TI->first != Ty) {
|
|
// Add ourselves to the ATU list of the type.
|
|
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
|
|
|
|
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void remove(ConstantClass *CP) {
|
|
typename MapTy::iterator I = FindExistingElement(CP);
|
|
assert(I != Map.end() && "Constant not found in constant table!");
|
|
assert(I->second == CP && "Didn't find correct element?");
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
InverseMap.erase(CP);
|
|
|
|
// Now that we found the entry, make sure this isn't the entry that
|
|
// the AbstractTypeMap points to.
|
|
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
|
|
if (Ty->isAbstract()) {
|
|
assert(AbstractTypeMap.count(Ty) &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
|
|
if (ATMEntryIt == I) {
|
|
// Yes, we are removing the representative entry for this type.
|
|
// See if there are any other entries of the same type.
|
|
typename MapTy::iterator TmpIt = ATMEntryIt;
|
|
|
|
// First check the entry before this one...
|
|
if (TmpIt != Map.begin()) {
|
|
--TmpIt;
|
|
if (TmpIt->first.first != Ty) // Not the same type, move back...
|
|
++TmpIt;
|
|
}
|
|
|
|
// If we didn't find the same type, try to move forward...
|
|
if (TmpIt == ATMEntryIt) {
|
|
++TmpIt;
|
|
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
|
|
--TmpIt; // No entry afterwards with the same type
|
|
}
|
|
|
|
// If there is another entry in the map of the same abstract type,
|
|
// update the AbstractTypeMap entry now.
|
|
if (TmpIt != ATMEntryIt) {
|
|
ATMEntryIt = TmpIt;
|
|
} else {
|
|
// Otherwise, we are removing the last instance of this type
|
|
// from the table. Remove from the ATM, and from user list.
|
|
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
|
|
AbstractTypeMap.erase(Ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
Map.erase(I);
|
|
}
|
|
|
|
|
|
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
|
/// specified by I, update our internal data structures to reflect this
|
|
/// fact.
|
|
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
|
// First, remove the old location of the specified constant in the map.
|
|
typename MapTy::iterator OldI = FindExistingElement(C);
|
|
assert(OldI != Map.end() && "Constant not found in constant table!");
|
|
assert(OldI->second == C && "Didn't find correct element?");
|
|
|
|
// If this constant is the representative element for its abstract type,
|
|
// update the AbstractTypeMap so that the representative element is I.
|
|
if (C->getType()->isAbstract()) {
|
|
typename AbstractTypeMapTy::iterator ATI =
|
|
AbstractTypeMap.find(C->getType());
|
|
assert(ATI != AbstractTypeMap.end() &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
if (ATI->second == OldI)
|
|
ATI->second = I;
|
|
}
|
|
|
|
// Remove the old entry from the map.
|
|
Map.erase(OldI);
|
|
|
|
// Update the inverse map so that we know that this constant is now
|
|
// located at descriptor I.
|
|
if (HasLargeKey) {
|
|
assert(I->second == C && "Bad inversemap entry!");
|
|
InverseMap[C] = I;
|
|
}
|
|
}
|
|
|
|
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
|
typename AbstractTypeMapTy::iterator I =
|
|
AbstractTypeMap.find(cast<Type>(OldTy));
|
|
|
|
assert(I != AbstractTypeMap.end() &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
// Convert a constant at a time until the last one is gone. The last one
|
|
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
|
|
// eliminated eventually.
|
|
do {
|
|
ConvertConstantType<ConstantClass,
|
|
TypeClass>::convert(
|
|
static_cast<ConstantClass *>(I->second->second),
|
|
cast<TypeClass>(NewTy));
|
|
|
|
I = AbstractTypeMap.find(cast<Type>(OldTy));
|
|
} while (I != AbstractTypeMap.end());
|
|
}
|
|
|
|
// If the type became concrete without being refined to any other existing
|
|
// type, we just remove ourselves from the ATU list.
|
|
void typeBecameConcrete(const DerivedType *AbsTy) {
|
|
AbsTy->removeAbstractTypeUser(this);
|
|
}
|
|
|
|
void dump() const {
|
|
DOUT << "Constant.cpp: ValueMap\n";
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
//---- ConstantBool::get*() implementation.
|
|
|
|
ConstantBool *ConstantBool::getTrue() {
|
|
static ConstantBool *T = 0;
|
|
if (T) return T;
|
|
return T = new ConstantBool(true);
|
|
}
|
|
ConstantBool *ConstantBool::getFalse() {
|
|
static ConstantBool *F = 0;
|
|
if (F) return F;
|
|
return F = new ConstantBool(false);
|
|
}
|
|
|
|
//---- ConstantInt::get() implementations...
|
|
//
|
|
static ManagedStatic<ValueMap<uint64_t, Type, ConstantInt> > IntConstants;
|
|
|
|
// Get a ConstantInt from an int64_t. Note here that we canoncialize the value
|
|
// to a uint64_t value that has been zero extended down to the size of the
|
|
// integer type of the ConstantInt. This allows the getZExtValue method to
|
|
// just return the stored value while getSExtValue has to convert back to sign
|
|
// extended. getZExtValue is more common in LLVM than getSExtValue().
