mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-07 12:07:17 +00:00
f462e3fac7
Some register classes are only used for instruction operand constraints. They should never be used for virtual registers. Previously, those register classes were given an empty allocation order, but now you can say 'let isAllocatable=0' in the register class definition. TableGen calculates if a register is part of any allocatable register class, and makes that information available in TargetRegisterDesc::inAllocatableClass. The goal here is to eliminate use cases for overriding allocation_order_* methods. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132508 91177308-0d34-0410-b5e6-96231b3b80d8
884 lines
35 KiB
C++
884 lines
35 KiB
C++
//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes an abstract interface used to get information about a
|
|
// target machines register file. This information is used for a variety of
|
|
// purposed, especially register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
|
|
#define LLVM_TARGET_TARGETREGISTERINFO_H
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include <cassert>
|
|
#include <functional>
|
|
|
|
namespace llvm {
|
|
|
|
class BitVector;
|
|
class MachineFunction;
|
|
class MachineMove;
|
|
class RegScavenger;
|
|
template<class T> class SmallVectorImpl;
|
|
class raw_ostream;
|
|
|
|
/// TargetRegisterDesc - This record contains all of the information known about
|
|
/// a particular register. The Overlaps field contains a pointer to a zero
|
|
/// terminated array of registers that this register aliases, starting with
|
|
/// itself. This is needed for architectures like X86 which have AL alias AX
|
|
/// alias EAX. The SubRegs field is a zero terminated array of registers that
|
|
/// are sub-registers of the specific register, e.g. AL, AH are sub-registers of
|
|
/// AX. The SuperRegs field is a zero terminated array of registers that are
|
|
/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
|
|
/// of AX.
|
|
///
|
|
struct TargetRegisterDesc {
|
|
const char *Name; // Printable name for the reg (for debugging)
|
|
const unsigned *Overlaps; // Overlapping registers, described above
|
|
const unsigned *SubRegs; // Sub-register set, described above
|
|
const unsigned *SuperRegs; // Super-register set, described above
|
|
unsigned CostPerUse; // Extra cost of instructions using register.
|
|
bool inAllocatableClass; // Register belongs to an allocatable regclass.
|
|
};
|
|
|
|
class TargetRegisterClass {
|
|
public:
|
|
typedef const unsigned* iterator;
|
|
typedef const unsigned* const_iterator;
|
|
|
|
typedef const EVT* vt_iterator;
|
|
typedef const TargetRegisterClass* const * sc_iterator;
|
|
private:
|
|
unsigned ID;
|
|
const char *Name;
|
|
const vt_iterator VTs;
|
|
const sc_iterator SubClasses;
|
|
const sc_iterator SuperClasses;
|
|
const sc_iterator SubRegClasses;
|
|
const sc_iterator SuperRegClasses;
|
|
const unsigned RegSize, Alignment; // Size & Alignment of register in bytes
|
|
const int CopyCost;
|
|
const bool Allocatable;
|
|
const iterator RegsBegin, RegsEnd;
|
|
DenseSet<unsigned> RegSet;
|
|
public:
|
|
TargetRegisterClass(unsigned id,
|
|
const char *name,
|
|
const EVT *vts,
|
|
const TargetRegisterClass * const *subcs,
|
|
const TargetRegisterClass * const *supcs,
|
|
const TargetRegisterClass * const *subregcs,
|
|
const TargetRegisterClass * const *superregcs,
|
|
unsigned RS, unsigned Al, int CC, bool Allocable,
|
|
iterator RB, iterator RE)
|
|
: ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
|
|
SubRegClasses(subregcs), SuperRegClasses(superregcs),
|
|
RegSize(RS), Alignment(Al), CopyCost(CC), Allocatable(Allocable),
|
|
RegsBegin(RB), RegsEnd(RE) {
|
|
for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
|
|
RegSet.insert(*I);
|
|
}
|
|
virtual ~TargetRegisterClass() {} // Allow subclasses
|
|
|
|
/// getID() - Return the register class ID number.
|
|
///
|
|
unsigned getID() const { return ID; }
|
|
|
|
/// getName() - Return the register class name for debugging.
|
|
///
|
|
const char *getName() const { return Name; }
|
|
|
|
/// begin/end - Return all of the registers in this class.
