mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 05:32:25 +00:00
fca7f5c585
The AAPCS states that values passed in registers must have a value as though they had been loaded with "LDR". LDR is equivalent to "LD1.64 vX.1D" - that is, loading scalars to vector registers and loading 1-element vectors is equivalent. The logic implemented here is to ensure that at all call boundaries and during formal argument lowering all vectors are treated as their bitwidth-based floating point scalar counterpart, which is always one of f64 or f128 (v2i32 -> f64, v4i32 -> f128 etc). A BITCAST is inserted so that the appropriate REV will be generated during code generation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208198 91177308-0d34-0410-b5e6-96231b3b80d8
237 lines
12 KiB
TableGen
237 lines
12 KiB
TableGen
//===- ARM64CallingConv.td - Calling Conventions for ARM64 -*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This describes the calling conventions for ARM64 architecture.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfAlign - Match of the original alignment of the arg
|
|
class CCIfAlign<string Align, CCAction A> :
|
|
CCIf<!strconcat("ArgFlags.getOrigAlign() == ", Align), A>;
|
|
/// CCIfBigEndian - Match only if we're in big endian mode.
|
|
class CCIfBigEndian<CCAction A> :
|
|
CCIf<"State.getTarget().getDataLayout()->isBigEndian()", A>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM AAPCS64 Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_ARM64_AAPCS : CallingConv<[
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
|
|
|
|
// Big endian vectors must be passed as if they were 1-element vectors so that
|
|
// their lanes are in a consistent order.
|
|
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
|
|
CCBitConvertToType<f64>>>,
|
|
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
|
|
CCBitConvertToType<f128>>>,
|
|
|
|
// An SRet is passed in X8, not X0 like a normal pointer parameter.
|
|
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
|
|
|
|
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
|
|
// slot is 64-bit.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
|
|
// up to eight each of GPR and FPR.
|
|
CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Reg">>,
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
|
|
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
// i128 is split to two i64s, we can't fit half to register X7.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
|
|
[X0, X1, X3, X5]>>>,
|
|
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
|
|
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
|
|
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
|
|
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
|
|
// If more than will fit in registers, pass them on the stack instead.
|
|
CCIfType<[i1, i8, i16], CCAssignToStack<8, 8>>,
|
|
CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
|
|
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
|
|
CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
def RetCC_ARM64_AAPCS : CallingConv<[
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
|
|
|
|
// Big endian vectors must be passed as if they were 1-element vectors so that
|
|
// their lanes are in a consistent order.
|
|
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v8i8],
|
|
CCBitConvertToType<f64>>>,
|
|
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v16i8],
|
|
CCBitConvertToType<f128>>>,
|
|
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
|
|
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
|
|
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
|
|
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
|
|
]>;
|
|
|
|
|
|
// Darwin uses a calling convention which differs in only two ways
|
|
// from the standard one at this level:
|
|
// + i128s (i.e. split i64s) don't need even registers.
|
|
// + Stack slots are sized as needed rather than being at least 64-bit.
|
|
def CC_ARM64_DarwinPCS : CallingConv<[
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
|
|
|
|
// An SRet is passed in X8, not X0 like a normal pointer parameter.
|
|
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
|
|
|
|
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
|
|
// slot is 64-bit.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
|
|
// up to eight each of GPR and FPR.
|
|
CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Reg">>,
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
|
|
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
// i128 is split to two i64s, we can't fit half to register X7.
|
|
CCIfType<[i64],
|
|
CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
|
|
[W0, W1, W2, W3, W4, W5, W6]>>>,
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
|
|
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
|
|
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32],
|
|
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64],
|
|
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
|
|
// If more than will fit in registers, pass them on the stack instead.
|
|
CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Stack">>,
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8],
|
|
CCAssignToStack<8, 8>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
def CC_ARM64_DarwinPCS_VarArg : CallingConv<[
|
|
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
|
|
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
|
|
|
|
// Handle all scalar types as either i64 or f64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
CCIfType<[f32], CCPromoteToType<f64>>,
|
|
|
|
// Everything is on the stack.
|
|
// i128 is split to two i64s, and its stack alignment is 16 bytes.
|
|
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
|
|
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToStack<8, 8>>,
|
|
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>>
|
|
]>;
|
|
|
|
// The WebKit_JS calling convention only passes the first argument (the callee)
|
|
// in register and the remaining arguments on stack. We allow 32bit stack slots,
|
|
// so that WebKit can write partial values in the stack and define the other
|
|
// 32bit quantity as undef.
|
|
def CC_ARM64_WebKit_JS : CallingConv<[
|
|
// Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
|
|
CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_WebKit_JS_i1i8i16_Reg">>,
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
|
|
|
|
// Pass the remaining arguments on the stack instead.
|
|
CCIfType<[i1, i8, i16], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def RetCC_ARM64_WebKit_JS : CallingConv<[
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
|
|
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
|
|
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
|
|
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
|
|
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
|
|
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
|
|
]>;
|
|
|
|
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
|
|
// presumably a callee to someone. External functions may not do so, but this
|
|
// is currently safe since BL has LR as an implicit-def and what happens after a
|
|
// tail call doesn't matter.
|
|
//
|
|
// It would be better to model its preservation semantics properly (create a
|
|
// vreg on entry, use it in RET & tail call generation; make that vreg def if we
|
|
// end up saving LR as part of a call frame). Watch this space...
|
|
def CSR_ARM64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
|
|
X23, X24, X25, X26, X27, X28,
|
|
D8, D9, D10, D11,
|
|
D12, D13, D14, D15)>;
|
|
|
|
// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
|
|
// 'this' and the pointer return value are both passed in X0 in these cases,
|
|
// this can be partially modelled by treating X0 as a callee-saved register;
|
|
// only the resulting RegMask is used; the SaveList is ignored
|
|
//
|
|
// (For generic ARM 64-bit ABI code, clang will not generate constructors or
|
|
// destructors with 'this' returns, so this RegMask will not be used in that
|
|
// case)
|
|
def CSR_ARM64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_ARM64_AAPCS, X0)>;
|
|
|
|
// The function used by Darwin to obtain the address of a thread-local variable
|
|
// guarantees more than a normal AAPCS function. x16 and x17 are used on the
|
|
// fast path for calculation, but other registers except X0 (argument/return)
|
|
// and LR (it is a call, after all) are preserved.
|
|
def CSR_ARM64_TLS_Darwin
|
|
: CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
|
|
FP,
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
// The ELF stub used for TLS-descriptor access saves every feasible
|
|
// register. Only X0 and LR are clobbered.
|
|
def CSR_ARM64_TLS_ELF
|
|
: CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
|
|
(sequence "Q%u", 0, 31))>;
|
|
|
|
def CSR_ARM64_AllRegs
|
|
: CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
|
|
(sequence "X%u", 0, 28), FP, LR, SP,
|
|
(sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
|
|
(sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
|
|
(sequence "Q%u", 0, 31))>;
|
|
|