|
|
ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) {
|
|
return IntConstants->getOrCreate(Ty, V & Ty->getIntegralTypeMask());
|
|
}
|
|
|
|
ConstantIntegral *ConstantIntegral::get(const Type *Ty, int64_t V) {
|
|
if (Ty == Type::BoolTy) return ConstantBool::get(V&1);
|
|
return IntConstants->getOrCreate(Ty, V & Ty->getIntegralTypeMask());
|
|
}
|
|
|
|
//---- ConstantFP::get() implementation...
|
|
//
|
|
namespace llvm {
|
|
template<>
|
|
struct ConstantCreator<ConstantFP, Type, uint64_t> {
|
|
static ConstantFP *create(const Type *Ty, uint64_t V) {
|
|
assert(Ty == Type::DoubleTy);
|
|
return new ConstantFP(Ty, BitsToDouble(V));
|
|
}
|
|
};
|
|
template<>
|
|
struct ConstantCreator<ConstantFP, Type, uint32_t> {
|
|
static ConstantFP *create(const Type *Ty, uint32_t V) {
|
|
assert(Ty == Type::FloatTy);
|
|
return new ConstantFP(Ty, BitsToFloat(V));
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<uint64_t, Type, ConstantFP> > DoubleConstants;
|
|
static ManagedStatic<ValueMap<uint32_t, Type, ConstantFP> > FloatConstants;
|
|
|
|
bool ConstantFP::isNullValue() const {
|
|
return DoubleToBits(Val) == 0;
|
|
}
|
|
|
|
bool ConstantFP::isExactlyValue(double V) const {
|
|
return DoubleToBits(V) == DoubleToBits(Val);
|
|
}
|
|
|
|
|
|
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
|
|
if (Ty == Type::FloatTy) {
|
|
// Force the value through memory to normalize it.
|
|
return FloatConstants->getOrCreate(Ty, FloatToBits(V));
|
|
} else {
|
|
assert(Ty == Type::DoubleTy);
|
|
return DoubleConstants->getOrCreate(Ty, DoubleToBits(V));
|
|
}
|
|
}
|
|
|
|
//---- ConstantAggregateZero::get() implementation...
|
|
//
|
|
namespace llvm {
|
|
// ConstantAggregateZero does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
|
|
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
|
|
return new ConstantAggregateZero(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<ConstantAggregateZero, Type> {
|
|
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
Constant *New = ConstantAggregateZero::get(NewTy);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<char, Type,
|
|
ConstantAggregateZero> > AggZeroConstants;
|
|
|
|
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
|
|
|
|
Constant *ConstantAggregateZero::get(const Type *Ty) {
|
|
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<PackedType>(Ty)) &&
|
|
"Cannot create an aggregate zero of non-aggregate type!");
|
|
return AggZeroConstants->getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantAggregateZero::destroyConstant() {
|
|
AggZeroConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
//---- ConstantArray::get() implementation...
|
|
//
|
|
namespace llvm {
|
|
template<>
|
|
struct ConvertConstantType<ConstantArray, ArrayType> {
|
|
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
Constant *New = ConstantArray::get(NewTy, C);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static std::vector<Constant*> getValType(ConstantArray *CA) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CA->getNumOperands());
|
|
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(cast<Constant>(CA->getOperand(i)));
|
|
return Elements;
|
|
}
|
|
|
|
typedef ValueMap<std::vector<Constant*>, ArrayType,
|
|
ConstantArray, true /*largekey*/> ArrayConstantsTy;
|
|
static ManagedStatic<ArrayConstantsTy> ArrayConstants;
|
|
|
|
Constant *ConstantArray::get(const ArrayType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
// If this is an all-zero array, return a ConstantAggregateZero object
|
|
if (!V.empty()) {
|
|
Constant *C = V[0];
|
|
if (!C->isNullValue())
|
|
return ArrayConstants->getOrCreate(Ty, V);
|
|
for (unsigned i = 1, e = V.size(); i != e; ++i)
|
|
if (V[i] != C)
|
|
return ArrayConstants->getOrCreate(Ty, V);
|
|
}
|
|
return ConstantAggregateZero::get(Ty);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantArray::destroyConstant() {
|
|
ArrayConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
/// ConstantArray::get(const string&) - Return an array that is initialized to
|
|
/// contain the specified string. If length is zero then a null terminator is
|
|
/// added to the specified string so that it may be used in a natural way.
|
|
/// Otherwise, the length parameter specifies how much of the string to use
|
|
/// and it won't be null terminated.
|
|
///
|
|
Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
|
|
std::vector<Constant*> ElementVals;
|
|
for (unsigned i = 0; i < Str.length(); ++i)
|
|
ElementVals.push_back(ConstantInt::get(Type::SByteTy, Str[i]));
|
|
|
|
// Add a null terminator to the string...
|
|
if (AddNull) {
|
|
ElementVals.push_back(ConstantInt::get(Type::SByteTy, 0));
|
|
}
|
|
|
|
ArrayType *ATy = ArrayType::get(Type::SByteTy, ElementVals.size());
|
|
return ConstantArray::get(ATy, ElementVals);
|
|
}
|
|
|
|
/// isString - This method returns true if the array is an array of sbyte or
|
|
/// ubyte, and if the elements of the array are all ConstantInt's.
|
|
bool ConstantArray::isString() const {
|
|
// Check the element type for sbyte or ubyte...
|
|
if (getType()->getElementType() != Type::UByteTy &&
|
|
getType()->getElementType() != Type::SByteTy)
|
|
return false;
|
|
// Check the elements to make sure they are all integers, not constant
|
|
// expressions.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isCString - This method returns true if the array is a string (see
|
|
/// isString) and it ends in a null byte \0 and does not contains any other
|
|
/// null bytes except its terminator.
