mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
efe65ce25c
The rewriter can keep track of multiple stack slots in the same register if they happen to have the same value. When an instruction modifies a stack slot by defining a register that is mapped to a stack slot, other stack slots in that register are no longer valid. This is a very rare problem, and I don't have a simple test case. I get the impression that VirtRegRewriter knows it is about to be deleted, inventing a last opaque problem. <rdar://problem/9204040> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128562 91177308-0d34-0410-b5e6-96231b3b80d8
2634 lines
101 KiB
C++
2634 lines
101 KiB
C++
//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "virtregrewriter"
|
|
#include "VirtRegRewriter.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumDSE , "Number of dead stores elided");
|
|
STATISTIC(NumDSS , "Number of dead spill slots removed");
|
|
STATISTIC(NumCommutes, "Number of instructions commuted");
|
|
STATISTIC(NumDRM , "Number of re-materializable defs elided");
|
|
STATISTIC(NumStores , "Number of stores added");
|
|
STATISTIC(NumPSpills , "Number of physical register spills");
|
|
STATISTIC(NumOmitted , "Number of reloads omited");
|
|
STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
|
|
STATISTIC(NumCopified, "Number of available reloads turned into copies");
|
|
STATISTIC(NumReMats , "Number of re-materialization");
|
|
STATISTIC(NumLoads , "Number of loads added");
|
|
STATISTIC(NumReused , "Number of values reused");
|
|
STATISTIC(NumDCE , "Number of copies elided");
|
|
STATISTIC(NumSUnfold , "Number of stores unfolded");
|
|
STATISTIC(NumModRefUnfold, "Number of modref unfolded");
|
|
|
|
namespace {
|
|
enum RewriterName { local, trivial };
|
|
}
|
|
|
|
static cl::opt<RewriterName>
|
|
RewriterOpt("rewriter",
|
|
cl::desc("Rewriter to use (default=local)"),
|
|
cl::Prefix,
|
|
cl::values(clEnumVal(local, "local rewriter"),
|
|
clEnumVal(trivial, "trivial rewriter"),
|
|
clEnumValEnd),
|
|
cl::init(local));
|
|
|
|
static cl::opt<bool>
|
|
ScheduleSpills("schedule-spills",
|
|
cl::desc("Schedule spill code"),
|
|
cl::init(false));
|
|
|
|
VirtRegRewriter::~VirtRegRewriter() {}
|
|
|
|
/// substitutePhysReg - Replace virtual register in MachineOperand with a
|
|
/// physical register. Do the right thing with the sub-register index.
|
|
/// Note that operands may be added, so the MO reference is no longer valid.
|
|
static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
|
|
const TargetRegisterInfo &TRI) {
|
|
if (MO.getSubReg()) {
|
|
MO.substPhysReg(Reg, TRI);
|
|
|
|
// Any kill flags apply to the full virtual register, so they also apply to
|
|
// the full physical register.
|
|
// We assume that partial defs have already been decorated with a super-reg
|
|
// <imp-def> operand by LiveIntervals.
|
|
MachineInstr &MI = *MO.getParent();
|
|
if (MO.isUse() && !MO.isUndef() &&
|
|
(MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
|
|
MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
|
|
} else {
|
|
MO.setReg(Reg);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class is intended for use with the new spilling framework only. It
|
|
/// rewrites vreg def/uses to use the assigned preg, but does not insert any
|
|
/// spill code.
|
|
struct TrivialRewriter : public VirtRegRewriter {
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
|
|
LiveIntervals* LIs) {
|
|
DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
|
|
DEBUG(dbgs() << "********** Function: "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
DEBUG(dbgs() << "**** Machine Instrs"
|
|
<< "(NOTE! Does not include spills and reloads!) ****\n");
|
|
DEBUG(MF.dump());
|
|
|
|
MachineRegisterInfo *mri = &MF.getRegInfo();
|
|
const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
|
|
|
|
bool changed = false;
|
|
|
|
for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
|
|
liItr != liEnd; ++liItr) {
|
|
|
|
const LiveInterval *li = liItr->second;
|
|
unsigned reg = li->reg;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
|
|
if (!li->empty())
|
|
mri->setPhysRegUsed(reg);
|
|
}
|
|
else {
|
|
if (!VRM.hasPhys(reg))
|
|
continue;
|
|
unsigned pReg = VRM.getPhys(reg);
|
|
mri->setPhysRegUsed(pReg);
|
|
// Copy the register use-list before traversing it.
|
|
SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
|
|
for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
|
|
E = mri->reg_end(); I != E; ++I)
|
|
reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
|
|
for (unsigned N=0; N != reglist.size(); ++N)
|
|
substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
|
|
pReg, *tri);
|
|
changed |= !reglist.empty();
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
|
|
DEBUG(MF.dump());
|
|
|
|
return changed;
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
namespace {
|
|
|
|
/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
|
|
/// from top down, keep track of which spill slots or remat are available in
|
|
/// each register.
|
|
///
|
|
/// Note that not all physregs are created equal here. In particular, some
|
|
/// physregs are reloads that we are allowed to clobber or ignore at any time.
|
|
/// Other physregs are values that the register allocated program is using
|
|
/// that we cannot CHANGE, but we can read if we like. We keep track of this
|
|
/// on a per-stack-slot / remat id basis as the low bit in the value of the
|
|
/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
|
|
/// this bit and addAvailable sets it if.
|
|
class AvailableSpills {
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
|
|
// SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
|
|
// or remat'ed virtual register values that are still available, due to
|
|
// being loaded or stored to, but not invalidated yet.
|
|
std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
|
|
|
|
// PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
|
|
// indicating which stack slot values are currently held by a physreg. This
|
|
// is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
|
|
// physreg is modified.
|
|
std::multimap<unsigned, int> PhysRegsAvailable;
|
|
|
|
void disallowClobberPhysRegOnly(unsigned PhysReg);
|
|
|
|
void ClobberPhysRegOnly(unsigned PhysReg);
|
|
public:
|
|
AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
|
|
: TRI(tri), TII(tii) {
|
|
}
|
|
|
|
/// clear - Reset the state.
|
|
void clear() {
|
|
SpillSlotsOrReMatsAvailable.clear();
|
|
PhysRegsAvailable.clear();
|
|
}
|
|
|
|
const TargetRegisterInfo *getRegInfo() const { return TRI; }
|
|
|
|
/// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
|
|
/// available in a physical register, return that PhysReg, otherwise
|
|
/// return 0.
|
|
unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
|
|
std::map<int, unsigned>::const_iterator I =
|
|
SpillSlotsOrReMatsAvailable.find(Slot);
|
|
if (I != SpillSlotsOrReMatsAvailable.end()) {
|
|
return I->second >> 1; // Remove the CanClobber bit.
