mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 06:09:05 +00:00
LLVM backend for 6502
f390c22a93
There are two attempted optimisations in reMaterializeTrivialDef, trying to avoid promoting the size of a register too much when rematerializing. Unfortunately, both appear to be flawed. First, we see if the original register would have worked, but this is inadequate. Consider: v1 = SOMETHING (v1 is QQ) v2:Q0 = COPY v1:Q1 (v1, v2 are QQ) ... uses of v2 In this case even though v2 *could* be used directly as the output of SOMETHING, this would set the wrong bits of the QQ register involved. The correct rematerialization must be: v2:Q0_Q1 = SOMETHING (v2 promoted to QQQ) ... uses of v2:Q1_Q2 For the second optimisation, if the correct remat is "v2:idx = SOMETHING" then we can't necessarily expect v2 itself to be valid for SOMETHING, but we do try to hunt for a class between v1 and v2 that works. Unfortunately, this is also wrong: v1 = SOMETHING (v1 is QQ) v2:Q0_Q1 = COPY v1 (v1 is QQ, v2 is QQQ) ... uses of v2 as a QQQ The canonical rematerialization here is "v2:Q0_Q1 = SOMETHING". However current logic would decide that v2 could be a QQ (no interest is taken in later uses). This patch, therefore, always accepts the widened register class without trying to be clever. Generally there is no penalty to this (e.g. in the common GR32 < GR64 case, expanding the width doesn't matter because it's not like you were going to do anything else with the high bits of a GR32 register). It can increase register pressure in cases like the ARM VFP regs though (multiple non-overlapping but equivalent subregisters). This situation can be spotted by the fact that both source and destination in the not-quite-coalesced pair have a sub-register index and rematerialisation is skipped in that situation. Unfortunately, no in-tree targets actually expose this as far as I can tell (there are so few isAsCheapAsAMove instructions for it to trigger on) so I've been unable to produce a test. It was exposed in our ARM64 SPEC tests though, and I will be adding a test there that we should be able to contribute soon(TM). rdar://problem/15775279 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199376 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
autoconf | ||
bindings | ||
cmake | ||
docs | ||
examples | ||
include | ||
lib | ||
projects | ||
test | ||
tools | ||
unittests | ||
utils | ||
.arcconfig | ||
.clang-format | ||
.gitignore | ||
CMakeLists.txt | ||
CODE_OWNERS.TXT | ||
configure | ||
CREDITS.TXT | ||
LICENSE.TXT | ||
llvm.spec.in | ||
LLVMBuild.txt | ||
Makefile | ||
Makefile.common | ||
Makefile.config.in | ||
Makefile.rules | ||
README.txt |
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you're writing a package for LLVM, see docs/Packaging.rst for our suggestions.