|
|
bool ConstantArray::isCString() const {
|
|
// Check the element type for sbyte or ubyte...
|
|
if (getType()->getElementType() != Type::UByteTy &&
|
|
getType()->getElementType() != Type::SByteTy)
|
|
return false;
|
|
Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
|
|
// Last element must be a null.
|
|
if (getOperand(getNumOperands()-1) != Zero)
|
|
return false;
|
|
// Other elements must be non-null integers.
|
|
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
|
|
if (!isa<ConstantInt>(getOperand(i)))
|
|
return false;
|
|
if (getOperand(i) == Zero)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// getAsString - If the sub-element type of this array is either sbyte or ubyte,
|
|
// then this method converts the array to an std::string and returns it.
|
|
// Otherwise, it asserts out.
|
|
//
|
|
std::string ConstantArray::getAsString() const {
|
|
assert(isString() && "Not a string!");
|
|
std::string Result;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
Result += (char)cast<ConstantInt>(getOperand(i))->getZExtValue();
|
|
return Result;
|
|
}
|
|
|
|
|
|
//---- ConstantStruct::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct ConvertConstantType<ConstantStruct, StructType> {
|
|
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
Constant *New = ConstantStruct::get(NewTy, C);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
typedef ValueMap<std::vector<Constant*>, StructType,
|
|
ConstantStruct, true /*largekey*/> StructConstantsTy;
|
|
static ManagedStatic<StructConstantsTy> StructConstants;
|
|
|
|
static std::vector<Constant*> getValType(ConstantStruct *CS) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CS->getNumOperands());
|
|
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(cast<Constant>(CS->getOperand(i)));
|
|
return Elements;
|
|
}
|
|
|
|
Constant *ConstantStruct::get(const StructType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
// Create a ConstantAggregateZero value if all elements are zeros...
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i)
|
|
if (!V[i]->isNullValue())
|
|
return StructConstants->getOrCreate(Ty, V);
|
|
|
|
return ConstantAggregateZero::get(Ty);
|
|
}
|
|
|
|
Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
|
|
std::vector<const Type*> StructEls;
|
|
StructEls.reserve(V.size());
|
|
for (unsigned i = 0, e = V.size(); i != e; ++i)
|
|
StructEls.push_back(V[i]->getType());
|
|
return get(StructType::get(StructEls, packed), V);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantStruct::destroyConstant() {
|
|
StructConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
//---- ConstantPacked::get() implementation...
|
|
//
|
|
namespace llvm {
|
|
template<>
|
|
struct ConvertConstantType<ConstantPacked, PackedType> {
|
|
static void convert(ConstantPacked *OldC, const PackedType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Constant*> C;
|
|
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
|
|
C.push_back(cast<Constant>(OldC->getOperand(i)));
|
|
Constant *New = ConstantPacked::get(NewTy, C);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static std::vector<Constant*> getValType(ConstantPacked *CP) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CP->getNumOperands());
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(CP->getOperand(i));
|
|
return Elements;
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<std::vector<Constant*>, PackedType,
|
|
ConstantPacked> > PackedConstants;
|
|
|
|
Constant *ConstantPacked::get(const PackedType *Ty,
|
|
const std::vector<Constant*> &V) {
|
|
// If this is an all-zero packed, return a ConstantAggregateZero object
|
|
if (!V.empty()) {
|
|
Constant *C = V[0];
|
|
if (!C->isNullValue())
|
|
return PackedConstants->getOrCreate(Ty, V);
|
|
for (unsigned i = 1, e = V.size(); i != e; ++i)
|
|
if (V[i] != C)
|
|
return PackedConstants->getOrCreate(Ty, V);
|
|
}
|
|
return ConstantAggregateZero::get(Ty);
|
|
}
|
|
|
|
Constant *ConstantPacked::get(const std::vector<Constant*> &V) {
|
|
assert(!V.empty() && "Cannot infer type if V is empty");
|
|
return get(PackedType::get(V.front()->getType(),V.size()), V);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantPacked::destroyConstant() {
|
|
PackedConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
//---- ConstantPointerNull::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
// ConstantPointerNull does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
|
|
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
|
|
return new ConstantPointerNull(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<ConstantPointerNull, PointerType> {
|
|
static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
|
|
// Make everyone now use a constant of the new type...
|
|
Constant *New = ConstantPointerNull::get(NewTy);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<char, PointerType,
|
|
ConstantPointerNull> > NullPtrConstants;
|
|
|
|
static char getValType(ConstantPointerNull *) {
|
|
return 0;
|
|
}
|
|
|
|
|
|
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
|
|
return NullPtrConstants->getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantPointerNull::destroyConstant() {
|
|
NullPtrConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
|
|
//---- UndefValue::get() implementation...
|
|
//
|
|
|
|
namespace llvm {
|
|
// UndefValue does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<UndefValue, Type, ValType> {
|
|
static UndefValue *create(const Type *Ty, const ValType &V) {
|
|
return new UndefValue(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<UndefValue, Type> {
|
|
static void convert(UndefValue *OldC, const Type *NewTy) {
|
|
// Make everyone now use a constant of the new type.
