Reid Spencer 6794e616c7 Don't include newlines in the whitespace before newline (WSNL) rule.
Fix the comment for WSNL to describe its actual function.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40612 91177308-0d34-0410-b5e6-96231b3b80d8
2007-07-31 03:55:43 +00:00

452 lines
16 KiB
C++

/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===*/
%option prefix="llvmAsm"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="Lexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "ParserInternals.h"
#include "llvm/Module.h"
#include "llvm/Support/MathExtras.h"
#include <list>
#include "llvmAsmParser.h"
#include <cctype>
#include <cstdlib>
void set_scan_file(FILE * F){
yy_switch_to_buffer(yy_create_buffer( F, YY_BUF_SIZE ) );
}
void set_scan_string (const char * str) {
yy_scan_string (str);
}
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
llvmAsmlval.type = Instruction::Enum; \
return sym
// Construct a token value for an obsolete token
#define RET_TY(CTYPE, SYM) \
llvmAsmlval.PrimType = CTYPE;\
return SYM
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
return BitsToDouble(HexIntToVal(Buffer)); // Cast Hex constant to double
}
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character.
char *UnEscapeLexed(char *Buffer, char* EndBuffer) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\') {
if (BIn < EndBuffer-1 && BIn[1] == '\\') {
*BOut++ = '\\'; // Two \ becomes one
BIn += 2;
} else if (BIn < EndBuffer-2 && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
} // End llvm namespace
using namespace llvm;
#define YY_NEVER_INTERACTIVE 1
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Local Values and Type identifiers start with a % sign */
LocalVarName %[-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Global Value identifiers start with an @ sign */
GlobalVarName @[-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant \"[^\"]*\"
AtStringConstant @\"[^\"]*\"
PctStringConstant %\"[^\"]*\"
/* LocalVarID/GlobalVarID: match an unnamed local variable slot ID. */
LocalVarID %[0-9]+
GlobalVarID @[0-9]+
/* Integer types are specified with i and a bitwidth */
IntegerType i[0-9]+
/* E[PN]Integer: match positive and negative literal integer values. */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
/* WSNL - shorthand for whitespace followed by newline */
WSNL [ \r\t]*$
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
define { return DEFINE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
hidden { return HIDDEN; }
protected { return PROTECTED; }
extern_weak { return EXTERN_WEAK; }
external { return EXTERNAL; }
thread_local { return THREAD_LOCAL; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
datalayout { return DATALAYOUT; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
alias { return ALIAS; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
signext { return SIGNEXT; }
zeroext { return ZEROEXT; }
inreg { return INREG; }
sret { return SRET; }
nounwind { return NOUNWIND; }
noreturn { return NORETURN; }
noalias { return NOALIAS; }
byval { return BYVAL; }
nest { return NEST; }
sext{WSNL} { // For auto-upgrade only, drop in LLVM 3.0
return SIGNEXT; }
zext{WSNL} { // For auto-upgrade only, drop in LLVM 3.0
return ZEROEXT; }
void { RET_TY(Type::VoidTy, VOID); }
float { RET_TY(Type::FloatTy, FLOAT); }
double { RET_TY(Type::DoubleTy,DOUBLE);}
label { RET_TY(Type::LabelTy, LABEL); }
type { return TYPE; }
opaque { return OPAQUE; }
{IntegerType} { uint64_t NumBits = atoull(yytext+1);
if (NumBits < IntegerType::MIN_INT_BITS ||
NumBits > IntegerType::MAX_INT_BITS)
GenerateError("Bitwidth for integer type out of range!");
const Type* Ty = IntegerType::get(NumBits);
RET_TY(Ty, INTTYPE);
}
add { RET_TOK(BinaryOpVal, Add, ADD); }
sub { RET_TOK(BinaryOpVal, Sub, SUB); }
mul { RET_TOK(BinaryOpVal, Mul, MUL); }
udiv { RET_TOK(BinaryOpVal, UDiv, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDiv, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDiv, FDIV); }
urem { RET_TOK(BinaryOpVal, URem, UREM); }
srem { RET_TOK(BinaryOpVal, SRem, SREM); }
frem { RET_TOK(BinaryOpVal, FRem, FREM); }
shl { RET_TOK(BinaryOpVal, Shl, SHL); }
lshr { RET_TOK(BinaryOpVal, LShr, LSHR); }
ashr { RET_TOK(BinaryOpVal, AShr, ASHR); }
and { RET_TOK(BinaryOpVal, And, AND); }