|
|
///
|
|
iterator begin() const { return RegsBegin; }
|
|
iterator end() const { return RegsEnd; }
|
|
|
|
/// getNumRegs - Return the number of registers in this class.
|
|
///
|
|
unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
|
|
|
|
/// getRegister - Return the specified register in the class.
|
|
///
|
|
unsigned getRegister(unsigned i) const {
|
|
assert(i < getNumRegs() && "Register number out of range!");
|
|
return RegsBegin[i];
|
|
}
|
|
|
|
/// contains - Return true if the specified register is included in this
|
|
/// register class. This does not include virtual registers.
|
|
bool contains(unsigned Reg) const {
|
|
return RegSet.count(Reg);
|
|
}
|
|
|
|
/// contains - Return true if both registers are in this class.
|
|
bool contains(unsigned Reg1, unsigned Reg2) const {
|
|
return contains(Reg1) && contains(Reg2);
|
|
}
|
|
|
|
/// hasType - return true if this TargetRegisterClass has the ValueType vt.
|
|
///
|
|
bool hasType(EVT vt) const {
|
|
for(int i = 0; VTs[i] != MVT::Other; ++i)
|
|
if (VTs[i] == vt)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// vt_begin / vt_end - Loop over all of the value types that can be
|
|
/// represented by values in this register class.
|
|
vt_iterator vt_begin() const {
|
|
return VTs;
|
|
}
|
|
|
|
vt_iterator vt_end() const {
|
|
vt_iterator I = VTs;
|
|
while (*I != MVT::Other) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// subregclasses_begin / subregclasses_end - Loop over all of
|
|
/// the subreg register classes of this register class.
|
|
sc_iterator subregclasses_begin() const {
|
|
return SubRegClasses;
|
|
}
|
|
|
|
sc_iterator subregclasses_end() const {
|
|
sc_iterator I = SubRegClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// getSubRegisterRegClass - Return the register class of subregisters with
|
|
/// index SubIdx, or NULL if no such class exists.
|
|
const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
|
|
assert(SubIdx>0 && "Invalid subregister index");
|
|
return SubRegClasses[SubIdx-1];
|
|
}
|
|
|
|
/// superregclasses_begin / superregclasses_end - Loop over all of
|
|
/// the superreg register classes of this register class.
|
|
sc_iterator superregclasses_begin() const {
|
|
return SuperRegClasses;
|
|
}
|
|
|
|
sc_iterator superregclasses_end() const {
|
|
sc_iterator I = SuperRegClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// hasSubClass - return true if the specified TargetRegisterClass
|
|
/// is a proper subset of this TargetRegisterClass.
|
|
bool hasSubClass(const TargetRegisterClass *cs) const {
|
|
for (int i = 0; SubClasses[i] != NULL; ++i)
|
|
if (SubClasses[i] == cs)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// hasSubClassEq - Returns true if RC is a subclass of or equal to this
|
|
/// class.
|
|
bool hasSubClassEq(const TargetRegisterClass *RC) const {
|
|
return RC == this || hasSubClass(RC);
|
|
}
|
|
|
|
/// subclasses_begin / subclasses_end - Loop over all of the classes
|
|
/// that are proper subsets of this register class.
|
|
sc_iterator subclasses_begin() const {
|
|
return SubClasses;
|
|
}
|
|
|
|
sc_iterator subclasses_end() const {
|
|
sc_iterator I = SubClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// hasSuperClass - return true if the specified TargetRegisterClass is a
|
|
/// proper superset of this TargetRegisterClass.
|
|
bool hasSuperClass(const TargetRegisterClass *cs) const {
|
|
for (int i = 0; SuperClasses[i] != NULL; ++i)
|
|
if (SuperClasses[i] == cs)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// hasSuperClassEq - Returns true if RC is a superclass of or equal to this
|
|
/// class.
|
|
bool hasSuperClassEq(const TargetRegisterClass *RC) const {
|
|
return RC == this || hasSuperClass(RC);
|
|
}
|
|
|
|
/// superclasses_begin / superclasses_end - Loop over all of the classes
|
|
/// that are proper supersets of this register class.
|
|
sc_iterator superclasses_begin() const {
|
|
return SuperClasses;
|
|
}
|
|
|
|
sc_iterator superclasses_end() const {
|
|
sc_iterator I = SuperClasses;
|
|
while (*I != NULL) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// isASubClass - return true if this TargetRegisterClass is a subset
|
|
/// class of at least one other TargetRegisterClass.