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// addAvailable - Mark that the specified stack slot / remat is available
|
|
/// in the specified physreg. If CanClobber is true, the physreg can be
|
|
/// modified at any time without changing the semantics of the program.
|
|
void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
|
|
// If this stack slot is thought to be available in some other physreg,
|
|
// remove its record.
|
|
ModifyStackSlotOrReMat(SlotOrReMat);
|
|
|
|
PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
|
|
SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
|
|
(unsigned)CanClobber;
|
|
|
|
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Remembering RM#"
|
|
<< SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
|
|
DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
|
|
<< (CanClobber ? " canclobber" : "") << "\n");
|
|
}
|
|
|
|
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
|
|
/// the value of the specified stackslot register if it desires. The
|
|
/// specified stack slot must be available in a physreg for this query to
|
|
/// make sense.
|
|
bool canClobberPhysRegForSS(int SlotOrReMat) const {
|
|
assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
|
|
"Value not available!");
|
|
return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
|
|
}
|
|
|
|
/// canClobberPhysReg - Return true if the spiller is allowed to clobber the
|
|
/// physical register where values for some stack slot(s) might be
|
|
/// available.
|
|
bool canClobberPhysReg(unsigned PhysReg) const {
|
|
std::multimap<unsigned, int>::const_iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
I++;
|
|
if (!canClobberPhysRegForSS(SlotOrReMat))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void disallowClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff that lives in
|
|
/// it and any of its aliases.
|
|
void ClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
|
|
/// slot changes. This removes information about which register the
|
|
/// previous value for this slot lives in (as the previous value is dead
|
|
/// now).
|
|
void ModifyStackSlotOrReMat(int SlotOrReMat);
|
|
|
|
/// ClobberSharingStackSlots - When a register mapped to a stack slot changes,
|
|
/// other stack slots sharing the same register are no longer valid.
|
|
void ClobberSharingStackSlots(int StackSlot);
|
|
|
|
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
|
|
/// into the specified MBB. Add available physical registers as potential
|
|
/// live-in's. If they are reused in the MBB, they will be added to the
|
|
/// live-in set to make register scavenger and post-allocation scheduler.
|
|
void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
};
|
|
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
// Given a location where a reload of a spilled register or a remat of
|
|
// a constant is to be inserted, attempt to find a safe location to
|
|
// insert the load at an earlier point in the basic-block, to hide
|
|
// latency of the load and to avoid address-generation interlock
|
|
// issues.
|
|
static MachineBasicBlock::iterator
|
|
ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
|
|
MachineBasicBlock::iterator const Begin,
|
|
unsigned PhysReg,
|
|
const TargetRegisterInfo *TRI,
|
|
bool DoReMat,
|
|
int SSorRMId,
|
|
const TargetInstrInfo *TII,
|
|
const MachineFunction &MF)
|
|
{
|
|
if (!ScheduleSpills)
|
|
return InsertLoc;
|
|
|
|
// Spill backscheduling is of primary interest to addresses, so
|
|
// don't do anything if the register isn't in the register class
|
|
// used for pointers.
|
|
|
|
const TargetLowering *TL = MF.getTarget().getTargetLowering();
|
|
|
|
if (!TL->isTypeLegal(TL->getPointerTy()))
|
|
// Believe it or not, this is true on 16-bit targets like PIC16.
|
|
return InsertLoc;
|
|
|
|
const TargetRegisterClass *ptrRegClass =
|
|
TL->getRegClassFor(TL->getPointerTy());
|
|
if (!ptrRegClass->contains(PhysReg))
|
|
return InsertLoc;
|
|
|
|
// Scan upwards through the preceding instructions. If an instruction doesn't
|
|
// reference the stack slot or the register we're loading, we can
|
|
// backschedule the reload up past it.
|
|
MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
|
|
while (NewInsertLoc != Begin) {
|
|
MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
|
|
for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
|
|
MachineOperand &Op = Prev->getOperand(i);
|
|
if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
|
|
goto stop;
|
|
}
|
|
if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
|
|
Prev->findRegisterDefOperand(PhysReg))
|
|
goto stop;
|
|
for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
|
|
if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
|
|
Prev->findRegisterDefOperand(*Alias))
|
|
goto stop;
|
|
NewInsertLoc = Prev;
|
|
}
|
|
stop:;
|
|
|
|
// If we made it to the beginning of the block, turn around and move back
|
|
// down just past any existing reloads. They're likely to be reloads/remats
|
|
// for instructions earlier than what our current reload/remat is for, so
|
|
// they should be scheduled earlier.
|
|
if (NewInsertLoc == Begin) {
|
|
int FrameIdx;
|
|
while (InsertLoc != NewInsertLoc &&
|
|
(TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
|
|
TII->isTriviallyReMaterializable(NewInsertLoc)))
|
|
++NewInsertLoc;
|
|
}
|
|
|
|
return NewInsertLoc;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// ReusedOp - For each reused operand, we keep track of a bit of information,
|
|
// in case we need to rollback upon processing a new operand. See comments
|
|
// below.
|
|
struct ReusedOp {
|
|
// The MachineInstr operand that reused an available value.
|
|
unsigned Operand;
|
|
|
|
// StackSlotOrReMat - The spill slot or remat id of the value being reused.
|
|
unsigned StackSlotOrReMat;
|
|
|
|
// PhysRegReused - The physical register the value was available in.
|
|
unsigned PhysRegReused;
|
|
|
|
// AssignedPhysReg - The physreg that was assigned for use by the reload.
|
|
unsigned AssignedPhysReg;
|
|
|
|
// VirtReg - The virtual register itself.
|
|
unsigned VirtReg;
|
|
|
|
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
|
|
unsigned vreg)
|
|
: Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
|
|
AssignedPhysReg(apr), VirtReg(vreg) {}
|
|
};
|
|
|
|
/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
|
|
/// is reused instead of reloaded.
|
|
class ReuseInfo {
|
|
MachineInstr &MI;
|
|
std::vector<ReusedOp> Reuses;
|
|
BitVector PhysRegsClobbered;
|
|
public:
|
|
ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
|
|
PhysRegsClobbered.resize(tri->getNumRegs());
|
|
}
|
|
|
|
bool hasReuses() const {
|
|
return !Reuses.empty();
|
|
}
|
|
|
|
/// addReuse - If we choose to reuse a virtual register that is already
|
|
/// available instead of reloading it, remember that we did so.
|
|
void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
|
|
unsigned PhysRegReused, unsigned AssignedPhysReg,
|
|
unsigned VirtReg) {
|
|
// If the reload is to the assigned register anyway, no undo will be
|
|
// required.
|
|
if (PhysRegReused == AssignedPhysReg) return;
|
|
|
|
// Otherwise, remember this.
|
|
Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
|
|
AssignedPhysReg, VirtReg));
|
|
}
|
|
|
|
void markClobbered(unsigned PhysReg) {
|
|
PhysRegsClobbered.set(PhysReg);
|
|
}
|
|
|
|
bool isClobbered(unsigned PhysReg) const {
|
|
return PhysRegsClobbered.test(PhysReg);
|
|
}
|
|
|
|
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
|
|
/// is some other operand that is using the specified register, either pick
|
|
/// a new register to use, or evict the previous reload and use this reg.
|
|
unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
|
|
MachineFunction &MF, MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
SmallSet<unsigned, 8> &Rejected,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM);
|
|
|
|
/// GetRegForReload - Helper for the above GetRegForReload(). Add a
|
|
/// 'Rejected' set to remember which registers have been considered and
|
|
/// rejected for the reload. This avoids infinite looping in case like
|
|
/// this:
|
|
/// t1 := op t2, t3
|
|
/// t2 <- assigned r0 for use by the reload but ended up reuse r1
|
|
/// t3 <- assigned r1 for use by the reload but ended up reuse r0
|
|
/// t1 <- desires r1
|
|
/// sees r1 is taken by t2, tries t2's reload register r0
|
|
/// sees r0 is taken by t3, tries t3's reload register r1
|
|
/// sees r1 is taken by t2, tries t2's reload register r0 ...
|
|
unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM) {
|
|
SmallSet<unsigned, 8> Rejected;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
|
|
return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
// ****************** //
|
|
// Utility Functions //
|
|
// ****************** //
|
|
|
|
/// findSinglePredSuccessor - Return via reference a vector of machine basic
|
|
/// blocks each of which is a successor of the specified BB and has no other
|
|
/// predecessor.