|
|
Constant *New = UndefValue::get(NewTy);
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
|
|
|
|
static char getValType(UndefValue *) {
|
|
return 0;
|
|
}
|
|
|
|
|
|
UndefValue *UndefValue::get(const Type *Ty) {
|
|
return UndefValueConstants->getOrCreate(Ty, 0);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table.
|
|
//
|
|
void UndefValue::destroyConstant() {
|
|
UndefValueConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
|
|
//---- ConstantExpr::get() implementations...
|
|
//
|
|
struct ExprMapKeyType {
|
|
explicit ExprMapKeyType(unsigned opc, std::vector<Constant*> ops,
|
|
unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { }
|
|
uint16_t opcode;
|
|
uint16_t predicate;
|
|
std::vector<Constant*> operands;
|
|
bool operator==(const ExprMapKeyType& that) const {
|
|
return this->opcode == that.opcode &&
|
|
this->predicate == that.predicate &&
|
|
this->operands == that.operands;
|
|
}
|
|
bool operator<(const ExprMapKeyType & that) const {
|
|
return this->opcode < that.opcode ||
|
|
(this->opcode == that.opcode && this->predicate < that.predicate) ||
|
|
(this->opcode == that.opcode && this->predicate == that.predicate &&
|
|
this->operands < that.operands);
|
|
}
|
|
|
|
bool operator!=(const ExprMapKeyType& that) const {
|
|
return !(*this == that);
|
|
}
|
|
};
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
|
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
|
|
unsigned short pred = 0) {
|
|
if (Instruction::isCast(V.opcode))
|
|
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
|
|
if ((V.opcode >= Instruction::BinaryOpsBegin &&
|
|
V.opcode < Instruction::BinaryOpsEnd) ||
|
|
V.opcode == Instruction::Shl ||
|
|
V.opcode == Instruction::LShr ||
|
|
V.opcode == Instruction::AShr)
|
|
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
|
|
if (V.opcode == Instruction::Select)
|
|
return new SelectConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::ExtractElement)
|
|
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
|
|
if (V.opcode == Instruction::InsertElement)
|
|
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::ShuffleVector)
|
|
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::GetElementPtr) {
|
|
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
|
|
return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty);
|
|
}
|
|
|
|
// The compare instructions are weird. We have to encode the predicate
|
|
// value and it is combined with the instruction opcode by multiplying
|
|
// the opcode by one hundred. We must decode this to get the predicate.
|
|
if (V.opcode == Instruction::ICmp)
|
|
return new CompareConstantExpr(Instruction::ICmp, V.predicate,
|
|
V.operands[0], V.operands[1]);
|
|
if (V.opcode == Instruction::FCmp)
|
|
return new CompareConstantExpr(Instruction::FCmp, V.predicate,
|
|
V.operands[0], V.operands[1]);
|
|
assert(0 && "Invalid ConstantExpr!");
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConvertConstantType<ConstantExpr, Type> {
|
|
static void convert(ConstantExpr *OldC, const Type *NewTy) {
|
|
Constant *New;
|
|
switch (OldC->getOpcode()) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
|
|
NewTy);
|
|
break;
|
|
case Instruction::Select:
|
|
New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
|
|
OldC->getOperand(1),
|
|
OldC->getOperand(2));
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
|
|
OldC->getOperand(0), OldC->getOperand(1));
|
|
break;
|
|
default:
|
|
assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
|
|
OldC->getOpcode() < Instruction::BinaryOpsEnd);
|
|
New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
|
|
OldC->getOperand(1));
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
// Make everyone now use a constant of the new type...
|
|
std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
|
|
New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx);
|
|
break;
|
|
}
|
|
|
|
assert(New != OldC && "Didn't replace constant??");
|
|
OldC->uncheckedReplaceAllUsesWith(New);
|
|
OldC->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
|
|
static ExprMapKeyType getValType(ConstantExpr *CE) {
|
|
std::vector<Constant*> Operands;
|
|
Operands.reserve(CE->getNumOperands());
|
|
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
|
|
Operands.push_back(cast<Constant>(CE->getOperand(i)));
|
|
return ExprMapKeyType(CE->getOpcode(), Operands,
|
|
CE->isCompare() ? CE->getPredicate() : 0);
|
|
}
|
|
|
|
static ManagedStatic<ValueMap<ExprMapKeyType, Type,
|
|
ConstantExpr> > ExprConstants;
|
|
|
|
/// This is a utility function to handle folding of casts and lookup of the
|
|
/// cast in the ExprConstants map. It is usedby the various get* methods below.