|
|
bool isASubClass() const {
|
|
return SuperClasses[0] != 0;
|
|
}
|
|
|
|
/// allocation_order_begin/end - These methods define a range of registers
|
|
/// which specify the registers in this class that are valid to register
|
|
/// allocate, and the preferred order to allocate them in. For example,
|
|
/// callee saved registers should be at the end of the list, because it is
|
|
/// cheaper to allocate caller saved registers.
|
|
///
|
|
/// These methods take a MachineFunction argument, which can be used to tune
|
|
/// the allocatable registers based on the characteristics of the function,
|
|
/// subtarget, or other criteria.
|
|
///
|
|
/// Register allocators should account for the fact that an allocation
|
|
/// order iterator may return a reserved register and always check
|
|
/// if the register is allocatable (getAllocatableSet()) before using it.
|
|
///
|
|
/// By default, these methods return all registers in the class.
|
|
///
|
|
virtual iterator allocation_order_begin(const MachineFunction &MF) const {
|
|
return begin();
|
|
}
|
|
virtual iterator allocation_order_end(const MachineFunction &MF) const {
|
|
return end();
|
|
}
|
|
|
|
/// getSize - Return the size of the register in bytes, which is also the size
|
|
/// of a stack slot allocated to hold a spilled copy of this register.
|
|
unsigned getSize() const { return RegSize; }
|
|
|
|
/// getAlignment - Return the minimum required alignment for a register of
|
|
/// this class.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
|
|
/// getCopyCost - Return the cost of copying a value between two registers in
|
|
/// this class. A negative number means the register class is very expensive
|
|
/// to copy e.g. status flag register classes.
|
|
int getCopyCost() const { return CopyCost; }
|
|
|
|
/// isAllocatable - Return true if this register class may be used to create
|
|
/// virtual registers.
|
|
bool isAllocatable() const { return Allocatable; }
|
|
};
|
|
|
|
|
|
/// TargetRegisterInfo base class - We assume that the target defines a static
|
|
/// array of TargetRegisterDesc objects that represent all of the machine
|
|
/// registers that the target has. As such, we simply have to track a pointer
|
|
/// to this array so that we can turn register number into a register
|
|
/// descriptor.
|
|
///
|
|
class TargetRegisterInfo {
|
|
protected:
|
|
const unsigned* SubregHash;
|
|
const unsigned SubregHashSize;
|
|
const unsigned* AliasesHash;
|
|
const unsigned AliasesHashSize;
|
|
public:
|
|
typedef const TargetRegisterClass * const * regclass_iterator;
|
|
private:
|
|
const TargetRegisterDesc *Desc; // Pointer to the descriptor array
|
|
const char *const *SubRegIndexNames; // Names of subreg indexes.
|
|
unsigned NumRegs; // Number of entries in the array
|
|
|
|
regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
|
|
|
|
int CallFrameSetupOpcode, CallFrameDestroyOpcode;
|
|
|
|
protected:
|
|
TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
|
|
regclass_iterator RegClassBegin,
|
|
regclass_iterator RegClassEnd,
|
|
const char *const *subregindexnames,
|
|
int CallFrameSetupOpcode = -1,
|
|
int CallFrameDestroyOpcode = -1,
|
|
const unsigned* subregs = 0,
|
|
const unsigned subregsize = 0,
|
|
const unsigned* aliases = 0,
|
|
const unsigned aliasessize = 0);
|
|
virtual ~TargetRegisterInfo();
|
|
public:
|
|
|
|
// Register numbers can represent physical registers, virtual registers, and
|
|
// sometimes stack slots. The unsigned values are divided into these ranges:
|
|
//
|
|
// 0 Not a register, can be used as a sentinel.
|
|
// [1;2^30) Physical registers assigned by TableGen.
|
|
// [2^30;2^31) Stack slots. (Rarely used.)
|
|
// [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
|
|
//
|
|
// Further sentinels can be allocated from the small negative integers.
|
|
// DenseMapInfo<unsigned> uses -1u and -2u.
|
|
|
|
/// isStackSlot - Sometimes it is useful the be able to store a non-negative
|
|
/// frame index in a variable that normally holds a register. isStackSlot()
|
|
/// returns true if Reg is in the range used for stack slots.