|
|
static void findSinglePredSuccessor(MachineBasicBlock *MBB,
|
|
SmallVectorImpl<MachineBasicBlock *> &Succs){
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock *SuccMBB = *SI;
|
|
if (SuccMBB->pred_size() == 1)
|
|
Succs.push_back(SuccMBB);
|
|
}
|
|
}
|
|
|
|
/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
|
|
/// but not re-defined and it's being reused. Remove the kill flag for the
|
|
/// register and unset the kill's marker and last kill operand.
|
|
static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
|
|
|
|
MachineOperand *KillOp = KillOps[Reg];
|
|
KillOp->setIsKill(false);
|
|
// KillOps[Reg] might be a def of a super-register.
|
|
unsigned KReg = KillOp->getReg();
|
|
if (!RegKills[KReg])
|
|
return;
|
|
|
|
assert(KillOps[KReg]->getParent() == KillOp->getParent() &&
|
|
"invalid superreg kill flags");
|
|
KillOps[KReg] = NULL;
|
|
RegKills.reset(KReg);
|
|
|
|
// If it's a def of a super-register. Its other sub-regsters are no
|
|
// longer killed as well.
|
|
for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
|
|
DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
|
|
|
|
assert(KillOps[*SR]->getParent() == KillOp->getParent() &&
|
|
"invalid subreg kill flags");
|
|
KillOps[*SR] = NULL;
|
|
RegKills.reset(*SR);
|
|
}
|
|
}
|
|
|
|
/// ResurrectKill - Invalidate kill info associated with a previous MI. An
|
|
/// optimization may have decided that it's safe to reuse a previously killed
|
|
/// register. If we fail to erase the invalid kill flags, then the register
|
|
/// scavenger may later clobber the register used by this MI. Note that this
|
|
/// must be done even if this MI is being deleted! Consider:
|
|
///
|
|
/// USE $r1 (vreg1) <kill>
|
|
/// ...
|
|
/// $r1(vreg3) = COPY $r1 (vreg2)
|
|
///
|
|
/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
|
|
/// vreg1's only use is a kill. The rewriter doesn't know it should be live
|
|
/// until it rewrites vreg2. At that points it sees that the copy is dead and
|
|
/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
|
|
/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
|
|
/// vreg1 before deleting the copy.
|
|
static void ResurrectKill(MachineInstr &MI, unsigned Reg,
|
|
const TargetRegisterInfo* TRI, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
|
|
ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
|
|
return;
|
|
}
|
|
// No previous kill for this reg. Check for subreg kills as well.
|
|
// d4 =
|
|
// store d4, fi#0
|
|
// ...
|
|
// = s8<kill>
|
|
// ...
|
|
// = d4 <avoiding reload>
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
unsigned SReg = *SR;
|
|
if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
|
|
ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
|
|
}
|
|
}
|
|
|
|
/// InvalidateKills - MI is going to be deleted. If any of its operands are
|
|
/// marked kill, then invalidate the information.
|
|
static void InvalidateKills(MachineInstr &MI,
|
|
const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
SmallVector<unsigned, 2> *KillRegs = NULL) {
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
if (KillRegs)
|
|
KillRegs->push_back(Reg);
|
|
assert(Reg < KillOps.size());
|
|
if (KillOps[Reg] == &MO) {
|
|
// This operand was the kill, now no longer.
|
|
KillOps[Reg] = NULL;
|
|
RegKills.reset(Reg);
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
if (RegKills[*SR]) {
|
|
assert(KillOps[*SR] == &MO && "bad subreg kill flags");
|
|
KillOps[*SR] = NULL;
|
|
RegKills.reset(*SR);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// This operand may have reused a previously killed reg. Keep it live in
|
|
// case it continues to be used after erasing this instruction.
|
|
ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InvalidateRegDef - If the def operand of the specified def MI is now dead
|
|
/// (since its spill instruction is removed), mark it isDead. Also checks if
|
|
/// the def MI has other definition operands that are not dead. Returns it by
|
|
/// reference.
|
|
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
|
|
MachineInstr &NewDef, unsigned Reg,
|
|
bool &HasLiveDef,
|
|
const TargetRegisterInfo *TRI) {
|
|
// Due to remat, it's possible this reg isn't being reused. That is,
|
|
// the def of this reg (by prev MI) is now dead.
|
|
MachineInstr *DefMI = I;
|
|
MachineOperand *DefOp = NULL;
|
|
for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = DefMI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
|
|
continue;
|
|
if (MO.getReg() == Reg)
|
|
DefOp = &MO;
|
|
else if (!MO.isDead())
|
|
HasLiveDef = true;
|
|
}
|
|
if (!DefOp)
|
|
return false;
|
|
|
|
bool FoundUse = false, Done = false;
|
|
MachineBasicBlock::iterator E = &NewDef;
|
|
++I; ++E;
|
|
for (; !Done && I != E; ++I) {
|
|
MachineInstr *NMI = I;
|
|
for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
|
|
MachineOperand &MO = NMI->getOperand(j);
|
|
if (!MO.isReg() || MO.getReg() == 0 ||
|
|
(MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
|
|
continue;
|
|
if (MO.isUse())
|
|
FoundUse = true;
|
|
Done = true; // Stop after scanning all the operands of this MI.
|
|
}
|
|
}
|
|
if (!FoundUse) {
|
|
// Def is dead!
|
|
DefOp->setIsDead();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// UpdateKills - Track and update kill info. If a MI reads a register that is
|
|
/// marked kill, then it must be due to register reuse. Transfer the kill info
|
|
/// over.
|
|
static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
// These do not affect kill info at all.
|
|
if (MI.isDebugValue())
|
|
return;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// This operand may have reused a previously killed reg. Keep it live.
|
|
ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
|
|
|
|
if (MO.isKill()) {
|
|
RegKills.set(Reg);
|
|
KillOps[Reg] = &MO;
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
RegKills.set(*SR);
|
|
KillOps[*SR] = &MO;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
RegKills.reset(Reg);
|
|
KillOps[Reg] = NULL;
|
|
// It also defines (or partially define) aliases.
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
RegKills.reset(*SR);
|
|
KillOps[*SR] = NULL;
|
|
}
|
|
for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
|
|
RegKills.reset(*SR);
|
|
KillOps[*SR] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
|
|
///
|
|
static void ReMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MII,
|
|
unsigned DestReg, unsigned Reg,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI,
|
|
VirtRegMap &VRM) {
|
|
MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
|
|
#ifndef NDEBUG
|
|
const TargetInstrDesc &TID = ReMatDefMI->getDesc();
|
|
assert(TID.getNumDefs() == 1 &&
|
|
"Don't know how to remat instructions that define > 1 values!");
|
|
#endif
|
|
TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
|
|
MachineInstr *NewMI = prior(MII);
|
|
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = NewMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned VirtReg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
|
|
continue;
|
|
assert(MO.isUse());
|
|
unsigned Phys = VRM.getPhys(VirtReg);
|
|
assert(Phys && "Virtual register is not assigned a register?");
|
|
substitutePhysReg(MO, Phys, *TRI);
|
|
}
|
|
++NumReMats;
|
|
}
|
|
|
|
/// findSuperReg - Find the SubReg's super-register of given register class
|
|
/// where its SubIdx sub-register is SubReg.