|
|
static inline Constant *getFoldedCast(
|
|
Instruction::CastOps opc, Constant *C, const Type *Ty) {
|
|
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
|
|
// Fold a few common cases
|
|
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
|
|
return FC;
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C);
|
|
ExprMapKeyType Key(opc, argVec);
|
|
return ExprConstants->getOrCreate(Ty, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
|
|
Instruction::CastOps opc = Instruction::CastOps(oc);
|
|
assert(Instruction::isCast(opc) && "opcode out of range");
|
|
assert(C && Ty && "Null arguments to getCast");
|
|
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
|
|
|
|
switch (opc) {
|
|
default:
|
|
assert(0 && "Invalid cast opcode");
|
|
break;
|
|
case Instruction::Trunc: return getTrunc(C, Ty);
|
|
case Instruction::ZExt: return getZExt(C, Ty);
|
|
case Instruction::SExt: return getSExt(C, Ty);
|
|
case Instruction::FPTrunc: return getFPTrunc(C, Ty);
|
|
case Instruction::FPExt: return getFPExtend(C, Ty);
|
|
case Instruction::UIToFP: return getUIToFP(C, Ty);
|
|
case Instruction::SIToFP: return getSIToFP(C, Ty);
|
|
case Instruction::FPToUI: return getFPToUI(C, Ty);
|
|
case Instruction::FPToSI: return getFPToSI(C, Ty);
|
|
case Instruction::PtrToInt: return getPtrToInt(C, Ty);
|
|
case Instruction::IntToPtr: return getIntToPtr(C, Ty);
|
|
case Instruction::BitCast: return getBitCast(C, Ty);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::ZExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::SExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
|
|
if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
|
|
return getCast(Instruction::BitCast, C, Ty);
|
|
return getCast(Instruction::Trunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
|
|
assert(isa<PointerType>(S->getType()) && "Invalid cast");
|
|
assert((Ty->isIntegral() || Ty->getTypeID() == Type::PointerTyID) &&
|
|
"Invalid cast");
|
|
|
|
if (Ty->isIntegral())
|
|
return getCast(Instruction::PtrToInt, S, Ty);
|
|
return getCast(Instruction::BitCast, S, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
|
|
bool isSigned) {
|
|
assert(C->getType()->isIntegral() && Ty->isIntegral() && "Invalid cast");
|
|
unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
|
|
unsigned DstBits = Ty->getPrimitiveSizeInBits();
|
|
Instruction::CastOps opcode =
|
|
(SrcBits == DstBits ? Instruction::BitCast :
|
|
(SrcBits > DstBits ? Instruction::Trunc :
|
|
(isSigned ? Instruction::SExt : Instruction::ZExt)));
|
|
return getCast(opcode, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
|
|
"Invalid cast");
|
|
unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
|
|
unsigned DstBits = Ty->getPrimitiveSizeInBits();
|
|
if (SrcBits == DstBits)
|
|
return C; // Avoid a useless cast
|
|
Instruction::CastOps opcode =
|
|
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
|
|
return getCast(opcode, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isInteger() && "Trunc operand must be integer");
|
|
assert(Ty->isIntegral() && "Trunc produces only integral");
|
|
assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
|
|
"SrcTy must be larger than DestTy for Trunc!");
|
|
|
|
return getFoldedCast(Instruction::Trunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isIntegral() && "SEXt operand must be integral");
|
|
assert(Ty->isInteger() && "SExt produces only integer");
|
|
assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
|
|
"SrcTy must be smaller than DestTy for SExt!");
|
|
|
|
return getFoldedCast(Instruction::SExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isIntegral() && "ZEXt operand must be integral");
|
|
assert(Ty->isInteger() && "ZExt produces only integer");
|
|
assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
|
|
"SrcTy must be smaller than DestTy for ZExt!");
|
|
|
|
return getFoldedCast(Instruction::ZExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
|
|
C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
|
|
"This is an illegal floating point truncation!");
|
|
return getFoldedCast(Instruction::FPTrunc, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
|
|
C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
|
|
"This is an illegal floating point extension!");
|
|
return getFoldedCast(Instruction::FPExt, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
|
|
"This is an illegal uint to floating point cast!");
|
|
return getFoldedCast(Instruction::UIToFP, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
|
|
"This is an illegal sint to floating point cast!");
|
|
return getFoldedCast(Instruction::SIToFP, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
|
|
"This is an illegal floating point to uint cast!");
|
|
return getFoldedCast(Instruction::FPToUI, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
|
|
assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
|
|
"This is an illegal floating point to sint cast!");
|
|
return getFoldedCast(Instruction::FPToSI, C, Ty);
|
|
}
|
|
|
|
Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
|
|
assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
|
|
assert(DstTy->isIntegral() && "PtrToInt destination must be integral");
|
|
return getFoldedCast(Instruction::PtrToInt, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
|
|
assert(C->getType()->isIntegral() && "IntToPtr source must be integral");
|
|
assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
|
|
return getFoldedCast(Instruction::IntToPtr, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
|
|
// BitCast implies a no-op cast of type only. No bits change. However, you
|
|
// can't cast pointers to anything but pointers.
|
|
const Type *SrcTy = C->getType();
|
|
assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
|
|
"BitCast cannot cast pointer to non-pointer and vice versa");
|
|
|
|
// Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
|
|
// or nonptr->ptr). For all the other types, the cast is okay if source and
|
|
// destination bit widths are identical.
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
|
|
assert(SrcBitSize == DstBitSize && "BitCast requies types of same width");
|
|
return getFoldedCast(Instruction::BitCast, C, DstTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSizeOf(const Type *Ty) {
|
|
// sizeof is implemented as: (ulong) gep (Ty*)null, 1
|
|
return getCast(Instruction::PtrToInt, getGetElementPtr(getNullValue(
|
|
PointerType::get(Ty)), std::vector<Constant*>(1,
|
|
ConstantInt::get(Type::UIntTy, 1))), Type::ULongTy);
|
|
}
|
|
|
|
Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) {
|
|
// pointer from array is implemented as: getelementptr arr ptr, 0, 0
|
|
static std::vector<Constant*> Indices(2, ConstantInt::get(Type::UIntTy, 0));
|
|
|
|
return ConstantExpr::getGetElementPtr(C, Indices);
|
|
}
|
|
|
|
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
|
|
Constant *C1, Constant *C2) {
|
|
if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
|
|
Opcode == Instruction::AShr)
|
|
return getShiftTy(ReqTy, Opcode, C1, C2);
|
|
|
|
// Check the operands for consistency first
|
|
assert(Opcode >= Instruction::BinaryOpsBegin &&
|
|
Opcode < Instruction::BinaryOpsEnd &&
|
|
"Invalid opcode in binary constant expression");
|
|
assert(C1->getType() == C2->getType() &&
|
|
"Operand types in binary constant expression should match");
|
|
|
|
if (ReqTy == C1->getType() || ReqTy == Type::BoolTy)
|
|
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
|
|
return FC; // Fold a few common cases...