|
|
///
|
|
/// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
|
|
/// slots, so if a variable may contains a stack slot, always check
|
|
/// isStackSlot() first.
|
|
///
|
|
static bool isStackSlot(unsigned Reg) {
|
|
return int(Reg) >= (1 << 30);
|
|
}
|
|
|
|
/// stackSlot2Index - Compute the frame index from a register value
|
|
/// representing a stack slot.
|
|
static int stackSlot2Index(unsigned Reg) {
|
|
assert(isStackSlot(Reg) && "Not a stack slot");
|
|
return int(Reg - (1u << 30));
|
|
}
|
|
|
|
/// index2StackSlot - Convert a non-negative frame index to a stack slot
|
|
/// register value.
|
|
static unsigned index2StackSlot(int FI) {
|
|
assert(FI >= 0 && "Cannot hold a negative frame index.");
|
|
return FI + (1u << 30);
|
|
}
|
|
|
|
/// isPhysicalRegister - Return true if the specified register number is in
|
|
/// the physical register namespace.
|
|
static bool isPhysicalRegister(unsigned Reg) {
|
|
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
|
|
return int(Reg) > 0;
|
|
}
|
|
|
|
/// isVirtualRegister - Return true if the specified register number is in
|
|
/// the virtual register namespace.
|
|
static bool isVirtualRegister(unsigned Reg) {
|
|
assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
|
|
return int(Reg) < 0;
|
|
}
|
|
|
|
/// virtReg2Index - Convert a virtual register number to a 0-based index.
|
|
/// The first virtual register in a function will get the index 0.
|
|
static unsigned virtReg2Index(unsigned Reg) {
|
|
assert(isVirtualRegister(Reg) && "Not a virtual register");
|
|
return Reg & ~(1u << 31);
|
|
}
|
|
|
|
/// index2VirtReg - Convert a 0-based index to a virtual register number.
|
|
/// This is the inverse operation of VirtReg2IndexFunctor below.
|
|
static unsigned index2VirtReg(unsigned Index) {
|
|
return Index | (1u << 31);
|
|
}
|
|
|
|
/// getMinimalPhysRegClass - Returns the Register Class of a physical
|
|
/// register of the given type, picking the most sub register class of
|
|
/// the right type that contains this physreg.
|
|
const TargetRegisterClass *
|
|
getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
|
|
|
|
/// getAllocatableSet - Returns a bitset indexed by register number
|
|
/// indicating if a register is allocatable or not. If a register class is
|
|
/// specified, returns the subset for the class.
|
|
BitVector getAllocatableSet(const MachineFunction &MF,
|
|
const TargetRegisterClass *RC = NULL) const;
|
|
|
|
const TargetRegisterDesc &operator[](unsigned RegNo) const {
|
|
assert(RegNo < NumRegs &&
|
|
"Attempting to access record for invalid register number!");
|
|
return Desc[RegNo];
|
|
}
|
|
|
|
/// Provide a get method, equivalent to [], but more useful if we have a
|
|
/// pointer to this object.
|
|
///
|
|
const TargetRegisterDesc &get(unsigned RegNo) const {
|
|
return operator[](RegNo);
|
|
}
|
|
|
|
/// getAliasSet - Return the set of registers aliased by the specified
|
|
/// register, or a null list of there are none. The list returned is zero
|
|
/// terminated.
|
|
///
|
|
const unsigned *getAliasSet(unsigned RegNo) const {
|
|
// The Overlaps set always begins with Reg itself.
|
|
return get(RegNo).Overlaps + 1;
|
|
}
|
|
|
|
/// getOverlaps - Return a list of registers that overlap Reg, including
|
|
/// itself. This is the same as the alias set except Reg is included in the
|
|
/// list.
|
|
/// These are exactly the registers in { x | regsOverlap(x, Reg) }.
|
|
///
|
|
const unsigned *getOverlaps(unsigned RegNo) const {
|
|
return get(RegNo).Overlaps;
|
|
}
|
|
|
|
/// getSubRegisters - Return the list of registers that are sub-registers of
|
|
/// the specified register, or a null list of there are none. The list
|
|
/// returned is zero terminated and sorted according to super-sub register
|
|
/// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
|
|
///
|
|
const unsigned *getSubRegisters(unsigned RegNo) const {
|
|
return get(RegNo).SubRegs;
|
|
}
|
|
|
|
/// getSuperRegisters - Return the list of registers that are super-registers
|
|
/// of the specified register, or a null list of there are none. The list
|
|
/// returned is zero terminated and sorted according to super-sub register
|
|
/// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
|
|
///
|
|
const unsigned *getSuperRegisters(unsigned RegNo) const {
|
|
return get(RegNo).SuperRegs;
|
|
}
|
|
|
|
/// getName - Return the human-readable symbolic target-specific name for the
|
|
/// specified physical register.