|
|
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
|
|
unsigned SubIdx, const TargetRegisterInfo *TRI) {
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (TRI->getSubReg(Reg, SubIdx) == SubReg)
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ******************************** //
|
|
// Available Spills Implementation //
|
|
// ******************************** //
|
|
|
|
/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
I++;
|
|
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
|
|
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
|
|
<< " copied, it is available for use but can no longer be modified\n");
|
|
}
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register and its aliases. The register and its aliases may
|
|
/// still available but is no longer allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
disallowClobberPhysRegOnly(*AS);
|
|
disallowClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// ClobberPhysRegOnly - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in it.
|
|
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
PhysRegsAvailable.erase(I++);
|
|
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
|
|
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
|
|
<< " clobbered, invalidating ");
|
|
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
|
|
else
|
|
DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
|
|
}
|
|
}
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in
|
|
/// it and any of its aliases.
|
|
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
ClobberPhysRegOnly(*AS);
|
|
ClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
|
|
/// into the specified MBB. Add available physical registers as potential
|
|
/// live-in's. If they are reused in the MBB, they will be added to the
|
|
/// live-in set to make register scavenger and post-allocation scheduler.
|
|
void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
std::set<unsigned> NotAvailable;
|
|
for (std::multimap<unsigned, int>::iterator
|
|
I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
|
|
I != E; ++I) {
|
|
unsigned Reg = I->first;
|
|
const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
|
|
// FIXME: A temporary workaround. We can't reuse available value if it's
|
|
// not safe to move the def of the virtual register's class. e.g.
|
|
// X86::RFP* register classes. Do not add it as a live-in.
|
|
if (!TII->isSafeToMoveRegClassDefs(RC))
|
|
// This is no longer available.
|
|
NotAvailable.insert(Reg);
|
|
else {
|
|
MBB.addLiveIn(Reg);
|
|
if (RegKills[Reg])
|
|
ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
|
|
}
|
|
|
|
// Skip over the same register.
|
|
std::multimap<unsigned, int>::iterator NI = llvm::next(I);
|
|
while (NI != E && NI->first == Reg) {
|
|
++I;
|
|
++NI;
|
|
}
|
|
}
|
|
|
|
for (std::set<unsigned>::iterator I = NotAvailable.begin(),
|
|
E = NotAvailable.end(); I != E; ++I) {
|
|
ClobberPhysReg(*I);
|
|
for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
|
|
*SubRegs; ++SubRegs)
|
|
ClobberPhysReg(*SubRegs);
|
|
}
|
|
}
|
|
|
|
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
|
|
/// slot changes. This removes information about which register the previous
|
|
/// value for this slot lives in (as the previous value is dead now).
|
|
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
|
|
std::map<int, unsigned>::iterator It =
|
|
SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
|
|
if (It == SpillSlotsOrReMatsAvailable.end()) return;
|
|
unsigned Reg = It->second >> 1;
|
|
SpillSlotsOrReMatsAvailable.erase(It);
|
|
|
|
// This register may hold the value of multiple stack slots, only remove this
|
|
// stack slot from the set of values the register contains.
|
|
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
|
|
for (; ; ++I) {
|
|
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
|
|
"Map inverse broken!");
|
|
if (I->second == SlotOrReMat) break;
|
|
}
|
|
PhysRegsAvailable.erase(I);
|
|
}
|
|
|
|
void AvailableSpills::ClobberSharingStackSlots(int StackSlot) {
|
|
std::map<int, unsigned>::iterator It =
|
|
SpillSlotsOrReMatsAvailable.find(StackSlot);
|
|
if (It == SpillSlotsOrReMatsAvailable.end()) return;
|
|
unsigned Reg = It->second >> 1;
|
|
|
|
// Erase entries in PhysRegsAvailable for other stack slots.
|
|
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
|
|
while (I != PhysRegsAvailable.end() && I->first == Reg) {
|
|
std::multimap<unsigned, int>::iterator NextI = llvm::next(I);
|
|
if (I->second != StackSlot) {
|
|
DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in "
|
|
<< PrintReg(Reg, TRI) << '\n');
|
|
SpillSlotsOrReMatsAvailable.erase(I->second);
|
|
PhysRegsAvailable.erase(I);
|
|
}
|
|
I = NextI;
|
|
}
|
|
}
|
|
|
|
// ************************** //
|
|
// Reuse Info Implementation //
|
|
// ************************** //
|
|
|
|
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
|
|
/// is some other operand that is using the specified register, either pick
|
|
/// a new register to use, or evict the previous reload and use this reg.
|
|
unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
|
|
unsigned PhysReg,
|
|
MachineFunction &MF,
|
|
MachineInstr *MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
SmallSet<unsigned, 8> &Rejected,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM) {
|
|
const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = Spills.getRegInfo();
|
|
|
|
if (Reuses.empty()) return PhysReg; // This is most often empty.
|
|
|
|
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
|
|
ReusedOp &Op = Reuses[ro];
|
|
// If we find some other reuse that was supposed to use this register
|
|
// exactly for its reload, we can change this reload to use ITS reload
|
|
// register. That is, unless its reload register has already been
|
|
// considered and subsequently rejected because it has also been reused
|
|
// by another operand.
|
|
if (Op.PhysRegReused == PhysReg &&
|
|
Rejected.count(Op.AssignedPhysReg) == 0 &&
|
|
RC->contains(Op.AssignedPhysReg)) {
|
|
// Yup, use the reload register that we didn't use before.
|
|
unsigned NewReg = Op.AssignedPhysReg;
|
|
Rejected.insert(PhysReg);
|
|
return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
} else {
|
|
// Otherwise, we might also have a problem if a previously reused
|
|
// value aliases the new register. If so, codegen the previous reload
|
|
// and use this one.
|
|
unsigned PRRU = Op.PhysRegReused;
|
|
if (TRI->regsOverlap(PRRU, PhysReg)) {
|
|
// Okay, we found out that an alias of a reused register
|
|
// was used. This isn't good because it means we have
|
|
// to undo a previous reuse.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
const TargetRegisterClass *AliasRC =
|
|
MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
|
|
|
|
// Copy Op out of the vector and remove it, we're going to insert an
|
|
// explicit load for it.
|
|
ReusedOp NewOp = Op;
|
|
Reuses.erase(Reuses.begin()+ro);
|
|
|
|
// MI may be using only a sub-register of PhysRegUsed.
|
|
unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
|
|
unsigned SubIdx = 0;
|
|
assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
|
|
"A reuse cannot be a virtual register");
|
|
if (PRRU != RealPhysRegUsed) {
|
|
// What was the sub-register index?
|
|
SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
|
|
assert(SubIdx &&
|
|
"Operand physreg is not a sub-register of PhysRegUsed");
|
|
}
|
|
|
|
// Ok, we're going to try to reload the assigned physreg into the
|
|
// slot that we were supposed to in the first place. However, that
|
|
// register could hold a reuse. Check to see if it conflicts or
|
|
// would prefer us to use a different register.
|
|
unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
|
|
MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
|
|
bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
|
|
int SSorRMId = DoReMat
|
|
? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
|
|
DoReMat, SSorRMId, TII, MF);
|
|
|
|
if (DoReMat) {
|
|
ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
|
|
TRI, VRM);
|
|
} else {
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
|
|
NewOp.StackSlotOrReMat, AliasRC, TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
|
|
++NumLoads;
|
|
}
|
|
Spills.ClobberPhysReg(NewPhysReg);
|
|
Spills.ClobberPhysReg(NewOp.PhysRegReused);
|
|
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
|
|
MI->getOperand(NewOp.Operand).setReg(RReg);
|
|
MI->getOperand(NewOp.Operand).setSubReg(0);
|
|
|
|
Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
|
|
DEBUG(dbgs() << "Reuse undone!\n");
|
|
--NumReused;
|
|
|
|
// Finally, PhysReg is now available, go ahead and use it.
|
|
return PhysReg;
|
|
}
|
|
}
|
|
}
|
|
return PhysReg;
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
|
|
/// stack slot mod/ref. It also checks if it's possible to unfold the
|
|
/// instruction by having it define a specified physical register instead.
|
|
static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI,
|
|
VirtRegMap &VRM) {
|
|
if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
|
|
return false;
|
|
|
|
bool Found = false;
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
|
|
unsigned VirtReg = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
if (MR & VirtRegMap::isModRef)
|
|
if (VRM.getStackSlot(VirtReg) == SS) {
|
|
Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found)
|
|
return false;
|
|
|
|
// Does the instruction uses a register that overlaps the scratch register?
