mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
dec628eead
as its main datastructure. There are many improvements yet to be made, but this speeds up opt --std-compile-opts on 447.dealII by 7.3%. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34193 91177308-0d34-0410-b5e6-96231b3b80d8
375 lines
14 KiB
C++
375 lines
14 KiB
C++
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a useful analysis step to figure out what numbered slots
|
|
// values in a program will land in (keeping track of per plane information).
|
|
//
|
|
// This is used when writing a file to disk, either in bytecode or assembly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SlotCalculator.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/TypeSymbolTable.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
using namespace llvm;
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false),
|
|
cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
|
|
#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
|
|
#else
|
|
#define SC_DEBUG(X)
|
|
#endif
|
|
|
|
void SlotCalculator::insertPrimitives() {
|
|
// Preload the table with the built-in types. These built-in types are
|
|
// inserted first to ensure that they have low integer indices which helps to
|
|
// keep bytecode sizes small. Note that the first group of indices must match
|
|
// the Type::TypeIDs for the primitive types. After that the integer types are
|
|
// added, but the order and value is not critical. What is critical is that
|
|
// the indices of these "well known" slot numbers be properly maintained in
|
|
// Reader.h which uses them directly to extract values of these types.
|
|
SC_DEBUG("Inserting primitive types:\n");
|
|
// See WellKnownTypeSlots in Reader.h
|
|
getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot
|
|
getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
|
|
getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
|
|
getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
|
|
assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
|
|
// Above here *must* correspond 1:1 with the primitive types.
|
|
getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot
|
|
getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot
|
|
getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
|
|
getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
|
|
getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
|
|
}
|
|
|
|
SlotCalculator::SlotCalculator(const Module *M) {
|
|
assert(M);
|
|
TheModule = M;
|
|
|
|
insertPrimitives();
|
|
processModule();
|
|
}
|
|
|
|
// processModule - Process all of the module level function declarations and
|
|
// types that are available.
|
|
//
|
|
void SlotCalculator::processModule() {
|
|
SC_DEBUG("begin processModule!\n");
|
|
|
|
// Add all of the global variables to the value table...
|
|
//
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I)
|
|
CreateSlotIfNeeded(I);
|
|
|
|
// Scavenge the types out of the functions, then add the functions themselves
|
|
// to the value table...
|
|
//
|
|
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
|
|
I != E; ++I)
|
|
CreateSlotIfNeeded(I);
|
|
|
|
// Add all of the module level constants used as initializers
|
|
//
|
|
for (Module::const_global_iterator I = TheModule->global_begin(),
|
|
E = TheModule->global_end(); I != E; ++I)
|
|
if (I->hasInitializer())
|
|
CreateSlotIfNeeded(I->getInitializer());
|
|
|
|
// Now that all global constants have been added, rearrange constant planes
|
|
// that contain constant strings so that the strings occur at the start of the
|
|
// plane, not somewhere in the middle.
|
|
//
|
|
for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
|
|
if (AT->getElementType() == Type::Int8Ty) {
|
|
TypePlane &Plane = Table[plane];
|
|
unsigned FirstNonStringID = 0;
|
|
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
|
|
if (isa<ConstantAggregateZero>(Plane[i]) ||
|
|
(isa<ConstantArray>(Plane[i]) &&
|
|
cast<ConstantArray>(Plane[i])->isString())) {
|
|
// Check to see if we have to shuffle this string around. If not,
|
|
// don't do anything.
|
|
if (i != FirstNonStringID) {
|
|
// Swap the plane entries....
|
|
std::swap(Plane[i], Plane[FirstNonStringID]);
|
|
|
|
// Keep the NodeMap up to date.
|
|
NodeMap[Plane[i]] = i;
|
|
NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
|
|
}
|
|
++FirstNonStringID;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan all of the functions for their constants, which allows us to emit
|
|
// more compact modules.
|
|
SC_DEBUG("Inserting function constants:\n");
|
|
for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
|
|
F != E; ++F) {
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
|
|
isa<InlineAsm>(*OI))
|
|
CreateSlotIfNeeded(*OI);
|
|
}
|
|
getOrCreateTypeSlot(I->getType());
|
|
}
|
|
}
|
|
|
|
// Insert constants that are named at module level into the slot pool so that
|
|
// the module symbol table can refer to them...