|
|
const char *getName(unsigned RegNo) const {
|
|
return get(RegNo).Name;
|
|
}
|
|
|
|
/// getCostPerUse - Return the additional cost of using this register instead
|
|
/// of other registers in its class.
|
|
unsigned getCostPerUse(unsigned RegNo) const {
|
|
return get(RegNo).CostPerUse;
|
|
}
|
|
|
|
/// getNumRegs - Return the number of registers this target has (useful for
|
|
/// sizing arrays holding per register information)
|
|
unsigned getNumRegs() const {
|
|
return NumRegs;
|
|
}
|
|
|
|
/// getSubRegIndexName - Return the human-readable symbolic target-specific
|
|
/// name for the specified SubRegIndex.
|
|
const char *getSubRegIndexName(unsigned SubIdx) const {
|
|
assert(SubIdx && "This is not a subregister index");
|
|
return SubRegIndexNames[SubIdx-1];
|
|
}
|
|
|
|
/// regsOverlap - Returns true if the two registers are equal or alias each
|
|
/// other. The registers may be virtual register.
|
|
bool regsOverlap(unsigned regA, unsigned regB) const {
|
|
if (regA == regB)
|
|
return true;
|
|
|
|
if (isVirtualRegister(regA) || isVirtualRegister(regB))
|
|
return false;
|
|
|
|
// regA and regB are distinct physical registers. Do they alias?
|
|
size_t index = (regA + regB * 37) & (AliasesHashSize-1);
|
|
unsigned ProbeAmt = 0;
|
|
while (AliasesHash[index*2] != 0 &&
|
|
AliasesHash[index*2+1] != 0) {
|
|
if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
|
|
return true;
|
|
|
|
index = (index + ProbeAmt) & (AliasesHashSize-1);
|
|
ProbeAmt += 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isSubRegister - Returns true if regB is a sub-register of regA.
|
|
///
|
|
bool isSubRegister(unsigned regA, unsigned regB) const {
|
|
// SubregHash is a simple quadratically probed hash table.
|
|
size_t index = (regA + regB * 37) & (SubregHashSize-1);
|
|
unsigned ProbeAmt = 2;
|
|
while (SubregHash[index*2] != 0 &&
|
|
SubregHash[index*2+1] != 0) {
|
|
if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
|
|
return true;
|
|
|
|
index = (index + ProbeAmt) & (SubregHashSize-1);
|
|
ProbeAmt += 2;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isSuperRegister - Returns true if regB is a super-register of regA.
|
|
///
|
|
bool isSuperRegister(unsigned regA, unsigned regB) const {
|
|
return isSubRegister(regB, regA);
|
|
}
|
|
|
|
/// getCalleeSavedRegs - Return a null-terminated list of all of the
|
|
/// callee saved registers on this target. The register should be in the
|
|
/// order of desired callee-save stack frame offset. The first register is
|
|
/// closed to the incoming stack pointer if stack grows down, and vice versa.
|
|
virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
|
|
const = 0;
|
|
|
|
|
|
/// getReservedRegs - Returns a bitset indexed by physical register number
|
|
/// indicating if a register is a special register that has particular uses
|
|
/// and should be considered unavailable at all times, e.g. SP, RA. This is
|
|
/// used by register scavenger to determine what registers are free.
|
|
virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
|
|
|
|
/// getSubReg - Returns the physical register number of sub-register "Index"
|
|
/// for physical register RegNo. Return zero if the sub-register does not
|
|
/// exist.
|
|
virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
|
|
|
|
/// getSubRegIndex - For a given register pair, return the sub-register index
|
|
/// if the second register is a sub-register of the first. Return zero
|
|
/// otherwise.
|
|
virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
|
|
|
|
/// getMatchingSuperReg - Return a super-register of the specified register
|
|
/// Reg so its sub-register of index SubIdx is Reg.