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
if (!VRM.hasPhys(Reg))
|
|
continue;
|
|
Reg = VRM.getPhys(Reg);
|
|
}
|
|
if (TRI->regsOverlap(PhysReg, Reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FindFreeRegister - Find a free register of a given register class by looking
|
|
/// at (at most) the last two machine instructions.
|
|
static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
|
|
MachineBasicBlock &MBB,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI,
|
|
BitVector &AllocatableRegs) {
|
|
BitVector Defs(TRI->getNumRegs());
|
|
BitVector Uses(TRI->getNumRegs());
|
|
SmallVector<unsigned, 4> LocalUses;
|
|
SmallVector<unsigned, 4> Kills;
|
|
|
|
// Take a look at 2 instructions at most.
|
|
unsigned Count = 0;
|
|
while (Count < 2) {
|
|
if (MII == MBB.begin())
|
|
break;
|
|
MachineInstr *PrevMI = prior(MII);
|
|
MII = PrevMI;
|
|
|
|
if (PrevMI->isDebugValue())
|
|
continue; // Skip over dbg_value instructions.
|
|
++Count;
|
|
|
|
for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = PrevMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (MO.isDef()) {
|
|
Defs.set(Reg);
|
|
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
|
|
Defs.set(*AS);
|
|
} else {
|
|
LocalUses.push_back(Reg);
|
|
if (MO.isKill() && AllocatableRegs[Reg])
|
|
Kills.push_back(Reg);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
|
|
unsigned Kill = Kills[i];
|
|
if (!Defs[Kill] && !Uses[Kill] &&
|
|
RC->contains(Kill))
|
|
return Kill;
|
|
}
|
|
for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
|
|
unsigned Reg = LocalUses[i];
|
|
Uses.set(Reg);
|
|
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
|
|
Uses.set(*AS);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
|
|
const TargetRegisterInfo &TRI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == VirtReg)
|
|
substitutePhysReg(MO, PhysReg, TRI);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct RefSorter {
|
|
bool operator()(const std::pair<MachineInstr*, int> &A,
|
|
const std::pair<MachineInstr*, int> &B) {
|
|
return A.second < B.second;
|
|
}
|
|
};
|
|
|
|
// ***************************** //
|
|
// Local Spiller Implementation //
|
|
// ***************************** //
|
|
|
|
class LocalRewriter : public VirtRegRewriter {
|
|
MachineRegisterInfo *MRI;
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
VirtRegMap *VRM;
|
|
LiveIntervals *LIs;
|
|
BitVector AllocatableRegs;
|
|
DenseMap<MachineInstr*, unsigned> DistanceMap;
|
|
DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
|
|
|
|
MachineBasicBlock *MBB; // Basic block currently being processed.
|
|
|
|
public:
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
|
|
LiveIntervals* LIs);
|
|
|
|
private:
|
|
void EraseInstr(MachineInstr *MI) {
|
|
VRM->RemoveMachineInstrFromMaps(MI);
|
|
LIs->RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
bool OptimizeByUnfold2(unsigned VirtReg, int SS,
|
|
MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
|
|
unsigned VirtReg, unsigned SrcReg, int SS,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
const TargetRegisterInfo *TRI);
|
|
|
|
void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
|
|
int Idx, unsigned PhysReg, int StackSlot,
|
|
const TargetRegisterClass *RC,
|
|
bool isAvailable, MachineInstr *&LastStore,
|
|
AvailableSpills &Spills,
|
|
SmallSet<MachineInstr*, 4> &ReMatDefs,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
void TransferDeadness(unsigned Reg, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool InsertEmergencySpills(MachineInstr *MI);
|
|
|
|
bool InsertRestores(MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool InsertSpills(MachineInstr *MI);
|
|
|
|
void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
ReuseInfo &ReusedOperands,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
void RewriteMBB(LiveIntervals *LIs,
|
|
AvailableSpills &Spills, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
};
|
|
}
|
|
|
|
bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
|
|
LiveIntervals* lis) {
|
|
MRI = &MF.getRegInfo();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
TII = MF.getTarget().getInstrInfo();
|
|
VRM = &vrm;
|
|
LIs = lis;
|
|
AllocatableRegs = TRI->getAllocatableSet(MF);
|
|
DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
|
|
<< MF.getFunction()->getName() << "':\n");
|
|
DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
|
|
" reloads!) ****\n");
|
|
DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
|
|
|
|
// Spills - Keep track of which spilled values are available in physregs
|
|
// so that we can choose to reuse the physregs instead of emitting
|
|
// reloads. This is usually refreshed per basic block.
|
|
AvailableSpills Spills(TRI, TII);
|
|
|
|
// Keep track of kill information.
|
|
BitVector RegKills(TRI->getNumRegs());
|
|
std::vector<MachineOperand*> KillOps;
|
|
KillOps.resize(TRI->getNumRegs(), NULL);
|
|
|
|
// SingleEntrySuccs - Successor blocks which have a single predecessor.
|
|
SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
|
|
SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
|
|
|
|
// Traverse the basic blocks depth first.
|
|
MachineBasicBlock *Entry = MF.begin();
|
|
SmallPtrSet<MachineBasicBlock*,16> Visited;
|
|
for (df_ext_iterator<MachineBasicBlock*,
|
|
SmallPtrSet<MachineBasicBlock*,16> >
|
|
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
|
|
DFI != E; ++DFI) {
|
|
MBB = *DFI;
|
|
if (!EarlyVisited.count(MBB))
|
|
RewriteMBB(LIs, Spills, RegKills, KillOps);
|
|
|
|
// If this MBB is the only predecessor of a successor. Keep the
|
|
// availability information and visit it next.
|
|
do {
|
|
// Keep visiting single predecessor successor as long as possible.
|
|
SinglePredSuccs.clear();
|
|
findSinglePredSuccessor(MBB, SinglePredSuccs);
|
|
if (SinglePredSuccs.empty())
|
|
MBB = 0;
|
|
else {
|
|
// FIXME: More than one successors, each of which has MBB has
|
|
// the only predecessor.
|
|
MBB = SinglePredSuccs[0];
|
|
if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
|
|
Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
|
|
RewriteMBB(LIs, Spills, RegKills, KillOps);
|
|
}
|
|
}
|
|
} while (MBB);
|
|
|
|
// Clear the availability info.
|
|
Spills.clear();
|
|
}
|
|
|
|
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
|
|
DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
|
|
|
|
// Mark unused spill slots.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int SS = VRM->getLowSpillSlot();
|
|
if (SS != VirtRegMap::NO_STACK_SLOT) {
|
|
for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
|
|
SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
|
|
if (!VRM->isSpillSlotUsed(SS)) {
|
|
MFI->RemoveStackObject(SS);
|
|
for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
|
|
MachineInstr *DVMI = DbgValues[j];
|
|
DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
|
|
EraseInstr(DVMI);
|
|
}
|
|
++NumDSS;
|
|
}
|
|
DbgValues.clear();
|
|
}
|
|
}
|
|
Slot2DbgValues.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
|
|
/// a scratch register is available.