|
|
SC_DEBUG("Inserting SymbolTable values:\n");
|
|
processTypeSymbolTable(&TheModule->getTypeSymbolTable());
|
|
processValueSymbolTable(&TheModule->getValueSymbolTable());
|
|
|
|
// Now that we have collected together all of the information relevant to the
|
|
// module, compactify the type table if it is particularly big and outputting
|
|
// a bytecode file. The basic problem we run into is that some programs have
|
|
// a large number of types, which causes the type field to overflow its size,
|
|
// which causes instructions to explode in size (particularly call
|
|
// instructions). To avoid this behavior, we "sort" the type table so that
|
|
// all non-value types are pushed to the end of the type table, giving nice
|
|
// low numbers to the types that can be used by instructions, thus reducing
|
|
// the amount of explodage we suffer.
|
|
if (Types.size() >= 64) {
|
|
unsigned FirstNonValueTypeID = 0;
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i)
|
|
if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
|
|
// Check to see if we have to shuffle this type around. If not, don't
|
|
// do anything.
|
|
if (i != FirstNonValueTypeID) {
|
|
// Swap the type ID's.
|
|
std::swap(Types[i], Types[FirstNonValueTypeID]);
|
|
|
|
// Keep the TypeMap up to date.
|
|
TypeMap[Types[i]] = i;
|
|
TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
|
|
|
|
// When we move a type, make sure to move its value plane as needed.
|
|
if (Table.size() > FirstNonValueTypeID) {
|
|
if (Table.size() <= i) Table.resize(i+1);
|
|
std::swap(Table[i], Table[FirstNonValueTypeID]);
|
|
}
|
|
}
|
|
++FirstNonValueTypeID;
|
|
}
|
|
}
|
|
|
|
NumModuleTypes = getNumPlanes();
|
|
|
|
SC_DEBUG("end processModule!\n");
|
|
}
|
|
|
|
// processTypeSymbolTable - Insert all of the type sin the specified symbol
|
|
// table.
|
|
void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
|
|
for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end();
|
|
TI != TE; ++TI )
|
|
getOrCreateTypeSlot(TI->second);
|
|
}
|
|
|
|
// processSymbolTable - Insert all of the values in the specified symbol table
|
|
// into the values table...
|
|
//
|
|
void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
|
|
for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end();
|
|
VI != VE; ++VI)
|
|
CreateSlotIfNeeded(VI->getValue());
|
|
}
|
|
|
|
void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
|
|
// Check to see if it's already in!
|
|
if (NodeMap.count(V)) return;
|
|
|
|
const Type *Ty = V->getType();
|
|
assert(Ty != Type::VoidTy && "Can't insert void values!");
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (isa<GlobalValue>(C)) {
|
|
// Initializers for globals are handled explicitly elsewhere.
|
|
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
|
|
// Do not index the characters that make up constant strings. We emit
|
|
// constant strings as special entities that don't require their
|
|
// individual characters to be emitted.
|
|
if (!C->isNullValue())
|
|
ConstantStrings.push_back(cast<ConstantArray>(C));
|
|
} else {
|
|
// This makes sure that if a constant has uses (for example an array of
|
|
// const ints), that they are inserted also.
|
|
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
|
I != E; ++I)
|
|
CreateSlotIfNeeded(*I);
|
|
}
|
|
}
|
|
|
|
unsigned TyPlane = getOrCreateTypeSlot(Ty);
|
|
if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
|
|
Table.resize(TyPlane+1, TypePlane());
|
|
|
|
// If this is the first value to get inserted into the type plane, make sure
|
|
// to insert the implicit null value.
|
|
if (Table[TyPlane].empty()) {
|
|
// Label's and opaque types can't have a null value.
|
|
if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
|
|
Value *ZeroInitializer = Constant::getNullValue(Ty);
|
|
|
|
// If we are pushing zeroinit, it will be handled below.
|
|
if (V != ZeroInitializer) {
|
|
Table[TyPlane].push_back(ZeroInitializer);
|
|
NodeMap[ZeroInitializer] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert node into table and NodeMap...