or { RET_TOK(BinaryOpVal, Or , OR ); }
xor { RET_TOK(BinaryOpVal, Xor, XOR); }
icmp { RET_TOK(OtherOpVal, ICmp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); }
call { RET_TOK(OtherOpVal, Call, CALL); }
trunc { RET_TOK(CastOpVal, Trunc, TRUNC); }
zext { RET_TOK(CastOpVal, ZExt, ZEXT); }
sext { RET_TOK(CastOpVal, SExt, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTrunc, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExt, FPEXT); }
uitofp { RET_TOK(CastOpVal, UIToFP, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFP, SITOFP); }
fptoui { RET_TOK(CastOpVal, FPToUI, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSI, FPTOSI); }
inttoptr { RET_TOK(CastOpVal, IntToPtr, INTTOPTR); }
ptrtoint { RET_TOK(CastOpVal, PtrToInt, PTRTOINT); }
bitcast { RET_TOK(CastOpVal, BitCast, BITCAST); }
select { RET_TOK(OtherOpVal, Select, SELECT); }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, Ret, RET); }
br { RET_TOK(TermOpVal, Br, BR); }
switch { RET_TOK(TermOpVal, Switch, SWITCH); }
invoke { RET_TOK(TermOpVal, Invoke, INVOKE); }
unwind { RET_TOK(TermOpVal, Unwind, UNWIND); }
unreachable { RET_TOK(TermOpVal, Unreachable, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, Malloc, MALLOC); }
alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); }
free { RET_TOK(MemOpVal, Free, FREE); }
load { RET_TOK(MemOpVal, Load, LOAD); }
store { RET_TOK(MemOpVal, Store, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElement, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElement, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
{LocalVarName} {
llvmAsmlval.StrVal = new std::string(yytext+1); // Skip %
return LOCALVAR;
}
{GlobalVarName} {
llvmAsmlval.StrVal = new std::string(yytext+1); // Skip @
return GLOBALVAR;
}
{Label} {
yytext[yyleng-1] = 0; // nuke colon
llvmAsmlval.StrVal = new std::string(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[yyleng-2] = 0; // nuke colon, end quote
const char* EndChar = UnEscapeLexed(yytext+1, yytext+yyleng);
llvmAsmlval.StrVal =
new std::string(yytext+1, EndChar - yytext - 1);
return LABELSTR;
}
{StringConstant} { yytext[yyleng-1] = 0; // nuke end quote
const char* EndChar = UnEscapeLexed(yytext+1, yytext+yyleng);
llvmAsmlval.StrVal =
new std::string(yytext+1, EndChar - yytext - 1);
return STRINGCONSTANT;
}
{AtStringConstant} {
yytext[yyleng-1] = 0; // nuke end quote
const char* EndChar =
UnEscapeLexed(yytext+2, yytext+yyleng);
llvmAsmlval.StrVal =
new std::string(yytext+2, EndChar - yytext - 2);
return ATSTRINGCONSTANT;
}
{PctStringConstant} {
yytext[yyleng-1] = 0; // nuke end quote
const char* EndChar =
UnEscapeLexed(yytext+2, yytext+yyleng);
llvmAsmlval.StrVal =
new std::string(yytext+2, EndChar - yytext - 2);
return PCTSTRINGCONSTANT;
}
{PInteger} {
uint32_t numBits = ((yyleng * 64) / 19) + 1;
APInt Tmp(numBits, yytext, yyleng, 10);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < numBits)
Tmp.trunc(activeBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return EUAPINTVAL;
} else {
llvmAsmlval.UInt64Val = Tmp.getZExtValue();
return EUINT64VAL;
}
}
{NInteger} {
uint32_t numBits = (((yyleng-1) * 64) / 19) + 2;
APInt Tmp(numBits, yytext, yyleng, 10);
uint32_t minBits = Tmp.getMinSignedBits();
if (minBits > 0 && minBits < numBits)
Tmp.trunc(minBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return ESAPINTVAL;
} else {
llvmAsmlval.SInt64Val = Tmp.getSExtValue();
return ESINT64VAL;
}
}
{HexIntConstant} { int len = yyleng - 3;
uint32_t bits = len * 4;
APInt Tmp(bits, yytext+3, len, 16);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < bits)
Tmp.trunc(activeBits);
if (Tmp.getBitWidth() > 64) {
llvmAsmlval.APIntVal = new APInt(Tmp);
return yytext[0] == 's' ? ESAPINTVAL : EUAPINTVAL;
} else if (yytext[0] == 's') {
llvmAsmlval.SInt64Val = Tmp.getSExtValue();
return ESINT64VAL;
} else {
llvmAsmlval.UInt64Val = Tmp.getZExtValue();
return EUINT64VAL;
}
}
{LocalVarID} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
GenerateError("Invalid value number (too large)!");
llvmAsmlval.UIntVal = unsigned(Val);
return LOCALVAL_ID;
}
{GlobalVarID} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
GenerateError("Invalid value number (too large)!");
llvmAsmlval.UIntVal = unsigned(Val);
return GLOBALVAL_ID;
}
{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%