|
|
/// xorq %r12<kill>, %r13
|
|
/// addq %rax, -184(%rbp)
|
|
/// addq %r13, -184(%rbp)
|
|
/// ==>
|
|
/// xorq %r12<kill>, %r13
|
|
/// movq -184(%rbp), %r12
|
|
/// addq %rax, %r12
|
|
/// addq %r13, %r12
|
|
/// movq %r12, -184(%rbp)
|
|
bool LocalRewriter::
|
|
OptimizeByUnfold2(unsigned VirtReg, int SS,
|
|
MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
MachineBasicBlock::iterator NextMII = llvm::next(MII);
|
|
// Skip over dbg_value instructions.
|
|
while (NextMII != MBB->end() && NextMII->isDebugValue())
|
|
NextMII = llvm::next(NextMII);
|
|
if (NextMII == MBB->end())
|
|
return false;
|
|
|
|
if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
|
|
return false;
|
|
|
|
// Now let's see if the last couple of instructions happens to have freed up
|
|
// a register.
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
|
|
if (!PhysReg)
|
|
return false;
|
|
|
|
MachineFunction &MF = *MBB->getParent();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
MachineInstr &MI = *MII;
|
|
if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
|
|
return false;
|
|
|
|
// If the next instruction also folds the same SS modref and can be unfoled,
|
|
// then it's worthwhile to issue a load from SS into the free register and
|
|
// then unfold these instructions.
|
|
if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
|
|
return false;
|
|
|
|
// Back-schedule reloads and remats.
|
|
ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
|
|
|
|
// Load from SS to the spare physical register.
|
|
TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SS, PhysReg);
|
|
MaybeDeadStores[SS] = NULL;
|
|
|
|
// Unfold current MI.
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
|
|
llvm_unreachable("Unable unfold the load / store folding instruction!");
|
|
assert(NewMIs.size() == 1);
|
|
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
|
|
VRM->transferRestorePts(&MI, NewMIs[0]);
|
|
MII = MBB->insert(MII, NewMIs[0]);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
++NumModRefUnfold;
|
|
|
|
// Unfold next instructions that fold the same SS.
|
|
do {
|
|
MachineInstr &NextMI = *NextMII;
|
|
NextMII = llvm::next(NextMII);
|
|
NewMIs.clear();
|
|
if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
|
|
llvm_unreachable("Unable unfold the load / store folding instruction!");
|
|
assert(NewMIs.size() == 1);
|
|
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
|
|
VRM->transferRestorePts(&NextMI, NewMIs[0]);
|
|
MBB->insert(NextMII, NewMIs[0]);
|
|
InvalidateKills(NextMI, TRI, RegKills, KillOps);
|
|
EraseInstr(&NextMI);
|
|
++NumModRefUnfold;
|
|
// Skip over dbg_value instructions.
|
|
while (NextMII != MBB->end() && NextMII->isDebugValue())
|
|
NextMII = llvm::next(NextMII);
|
|
if (NextMII == MBB->end())
|
|
break;
|
|
} while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
|
|
|
|
// Store the value back into SS.
|
|
TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
|
|
MachineInstr *StoreMI = prior(NextMII);
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// OptimizeByUnfold - Turn a store folding instruction into a load folding
|
|
/// instruction. e.g.
|
|
/// xorl %edi, %eax
|
|
/// movl %eax, -32(%ebp)
|
|
/// movl -36(%ebp), %eax
|
|
/// orl %eax, -32(%ebp)
|
|
/// ==>
|
|
/// xorl %edi, %eax
|
|
/// orl -36(%ebp), %eax
|
|
/// mov %eax, -32(%ebp)
|
|
/// This enables unfolding optimization for a subsequent instruction which will
|
|
/// also eliminate the newly introduced store instruction.
|
|
bool LocalRewriter::
|
|
OptimizeByUnfold(MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineInstr &MI = *MII;
|
|
unsigned UnfoldedOpc = 0;
|
|
unsigned UnfoldPR = 0;
|
|
unsigned UnfoldVR = 0;
|
|
int FoldedSS = VirtRegMap::NO_STACK_SLOT;
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
|
|
// Only transform a MI that folds a single register.
|
|
if (UnfoldedOpc)
|
|
return false;
|
|
UnfoldVR = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
// MI2VirtMap be can updated which invalidate the iterator.
|
|
// Increment the iterator first.
|
|
++I;
|
|
if (VRM->isAssignedReg(UnfoldVR))
|
|
continue;
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
FoldedSS = VRM->getStackSlot(UnfoldVR);
|
|
MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
|
|
if (DeadStore && (MR & VirtRegMap::isModRef)) {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
|
|
if (!PhysReg || !DeadStore->readsRegister(PhysReg))
|
|
continue;
|
|
UnfoldPR = PhysReg;
|
|
UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
|
|
false, true);
|
|
}
|
|
}
|
|
|
|
if (!UnfoldedOpc) {
|
|
if (!UnfoldVR)
|
|
return false;
|
|
|
|
// Look for other unfolding opportunities.
|
|
return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
|
|
RegKills, KillOps);
|
|
}
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
|
|
continue;
|
|
unsigned VirtReg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
|
|
continue;
|
|
if (VRM->isAssignedReg(VirtReg)) {
|
|
unsigned PhysReg = VRM->getPhys(VirtReg);
|
|
if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
return false;
|
|
} else if (VRM->isReMaterialized(VirtReg))
|
|
continue;
|
|
int SS = VRM->getStackSlot(VirtReg);
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
if (PhysReg) {
|
|
if (TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (VRM->hasPhys(VirtReg)) {
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
if (!TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
continue;
|
|
}
|
|
|
|
// Ok, we'll need to reload the value into a register which makes
|
|
// it impossible to perform the store unfolding optimization later.
|
|
// Let's see if it is possible to fold the load if the store is
|
|
// unfolded. This allows us to perform the store unfolding
|
|
// optimization.
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
|
|
assert(NewMIs.size() == 1);
|
|
MachineInstr *NewMI = NewMIs.back();
|
|
MBB->insert(MII, NewMI);
|
|
NewMIs.clear();
|
|
int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
|
|
assert(Idx != -1);
|
|
SmallVector<unsigned, 1> Ops;
|
|
Ops.push_back(Idx);
|
|
MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
|
|
NewMI->eraseFromParent();
|
|
if (FoldedMI) {
|
|
VRM->addSpillSlotUse(SS, FoldedMI);
|
|
if (!VRM->hasPhys(UnfoldVR))
|
|
VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
|
|
VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
|
|
MII = FoldedMI;
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
|
|
/// where SrcReg is r1 and it is tied to r0. Return true if after
|
|
/// commuting this instruction it will be r0 = op r2, r1.