|
|
NodeMap[V] = Table[TyPlane].size();
|
|
Table[TyPlane].push_back(V);
|
|
|
|
SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
|
|
NodeMap[V] << "\n");
|
|
}
|
|
|
|
|
|
unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) {
|
|
TypeMapType::iterator TyIt = TypeMap.find(Ty);
|
|
if (TyIt != TypeMap.end()) return TyIt->second;
|
|
|
|
// Insert into TypeMap.
|
|
unsigned ResultSlot = TypeMap[Ty] = Types.size();
|
|
Types.push_back(Ty);
|
|
SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" );
|
|
|
|
// Loop over any contained types in the definition, ensuring they are also
|
|
// inserted.
|
|
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
|
|
I != E; ++I)
|
|
getOrCreateTypeSlot(*I);
|
|
|
|
return ResultSlot;
|
|
}
|
|
|
|
|
|
|
|
void SlotCalculator::incorporateFunction(const Function *F) {
|
|
SC_DEBUG("begin processFunction!\n");
|
|
|
|
// Iterate over function arguments, adding them to the value table...
|
|
for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
CreateFunctionValueSlot(I);
|
|
|
|
SC_DEBUG("Inserting Instructions:\n");
|
|
|
|
// Add all of the instructions to the type planes...
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
CreateFunctionValueSlot(BB);
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
|
if (I->getType() != Type::VoidTy)
|
|
CreateFunctionValueSlot(I);
|
|
}
|
|
}
|
|
|
|
SC_DEBUG("end processFunction!\n");
|
|
}
|
|
|
|
void SlotCalculator::purgeFunction() {
|
|
SC_DEBUG("begin purgeFunction!\n");
|
|
|
|
// Next, remove values from existing type planes
|
|
for (DenseMap<unsigned,unsigned,
|
|
ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
|
|
E = ModuleLevel.end(); I != E; ++I) {
|
|
unsigned PlaneNo = I->first;
|
|
unsigned ModuleLev = I->second;
|
|
|
|
// Pop all function-local values in this type-plane off of Table.
|
|
TypePlane &Plane = getPlane(PlaneNo);
|
|
assert(ModuleLev < Plane.size() && "module levels higher than elements?");
|
|
for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
|
|
NodeMap.erase(Plane.back()); // Erase from nodemap
|
|
Plane.pop_back(); // Shrink plane
|
|
}
|
|
}
|
|
|
|
ModuleLevel.clear();
|
|
|
|
// Finally, remove any type planes defined by the function...
|
|
while (Table.size() > NumModuleTypes) {
|
|
TypePlane &Plane = Table.back();
|
|
SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
|
|
<< Plane.size() << "\n");
|
|
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
|
|
NodeMap.erase(Plane[i]); // Erase from nodemap
|
|
|
|
Table.pop_back(); // Nuke the plane, we don't like it.
|
|
}
|
|
|
|
SC_DEBUG("end purgeFunction!\n");
|
|
}
|
|
|
|
void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
|
|
assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
|
|
|
|
const Type *Ty = V->getType();
|
|
assert(Ty != Type::VoidTy && "Can't insert void values!");
|
|
assert(!isa<Constant>(V) && "Not a function-local value!");
|
|
|
|
unsigned TyPlane = getOrCreateTypeSlot(Ty);
|
|
if (Table.size() <= TyPlane) // Make sure we have the type plane allocated.
|
|
Table.resize(TyPlane+1, TypePlane());
|
|
|
|
// If this is the first value noticed of this type within this function,
|
|
// remember the module level for this type plane in ModuleLevel. This reminds
|
|
// us to remove the values in purgeFunction and tells us how many to remove.
|
|
if (TyPlane < NumModuleTypes)
|
|
ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
|
|
|
|
// If this is the first value to get inserted into the type plane, make sure
|
|
// to insert the implicit null value.
|
|
if (Table[TyPlane].empty()) {
|
|
// Label's and opaque types can't have a null value.
|
|
if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
|
|
Value *ZeroInitializer = Constant::getNullValue(Ty);
|
|
|
|
// If we are pushing zeroinit, it will be handled below.
|
|
if (V != ZeroInitializer) {
|
|
Table[TyPlane].push_back(ZeroInitializer);
|
|
NodeMap[ZeroInitializer] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert node into table and NodeMap...
|
|
NodeMap[V] = Table[TyPlane].size();
|
|
Table[TyPlane].push_back(V);
|
|
|
|
SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
|
|
NodeMap[V] << "\n");
|
|
}
|
|
|