|
|
|
|
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
|
|
ExprMapKeyType Key(Opcode, argVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
|
|
Constant *C1, Constant *C2) {
|
|
switch (predicate) {
|
|
default: assert(0 && "Invalid CmpInst predicate");
|
|
case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT:
|
|
case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE:
|
|
case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO:
|
|
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE:
|
|
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE:
|
|
case FCmpInst::FCMP_TRUE:
|
|
return getFCmp(predicate, C1, C2);
|
|
case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT:
|
|
case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE:
|
|
case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT:
|
|
case ICmpInst::ICMP_SLE:
|
|
return getICmp(predicate, C1, C2);
|
|
}
|
|
}
|
|
|
|
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
|
|
#ifndef NDEBUG
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
|
|
isa<PackedType>(C1->getType())) &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isInteger() || (isa<PackedType>(C1->getType()) &&
|
|
cast<PackedType>(C1->getType())->getElementType()->isInteger())) &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::FDiv:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isFloatingPoint() || (isa<PackedType>(C1->getType())
|
|
&& cast<PackedType>(C1->getType())->getElementType()->isFloatingPoint()))
|
|
&& "Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isInteger() || (isa<PackedType>(C1->getType()) &&
|
|
cast<PackedType>(C1->getType())->getElementType()->isInteger())) &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::FRem:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isFloatingPoint() || (isa<PackedType>(C1->getType())
|
|
&& cast<PackedType>(C1->getType())->getElementType()->isFloatingPoint()))
|
|
&& "Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
assert((C1->getType()->isIntegral() || isa<PackedType>(C1->getType())) &&
|
|
"Tried to create a logical operation on a non-integral type!");
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!");
|
|
assert(C1->getType()->isInteger() &&
|
|
"Tried to create a shift operation on a non-integer type!");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
return getTy(C1->getType(), Opcode, C1, C2);
|
|
}
|
|
|
|
Constant *ConstantExpr::getCompare(unsigned short pred,
|
|
Constant *C1, Constant *C2) {
|
|
assert(C1->getType() == C2->getType() && "Op types should be identical!");
|
|
return getCompareTy(pred, C1, C2);
|
|
}
|
|
|
|
Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
|
|
Constant *V1, Constant *V2) {
|
|
assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
|
|
assert(V1->getType() == V2->getType() && "Select value types must match!");
|
|
assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
|
|
|
|
if (ReqTy == V1->getType())
|
|
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
|
|
return SC; // Fold common cases
|
|
|
|
std::vector<Constant*> argVec(3, C);
|
|
argVec[1] = V1;
|
|
argVec[2] = V2;
|
|
ExprMapKeyType Key(Instruction::Select, argVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
/// getShiftTy - Return a shift left or shift right constant expr
|
|
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
|
|
Constant *C1, Constant *C2) {
|
|
// Check the operands for consistency first
|
|
assert((Opcode == Instruction::Shl ||
|
|
Opcode == Instruction::LShr ||
|
|
Opcode == Instruction::AShr) &&
|
|
"Invalid opcode in binary constant expression");
|
|
assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
|
|
"Invalid operand types for Shift constant expr!");
|
|
|
|
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
|
|
ExprMapKeyType Key(Opcode, argVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
|
|
const std::vector<Value*> &IdxList) {
|
|
assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) &&
|
|
"GEP indices invalid!");
|
|
|
|
if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
|
|
return FC; // Fold a few common cases...
|
|
|
|
assert(isa<PointerType>(C->getType()) &&
|
|
"Non-pointer type for constant GetElementPtr expression");
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.reserve(IdxList.size()+1);
|
|
ArgVec.push_back(C);
|
|
for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
|
|
ArgVec.push_back(cast<Constant>(IdxList[i]));
|
|
const ExprMapKeyType Key(Instruction::GetElementPtr,ArgVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtr(Constant *C,
|
|
const std::vector<Constant*> &IdxList){
|
|
// Get the result type of the getelementptr!
|
|
std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
|
|
|
|
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
|
|
true);
|
|
assert(Ty && "GEP indices invalid!");
|
|
return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList);
|
|
}
|
|
|
|
Constant *ConstantExpr::getGetElementPtr(Constant *C,
|
|
const std::vector<Value*> &IdxList) {
|
|
// Get the result type of the getelementptr!