|
|
static bool CommuteChangesDestination(MachineInstr *DefMI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned SrcReg,
|
|
const TargetInstrInfo *TII,
|
|
unsigned &DstIdx) {
|
|
if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
|
|
return false;
|
|
if (!DefMI->getOperand(1).isReg() ||
|
|
DefMI->getOperand(1).getReg() != SrcReg)
|
|
return false;
|
|
unsigned DefIdx;
|
|
if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
|
|
return false;
|
|
unsigned SrcIdx1, SrcIdx2;
|
|
if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
|
|
return false;
|
|
if (SrcIdx1 == 1 && SrcIdx2 == 2) {
|
|
DstIdx = 2;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CommuteToFoldReload -
|
|
/// Look for
|
|
/// r1 = load fi#1
|
|
/// r1 = op r1, r2<kill>
|
|
/// store r1, fi#1
|
|
///
|
|
/// If op is commutable and r2 is killed, then we can xform these to
|
|
/// r2 = op r2, fi#1
|
|
/// store r2, fi#1
|
|
bool LocalRewriter::
|
|
CommuteToFoldReload(MachineBasicBlock::iterator &MII,
|
|
unsigned VirtReg, unsigned SrcReg, int SS,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
|
|
return false;
|
|
|
|
MachineInstr &MI = *MII;
|
|
MachineBasicBlock::iterator DefMII = prior(MII);
|
|
MachineInstr *DefMI = DefMII;
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
unsigned NewDstIdx;
|
|
if (DefMII != MBB->begin() &&
|
|
TID.isCommutable() &&
|
|
CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
|
|
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
|
|
unsigned NewReg = NewDstMO.getReg();
|
|
if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
|
|
return false;
|
|
MachineInstr *ReloadMI = prior(DefMII);
|
|
int FrameIdx;
|
|
unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
|
|
if (DestReg != SrcReg || FrameIdx != SS)
|
|
return false;
|
|
int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
|
|
if (UseIdx == -1)
|
|
return false;
|
|
unsigned DefIdx;
|
|
if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
|
|
return false;
|
|
assert(DefMI->getOperand(DefIdx).isReg() &&
|
|
DefMI->getOperand(DefIdx).getReg() == SrcReg);
|
|
|
|
// Now commute def instruction.
|
|
MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
|
|
if (!CommutedMI)
|
|
return false;
|
|
MBB->insert(MII, CommutedMI);
|
|
SmallVector<unsigned, 1> Ops;
|
|
Ops.push_back(NewDstIdx);
|
|
MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
|
|
// Not needed since foldMemoryOperand returns new MI.
|
|
CommutedMI->eraseFromParent();
|
|
if (!FoldedMI)
|
|
return false;
|
|
|
|
VRM->addSpillSlotUse(SS, FoldedMI);
|
|
VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
|
|
// Insert new def MI and spill MI.
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
|
|
MII = prior(MII);
|
|
MachineInstr *StoreMI = MII;
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
MII = FoldedMI; // Update MII to backtrack.
|
|
|
|
// Delete all 3 old instructions.
|
|
InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
|
|
EraseInstr(ReloadMI);
|
|
InvalidateKills(*DefMI, TRI, RegKills, KillOps);
|
|
EraseInstr(DefMI);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
|
|
// If NewReg was previously holding value of some SS, it's now clobbered.
|
|
// This has to be done now because it's a physical register. When this
|
|
// instruction is re-visited, it's ignored.
|
|
Spills.ClobberPhysReg(NewReg);
|
|
|
|
++NumCommutes;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
|
|
/// the last store to the same slot is now dead. If so, remove the last store.
|
|
void LocalRewriter::
|
|
SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
|
|
int Idx, unsigned PhysReg, int StackSlot,
|
|
const TargetRegisterClass *RC,
|
|
bool isAvailable, MachineInstr *&LastStore,
|
|
AvailableSpills &Spills,
|
|
SmallSet<MachineInstr*, 4> &ReMatDefs,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
|
|
TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
|
|
TRI);
|
|
MachineInstr *StoreMI = prior(oldNextMII);
|
|
VRM->addSpillSlotUse(StackSlot, StoreMI);
|
|
DEBUG(dbgs() << "Store:\t" << *StoreMI);
|
|
|
|
// If there is a dead store to this stack slot, nuke it now.
|
|
if (LastStore) {
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
|
|
++NumDSE;
|
|
SmallVector<unsigned, 2> KillRegs;
|
|
InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
|
|
MachineBasicBlock::iterator PrevMII = LastStore;
|
|
bool CheckDef = PrevMII != MBB->begin();
|
|
if (CheckDef)
|
|
--PrevMII;
|
|
EraseInstr(LastStore);
|
|
if (CheckDef) {
|
|
// Look at defs of killed registers on the store. Mark the defs
|
|
// as dead since the store has been deleted and they aren't
|
|
// being reused.
|
|
for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
|
|
bool HasOtherDef = false;
|
|
if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
|
|
MachineInstr *DeadDef = PrevMII;
|
|
if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
|
|
// FIXME: This assumes a remat def does not have side effects.
|
|
EraseInstr(DeadDef);
|
|
++NumDRM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
|
|
// the last of multiple instructions is the actual store.
|
|
LastStore = prior(oldNextMII);
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register available,
|
|
// in PhysReg.
|
|
Spills.ModifyStackSlotOrReMat(StackSlot);
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
Spills.addAvailable(StackSlot, PhysReg, isAvailable);
|
|
++NumStores;
|
|
}
|
|
|
|
/// isSafeToDelete - Return true if this instruction doesn't produce any side
|
|
/// effect and all of its defs are dead.
|
|
static bool isSafeToDelete(MachineInstr &MI) {
|
|
const TargetInstrDesc &TID = MI.getDesc();
|
|
if (TID.mayLoad() || TID.mayStore() || TID.isTerminator() ||
|
|
TID.isCall() || TID.isBarrier() || TID.isReturn() ||
|
|
MI.isLabel() || MI.isDebugValue() ||
|
|
MI.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Technically speaking inline asm without side effects and no defs can still
|
|
// be deleted. But there is so much bad inline asm code out there, we should
|
|
// let them be.
|
|
if (MI.isInlineAsm())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && !MO.isDead())
|
|
return false;
|
|
if (MO.isUse() && MO.isKill())
|
|
// FIXME: We can't remove kill markers or else the scavenger will assert.
|
|
// An alternative is to add a ADD pseudo instruction to replace kill
|
|
// markers.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// TransferDeadness - A identity copy definition is dead and it's being
|
|
/// removed. Find the last def or use and mark it as dead / kill.
|
|
void LocalRewriter::
|
|
TransferDeadness(unsigned Reg, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
SmallPtrSet<MachineInstr*, 4> Seens;
|
|
SmallVector<std::pair<MachineInstr*, int>,8> Refs;
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
|
|
RE = MRI->reg_end(); RI != RE; ++RI) {
|
|
MachineInstr *UDMI = &*RI;
|
|
if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
|
|
continue;
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
|
|
if (DI == DistanceMap.end())
|
|
continue;
|
|
if (Seens.insert(UDMI))
|
|
Refs.push_back(std::make_pair(UDMI, DI->second));
|
|
}
|
|
|
|
if (Refs.empty())
|
|
return;
|
|
std::sort(Refs.begin(), Refs.end(), RefSorter());
|
|
|
|
while (!Refs.empty()) {
|
|
MachineInstr *LastUDMI = Refs.back().first;
|
|
Refs.pop_back();
|
|
|
|
MachineOperand *LastUD = NULL;
|
|
for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = LastUDMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
if (!LastUD || (LastUD->isUse() && MO.isDef()))
|
|
LastUD = &MO;
|
|
if (LastUDMI->isRegTiedToDefOperand(i))
|
|
break;
|
|
}
|
|
if (LastUD->isDef()) {
|
|
// If the instruction has no side effect, delete it and propagate
|
|
// backward further. Otherwise, mark is dead and we are done.
|
|
if (!isSafeToDelete(*LastUDMI)) {
|
|
LastUD->setIsDead();
|
|
break;
|
|
}
|
|
EraseInstr(LastUDMI);
|
|
} else {
|
|
LastUD->setIsKill();
|
|
RegKills.set(Reg);
|
|
KillOps[Reg] = LastUD;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InsertEmergencySpills - Insert emergency spills before MI if requested by
|
|
/// VRM. Return true if spills were inserted.