|
|
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
|
|
const TargetRegisterClass *RC) const {
|
|
for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
|
|
if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
|
|
return SR;
|
|
return 0;
|
|
}
|
|
|
|
/// canCombineSubRegIndices - Given a register class and a list of
|
|
/// subregister indices, return true if it's possible to combine the
|
|
/// subregister indices into one that corresponds to a larger
|
|
/// subregister. Return the new subregister index by reference. Note the
|
|
/// new index may be zero if the given subregisters can be combined to
|
|
/// form the whole register.
|
|
virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
|
|
SmallVectorImpl<unsigned> &SubIndices,
|
|
unsigned &NewSubIdx) const {
|
|
return 0;
|
|
}
|
|
|
|
/// getMatchingSuperRegClass - Return a subclass of the specified register
|
|
/// class A so that each register in it has a sub-register of the
|
|
/// specified sub-register index which is in the specified register class B.
|
|
virtual const TargetRegisterClass *
|
|
getMatchingSuperRegClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B, unsigned Idx) const {
|
|
return 0;
|
|
}
|
|
|
|
/// composeSubRegIndices - Return the subregister index you get from composing
|
|
/// two subregister indices.
|
|
///
|
|
/// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
|
|
/// returns c. Note that composeSubRegIndices does not tell you about illegal
|
|
/// compositions. If R does not have a subreg a, or R:a does not have a subreg
|
|
/// b, composeSubRegIndices doesn't tell you.
|
|
///
|
|
/// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
|
|
/// ssub_0:S0 - ssub_3:S3 subregs.
|
|
/// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
|
|
///
|
|
virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
|
|
// This default implementation is correct for most targets.
|
|
return b;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Register Class Information
|
|
//
|
|
|
|
/// Register class iterators
|
|
///
|
|
regclass_iterator regclass_begin() const { return RegClassBegin; }
|
|
regclass_iterator regclass_end() const { return RegClassEnd; }
|
|
|
|
unsigned getNumRegClasses() const {
|
|
return (unsigned)(regclass_end()-regclass_begin());
|
|
}
|
|
|
|
/// getRegClass - Returns the register class associated with the enumeration
|
|
/// value. See class TargetOperandInfo.
|
|
const TargetRegisterClass *getRegClass(unsigned i) const {
|
|
assert(i < getNumRegClasses() && "Register Class ID out of range");
|
|
return RegClassBegin[i];
|
|
}
|
|
|
|
/// getPointerRegClass - Returns a TargetRegisterClass used for pointer
|
|
/// values. If a target supports multiple different pointer register classes,
|
|
/// kind specifies which one is indicated.
|
|
virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
|
|
assert(0 && "Target didn't implement getPointerRegClass!");
|
|
return 0; // Must return a value in order to compile with VS 2005
|
|
}
|
|
|
|
/// getCrossCopyRegClass - Returns a legal register class to copy a register
|
|
/// in the specified class to or from. If it is possible to copy the register
|
|
/// directly without using a cross register class copy, return the specified
|
|
/// RC. Returns NULL if it is not possible to copy between a two registers of
|
|
/// the specified class.
|
|
virtual const TargetRegisterClass *
|
|
getCrossCopyRegClass(const TargetRegisterClass *RC) const {
|
|
return RC;
|
|
}
|
|
|
|
/// getLargestLegalSuperClass - Returns the largest super class of RC that is
|
|
/// legal to use in the current sub-target and has the same spill size.
|
|
/// The returned register class can be used to create virtual registers which
|
|
/// means that all its registers can be copied and spilled.
|
|
virtual const TargetRegisterClass*
|
|
getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
|
|
/// The default implementation is very conservative and doesn't allow the
|
|
/// register allocator to inflate register classes.
|
|
return RC;
|
|
}
|
|
|
|
/// getRegPressureLimit - Return the register pressure "high water mark" for
|
|
/// the specific register class. The scheduler is in high register pressure
|
|
/// mode (for the specific register class) if it goes over the limit.
|
|
virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
|
|
MachineFunction &MF) const {
|
|
return 0;
|
|
}
|
|
|
|
/// getAllocationOrder - Returns the register allocation order for a specified
|
|
/// register class in the form of a pair of TargetRegisterClass iterators.