|
|
const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
|
|
true);
|
|
assert(Ty && "GEP indices invalid!");
|
|
return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
|
|
}
|
|
|
|
Constant *
|
|
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
|
|
assert(LHS->getType() == RHS->getType());
|
|
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
|
|
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
|
|
|
|
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.push_back(LHS);
|
|
ArgVec.push_back(RHS);
|
|
// Get the key type with both the opcode and predicate
|
|
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
|
|
return ExprConstants->getOrCreate(Type::BoolTy, Key);
|
|
}
|
|
|
|
Constant *
|
|
ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
|
|
assert(LHS->getType() == RHS->getType());
|
|
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
|
|
|
|
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
|
|
return FC; // Fold a few common cases...
|
|
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec;
|
|
ArgVec.push_back(LHS);
|
|
ArgVec.push_back(RHS);
|
|
// Get the key type with both the opcode and predicate
|
|
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
|
|
return ExprConstants->getOrCreate(Type::BoolTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
|
|
Constant *Idx) {
|
|
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, Val);
|
|
ArgVec.push_back(Idx);
|
|
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
|
|
assert(isa<PackedType>(Val->getType()) &&
|
|
"Tried to create extractelement operation on non-packed type!");
|
|
assert(Idx->getType() == Type::UIntTy &&
|
|
"Extractelement index must be uint type!");
|
|
return getExtractElementTy(cast<PackedType>(Val->getType())->getElementType(),
|
|
Val, Idx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
|
|
Constant *Elt, Constant *Idx) {
|
|
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, Val);
|
|
ArgVec.push_back(Elt);
|
|
ArgVec.push_back(Idx);
|
|
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
|
|
Constant *Idx) {
|
|
assert(isa<PackedType>(Val->getType()) &&
|
|
"Tried to create insertelement operation on non-packed type!");
|
|
assert(Elt->getType() == cast<PackedType>(Val->getType())->getElementType()
|
|
&& "Insertelement types must match!");
|
|
assert(Idx->getType() == Type::UIntTy &&
|
|
"Insertelement index must be uint type!");
|
|
return getInsertElementTy(cast<PackedType>(Val->getType())->getElementType(),
|
|
Val, Elt, Idx);
|
|
}
|
|
|
|
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
|
|
Constant *V2, Constant *Mask) {
|
|
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
|
|
return FC; // Fold a few common cases...
|
|
// Look up the constant in the table first to ensure uniqueness
|
|
std::vector<Constant*> ArgVec(1, V1);
|
|
ArgVec.push_back(V2);
|
|
ArgVec.push_back(Mask);
|
|
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
|
|
return ExprConstants->getOrCreate(ReqTy, Key);
|
|
}
|
|
|
|
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
|
|
Constant *Mask) {
|
|
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector constant expr operands!");
|
|
return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
|
|
}
|
|
|
|
// destroyConstant - Remove the constant from the constant table...
|
|
//
|
|
void ConstantExpr::destroyConstant() {
|
|
ExprConstants->remove(this);
|
|
destroyConstantImpl();
|
|
}
|
|
|
|
const char *ConstantExpr::getOpcodeName() const {
|
|
return Instruction::getOpcodeName(getOpcode());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// replaceUsesOfWithOnConstant implementations
|
|
|
|
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
Constant *ToC = cast<Constant>(To);
|
|
|
|
unsigned OperandToUpdate = U-OperandList;
|
|
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
|
|
|
|
std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
|
|
Lookup.first.first = getType();
|
|
Lookup.second = this;
|
|
|
|
std::vector<Constant*> &Values = Lookup.first.second;
|
|
Values.reserve(getNumOperands()); // Build replacement array.
|
|
|
|
// Fill values with the modified operands of the constant array. Also,
|
|
// compute whether this turns into an all-zeros array.
|
|
bool isAllZeros = false;
|
|
if (!ToC->isNullValue()) {
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
|
|
Values.push_back(cast<Constant>(O->get()));
|
|
} else {
|
|
isAllZeros = true;
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
|
|
Constant *Val = cast<Constant>(O->get());
|
|
Values.push_back(Val);
|
|
if (isAllZeros) isAllZeros = Val->isNullValue();
|
|
}
|
|
}
|
|
Values[OperandToUpdate] = ToC;
|
|
|
|
Constant *Replacement = 0;
|
|
if (isAllZeros) {
|
|
Replacement = ConstantAggregateZero::get(getType());
|
|
} else {
|
|
// Check to see if we have this array type already.
|
|
bool Exists;
|
|
ArrayConstantsTy::MapTy::iterator I =
|
|
ArrayConstants->InsertOrGetItem(Lookup, Exists);
|
|
|
|
if (Exists) {
|
|
Replacement = I->second;
|
|
} else {
|
|
// Okay, the new shape doesn't exist in the system yet. Instead of
|
|
// creating a new constant array, inserting it, replaceallusesof'ing the
|
|
// old with the new, then deleting the old... just update the current one
|
|
// in place!
|
|
ArrayConstants->MoveConstantToNewSlot(this, I);
|
|
|
|
// Update to the new value.
|
|
setOperand(OperandToUpdate, ToC);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, I do need to replace this with an existing value.
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
Constant *ToC = cast<Constant>(To);
|
|
|
|
unsigned OperandToUpdate = U-OperandList;
|
|
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
|
|
|
|
std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
|
|
Lookup.first.first = getType();
|
|
Lookup.second = this;
|
|
std::vector<Constant*> &Values = Lookup.first.second;
|
|
Values.reserve(getNumOperands()); // Build replacement struct.
|
|
|
|
|
|
// Fill values with the modified operands of the constant struct. Also,
|
|
// compute whether this turns into an all-zeros struct.
|
|
bool isAllZeros = false;
|
|
if (!ToC->isNullValue()) {
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
|
|
Values.push_back(cast<Constant>(O->get()));
|
|
} else {
|
|
isAllZeros = true;
|
|
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
|
|
Constant *Val = cast<Constant>(O->get());
|
|
Values.push_back(Val);
|
|
if (isAllZeros) isAllZeros = Val->isNullValue();
|
|
}
|
|
}
|
|
Values[OperandToUpdate] = ToC;
|
|
|
|
Constant *Replacement = 0;
|
|
if (isAllZeros) {
|
|
Replacement = ConstantAggregateZero::get(getType());
|
|
} else {
|
|
// Check to see if we have this array type already.
|
|
bool Exists;
|
|
StructConstantsTy::MapTy::iterator I =
|
|
StructConstants->InsertOrGetItem(Lookup, Exists);
|
|
|
|
if (Exists) {
|
|
Replacement = I->second;
|
|
} else {
|
|
// Okay, the new shape doesn't exist in the system yet. Instead of
|
|
// creating a new constant struct, inserting it, replaceallusesof'ing the
|
|
// old with the new, then deleting the old... just update the current one
|
|
// in place!
|
|
StructConstants->MoveConstantToNewSlot(this, I);
|
|
|
|
// Update to the new value.
|
|
setOperand(OperandToUpdate, ToC);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|
Use *U) {
|
|
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
|
|
|
std::vector<Constant*> Values;
|
|
Values.reserve(getNumOperands()); // Build replacement array...
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
Constant *Val = getOperand(i);
|
|
if (Val == From) Val = cast<Constant>(To);
|
|
Values.push_back(Val);
|
|
}
|
|
|
|
Constant *Replacement = ConstantPacked::get(getType(), Values);
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
|
Use *U) {
|
|
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
|
|
Constant *To = cast<Constant>(ToV);
|
|
|
|
Constant *Replacement = 0;
|
|
if (getOpcode() == Instruction::GetElementPtr) {
|
|
std::vector<Constant*> Indices;
|
|
Constant *Pointer = getOperand(0);
|
|
Indices.reserve(getNumOperands()-1);
|
|
if (Pointer == From) Pointer = To;
|
|
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
Constant *Val = getOperand(i);
|
|
if (Val == From) Val = To;
|
|
Indices.push_back(Val);
|
|
}
|
|
Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
|
|
} else if (isCast()) {
|
|
assert(getOperand(0) == From && "Cast only has one use!");
|
|
Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
|
|
} else if (getOpcode() == Instruction::Select) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(2);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getSelect(C1, C2, C3);
|
|
} else if (getOpcode() == Instruction::ExtractElement) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::getExtractElement(C1, C2);
|
|
} else if (getOpcode() == Instruction::InsertElement) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
|
|
} else if (getOpcode() == Instruction::ShuffleVector) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
Constant *C3 = getOperand(2);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (C3 == From) C3 = To;
|
|
Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
|
|
} else if (isCompare()) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
if (getOpcode() == Instruction::ICmp)
|
|
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
|
|
else
|
|
Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
|
|
} else if (getNumOperands() == 2) {
|
|
Constant *C1 = getOperand(0);
|
|
Constant *C2 = getOperand(1);
|
|
if (C1 == From) C1 = To;
|
|
if (C2 == From) C2 = To;
|
|
Replacement = ConstantExpr::get(getOpcode(), C1, C2);
|
|
} else {
|
|
assert(0 && "Unknown ConstantExpr type!");
|
|
return;
|
|
}
|
|
|
|
assert(Replacement != this && "I didn't contain From!");
|
|
|
|
// Everyone using this now uses the replacement.
|
|
uncheckedReplaceAllUsesWith(Replacement);
|
|
|
|
// Delete the old constant!
|
|
destroyConstant();
|
|
}
|
|
|
|
|
|
/// getStringValue - Turn an LLVM constant pointer that eventually points to a
|
|
/// global into a string value. Return an empty string if we can't do it.
|
|
/// Parameter Chop determines if the result is chopped at the first null
|
|
/// terminator.
|
|
///
|
|
std::string Constant::getStringValue(bool Chop, unsigned Offset) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
|
|
if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
|
|
ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
|
|
if (Init->isString()) {
|
|
std::string Result = Init->getAsString();
|
|
if (Offset < Result.size()) {
|
|
// If we are pointing INTO The string, erase the beginning...
|
|
Result.erase(Result.begin(), Result.begin()+Offset);
|
|
|
|
// Take off the null terminator, and any string fragments after it.
|
|
if (Chop) {
|
|
std::string::size_type NullPos = Result.find_first_of((char)0);
|
|
if (NullPos != std::string::npos)
|
|
Result.erase(Result.begin()+NullPos, Result.end());
|
|
}
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
} else if (Constant *C = dyn_cast<Constant>(this)) {
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
|
return GV->getStringValue(Chop, Offset);
|
|
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// Turn a gep into the specified offset.
|
|
if (CE->getNumOperands() == 3 &&
|
|
cast<Constant>(CE->getOperand(1))->isNullValue() &&
|
|
isa<ConstantInt>(CE->getOperand(2))) {
|
|
Offset += cast<ConstantInt>(CE->getOperand(2))->getZExtValue();
|
|
return CE->getOperand(0)->getStringValue(Chop, Offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return "";
|
|
}
|