|
|
virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
|
|
getAllocationOrder(const TargetRegisterClass *RC,
|
|
unsigned HintType, unsigned HintReg,
|
|
const MachineFunction &MF) const {
|
|
return std::make_pair(RC->allocation_order_begin(MF),
|
|
RC->allocation_order_end(MF));
|
|
}
|
|
|
|
/// ResolveRegAllocHint - Resolves the specified register allocation hint
|
|
/// to a physical register. Returns the physical register if it is successful.
|
|
virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
|
|
const MachineFunction &MF) const {
|
|
if (Type == 0 && Reg && isPhysicalRegister(Reg))
|
|
return Reg;
|
|
return 0;
|
|
}
|
|
|
|
/// avoidWriteAfterWrite - Return true if the register allocator should avoid
|
|
/// writing a register from RC in two consecutive instructions.
|
|
/// This can avoid pipeline stalls on certain architectures.
|
|
/// It does cause increased register pressure, though.
|
|
virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
|
|
return false;
|
|
}
|
|
|
|
/// UpdateRegAllocHint - A callback to allow target a chance to update
|
|
/// register allocation hints when a register is "changed" (e.g. coalesced)
|
|
/// to another register. e.g. On ARM, some virtual registers should target
|
|
/// register pairs, if one of pair is coalesced to another register, the
|
|
/// allocation hint of the other half of the pair should be changed to point
|
|
/// to the new register.
|
|
virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
|
|
MachineFunction &MF) const {
|
|
// Do nothing.
|
|
}
|
|
|
|
/// requiresRegisterScavenging - returns true if the target requires (and can
|
|
/// make use of) the register scavenger.
|
|
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// useFPForScavengingIndex - returns true if the target wants to use
|
|
/// frame pointer based accesses to spill to the scavenger emergency spill
|
|
/// slot.
|
|
virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
|
|
return true;
|
|
}
|
|
|
|
/// requiresFrameIndexScavenging - returns true if the target requires post
|
|
/// PEI scavenging of registers for materializing frame index constants.
|
|
virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// requiresVirtualBaseRegisters - Returns true if the target wants the
|
|
/// LocalStackAllocation pass to be run and virtual base registers
|
|
/// used for more efficient stack access.
|
|
virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// hasReservedSpillSlot - Return true if target has reserved a spill slot in
|
|
/// the stack frame of the given function for the specified register. e.g. On
|
|
/// x86, if the frame register is required, the first fixed stack object is
|
|
/// reserved as its spill slot. This tells PEI not to create a new stack frame
|
|
/// object for the given register. It should be called only after
|
|
/// processFunctionBeforeCalleeSavedScan().
|
|
virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
|
|
int &FrameIdx) const {
|
|
return false;
|
|
}
|
|
|
|
/// needsStackRealignment - true if storage within the function requires the
|
|
/// stack pointer to be aligned more than the normal calling convention calls
|
|
/// for.
|
|
virtual bool needsStackRealignment(const MachineFunction &MF) const {
|
|
return false;
|
|
}
|
|
|
|
/// getFrameIndexInstrOffset - Get the offset from the referenced frame
|
|
/// index in the instruction, if there is one.
|
|
virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
|
|
int Idx) const {
|
|
return 0;
|
|
}
|
|
|
|
/// needsFrameBaseReg - Returns true if the instruction's frame index
|
|
/// reference would be better served by a base register other than FP
|
|
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
|
|
/// references it should create new base registers for.
|
|
virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
|
|
return false;
|
|
}
|
|
|
|
/// materializeFrameBaseRegister - Insert defining instruction(s) for
|
|
/// BaseReg to be a pointer to FrameIdx before insertion point I.
|
|
virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
|
|
unsigned BaseReg, int FrameIdx,
|
|
int64_t Offset) const {
|
|
assert(0 && "materializeFrameBaseRegister does not exist on this target");
|
|
}
|
|
|
|
/// resolveFrameIndex - Resolve a frame index operand of an instruction
|
|
/// to reference the indicated base register plus offset instead.
|
|
virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
|
|
unsigned BaseReg, int64_t Offset) const {
|
|
assert(0 && "resolveFrameIndex does not exist on this target");
|
|
}
|
|
|
|
/// isFrameOffsetLegal - Determine whether a given offset immediate is
|
|
/// encodable to resolve a frame index.
|
|
virtual bool isFrameOffsetLegal(const MachineInstr *MI,
|
|
int64_t Offset) const {
|
|
assert(0 && "isFrameOffsetLegal does not exist on this target");
|
|
return false; // Must return a value in order to compile with VS 2005
|
|
}
|
|
|
|
/// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
|
|
/// frame setup/destroy instructions if they exist (-1 otherwise). Some
|
|
/// targets use pseudo instructions in order to abstract away the difference
|
|
/// between operating with a frame pointer and operating without, through the
|
|
/// use of these two instructions.
|
|
///
|
|
int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
|
|
int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
|
|
|
|
/// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
|
|
/// code insertion to eliminate call frame setup and destroy pseudo
|
|
/// instructions (but only if the Target is using them). It is responsible
|
|
/// for eliminating these instructions, replacing them with concrete
|
|
/// instructions. This method need only be implemented if using call frame
|
|
/// setup/destroy pseudo instructions.
|
|
///
|
|
virtual void
|
|
eliminateCallFramePseudoInstr(MachineFunction &MF,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
|
|
"eliminateCallFramePseudoInstr must be implemented if using"
|
|
" call frame setup/destroy pseudo instructions!");
|
|
assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
|
|
}
|
|
|
|
|
|
/// saveScavengerRegister - Spill the register so it can be used by the
|
|
/// register scavenger. Return true if the register was spilled, false
|
|
/// otherwise. If this function does not spill the register, the scavenger
|
|
/// will instead spill it to the emergency spill slot.
|
|
///
|
|
virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator &UseMI,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Reg) const {
|
|
return false;
|
|
}
|
|
|
|
/// eliminateFrameIndex - This method must be overriden to eliminate abstract
|
|
/// frame indices from instructions which may use them. The instruction
|
|
/// referenced by the iterator contains an MO_FrameIndex operand which must be
|
|
/// eliminated by this method. This method may modify or replace the
|
|
/// specified instruction, as long as it keeps the iterator pointing at the
|
|
/// finished product. SPAdj is the SP adjustment due to call frame setup
|
|
/// instruction.
|
|
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
|
|
int SPAdj, RegScavenger *RS=NULL) const = 0;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// Debug information queries.
|
|
|
|
/// getDwarfRegNum - Map a target register to an equivalent dwarf register
|
|
/// number. Returns -1 if there is no equivalent value. The second
|
|
/// parameter allows targets to use different numberings for EH info and
|
|
/// debugging info.
|
|
virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
|
|
|
|
virtual int getLLVMRegNum(unsigned RegNum, bool isEH) const = 0;
|
|
|
|
/// getFrameRegister - This method should return the register used as a base
|
|
/// for values allocated in the current stack frame.
|
|
virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
|
|
|
|
/// getRARegister - This method should return the register where the return
|
|
/// address can be found.
|
|
virtual unsigned getRARegister() const = 0;
|
|
|
|
/// getSEHRegNum - Map a target register to an equivalent SEH register
|
|
/// number. Returns -1 if there is no equivalent value.
|
|
virtual int getSEHRegNum(unsigned i) const {
|
|
return i;
|
|
}
|
|
};
|
|
|
|
|
|
// This is useful when building IndexedMaps keyed on virtual registers
|
|
struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
|
|
unsigned operator()(unsigned Reg) const {
|
|
return TargetRegisterInfo::virtReg2Index(Reg);
|
|
}
|
|
};
|
|
|
|
/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
|
|
/// if there is no common subclass.
|
|
const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
|
|
const TargetRegisterClass *B);
|
|
|
|
/// PrintReg - Helper class for printing registers on a raw_ostream.
|
|
/// Prints virtual and physical registers with or without a TRI instance.
|
|
///
|
|
/// The format is:
|
|
/// %noreg - NoRegister
|
|
/// %vreg5 - a virtual register.
|
|
/// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
|
|
/// %EAX - a physical register
|
|
/// %physreg17 - a physical register when no TRI instance given.
|
|
///
|
|
/// Usage: OS << PrintReg(Reg, TRI) << '\n';
|
|
///
|
|
class PrintReg {
|
|
const TargetRegisterInfo *TRI;
|
|
unsigned Reg;
|
|
unsigned SubIdx;
|
|
public:
|
|
PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
|
|
: TRI(tri), Reg(reg), SubIdx(subidx) {}
|
|
void print(raw_ostream&) const;
|
|
};
|
|
|
|
static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
|
|
PR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|