|
|
bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
|
|
if (!VRM->hasEmergencySpills(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
SmallSet<int, 4> UsedSS;
|
|
std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
|
|
for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
|
|
unsigned PhysReg = EmSpills[i];
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
|
|
assert(RC && "Unable to determine register class!");
|
|
int SS = VRM->getEmergencySpillSlot(RC);
|
|
if (UsedSS.count(SS))
|
|
llvm_unreachable("Need to spill more than one physical registers!");
|
|
UsedSS.insert(SS);
|
|
TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
|
|
MachineInstr *StoreMI = prior(MII);
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
|
|
TII, *MBB->getParent());
|
|
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
|
|
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SS, LoadMI);
|
|
++NumPSpills;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// InsertRestores - Restore registers before MI is requested by VRM. Return
|
|
/// true is any instructions were inserted.
|
|
bool LocalRewriter::InsertRestores(MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
if (!VRM->isRestorePt(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
|
|
for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
|
|
unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
|
|
if (!VRM->getPreSplitReg(VirtReg))
|
|
continue; // Split interval spilled again.
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
MRI->setPhysRegUsed(Phys);
|
|
|
|
// Check if the value being restored if available. If so, it must be
|
|
// from a predecessor BB that fallthrough into this BB. We do not
|
|
// expect:
|
|
// BB1:
|
|
// r1 = load fi#1
|
|
// ...
|
|
// = r1<kill>
|
|
// ... # r1 not clobbered
|
|
// ...
|
|
// = load fi#1
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
int SSorRMId = DoReMat
|
|
? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
|
|
unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
|
|
if (InReg == Phys) {
|
|
// If the value is already available in the expected register, save
|
|
// a reload / remat.
|
|
if (SSorRMId)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(InReg) << " for " << PrintReg(VirtReg)
|
|
<<" instead of reloading into physreg "
|
|
<< TRI->getName(Phys) << '\n');
|
|
|
|
// Reusing a physreg may resurrect it. But we expect ProcessUses to update
|
|
// the kill flags for the current instruction after processing it.
|
|
|
|
++NumOmitted;
|
|
continue;
|
|
} else if (InReg && InReg != Phys) {
|
|
if (SSorRMId)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(InReg) << " for " << PrintReg(VirtReg)
|
|
<<" by copying it into physreg "
|
|
<< TRI->getName(Phys) << '\n');
|
|
|
|
// If the reloaded / remat value is available in another register,
|
|
// copy it to the desired register.
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
|
|
*MBB->getParent());
|
|
MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), Phys)
|
|
.addReg(InReg, RegState::Kill);
|
|
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(Phys);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SSorRMId, Phys);
|
|
|
|
CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
|
|
|
|
DEBUG(dbgs() << '\t' << *CopyMI);
|
|
++NumCopified;
|
|
continue;
|
|
}
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
|
|
*MBB->getParent());
|
|
|
|
if (VRM->isReMaterialized(VirtReg)) {
|
|
ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
|
|
} else {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SSorRMId, LoadMI);
|
|
++NumLoads;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(Phys);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SSorRMId, Phys);
|
|
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(MII));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// InsertSpills - Insert spills after MI if requested by VRM. Return
|
|
/// true if spills were inserted.
|
|
bool LocalRewriter::InsertSpills(MachineInstr *MI) {
|
|
if (!VRM->isSpillPt(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
std::vector<std::pair<unsigned,bool> > &SpillRegs =
|
|
VRM->getSpillPtSpills(MI);
|
|
for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
|
|
unsigned VirtReg = SpillRegs[i].first;
|
|
bool isKill = SpillRegs[i].second;
|
|
if (!VRM->getPreSplitReg(VirtReg))
|
|
continue; // Split interval spilled again.
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
int StackSlot = VRM->getStackSlot(VirtReg);
|
|
MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
|
|
TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
|
|
RC, TRI);
|
|
MachineInstr *StoreMI = prior(oldNextMII);
|
|
VRM->addSpillSlotUse(StackSlot, StoreMI);
|
|
DEBUG(dbgs() << "Store:\t" << *StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// ProcessUses - Process all of MI's spilled operands and all available
|
|
/// operands.
|
|
void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
ReuseInfo &ReusedOperands,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
// Clear kill info.
|
|
SmallSet<unsigned, 2> KilledMIRegs;
|
|
SmallVector<unsigned, 4> VirtUseOps;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue; // Ignore non-register operands.
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
|
|
// Ignore physregs for spilling, but remember that it is used by this
|
|
// function.
|
|
MRI->setPhysRegUsed(VirtReg);
|
|
continue;
|
|
}
|
|
|
|
// We want to process implicit virtual register uses first.
|
|
if (MO.isImplicit())
|
|
// If the virtual register is implicitly defined, emit a implicit_def
|
|
// before so scavenger knows it's "defined".
|
|
// FIXME: This is a horrible hack done the by register allocator to
|
|
// remat a definition with virtual register operand.
|
|
VirtUseOps.insert(VirtUseOps.begin(), i);
|
|
else
|
|
VirtUseOps.push_back(i);
|
|
|
|
// A partial def causes problems because the same operand both reads and
|
|
// writes the register. This rewriter is designed to rewrite uses and defs
|
|
// separately, so a partial def would already have been rewritten to a
|
|
// physreg by the time we get to processing defs.
|
|
// Add an implicit use operand to model the partial def.
|
|
if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
|
|
MI.findRegisterUseOperandIdx(VirtReg) == -1) {
|
|
VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
|
|
MI.addOperand(MachineOperand::CreateReg(VirtReg,
|
|
false, // isDef
|
|
true)); // isImplicit
|
|
DEBUG(dbgs() << "Partial redef: " << MI);
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled uses and all non spilled reg references.
|
|
SmallVector<int, 2> PotentialDeadStoreSlots;
|
|
KilledMIRegs.clear();
|
|
for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
|
|
unsigned i = VirtUseOps[j];
|
|
unsigned VirtReg = MI.getOperand(i).getReg();
|
|
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
|
|
"Not a virtual register?");
|
|
|
|
unsigned SubIdx = MI.getOperand(i).getSubReg();
|
|
if (VRM->isAssignedReg(VirtReg)) {
|
|
// This virtual register was assigned a physreg!
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
MRI->setPhysRegUsed(Phys);
|
|
if (MI.getOperand(i).isDef())
|
|
ReusedOperands.markClobbered(Phys);
|
|
substitutePhysReg(MI.getOperand(i), Phys, *TRI);
|
|
if (VRM->isImplicitlyDefined(VirtReg))
|
|
// FIXME: Is this needed?
|
|
BuildMI(*MBB, &MI, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
|
|
continue;
|
|
}
|
|
|
|
// This virtual register is now known to be a spilled value.
|
|
if (!MI.getOperand(i).isUse())
|
|
continue; // Handle defs in the loop below (handle use&def here though)
|
|
|
|
bool AvoidReload = MI.getOperand(i).isUndef();
|
|
// Check if it is defined by an implicit def. It should not be spilled.
|
|
// Note, this is for correctness reason. e.g.
|
|
// 8 %reg1024<def> = IMPLICIT_DEF
|
|
// 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
|
|
// The live range [12, 14) are not part of the r1024 live interval since
|
|
// it's defined by an implicit def. It will not conflicts with live
|
|
// interval of r1025. Now suppose both registers are spilled, you can
|
|
// easily see a situation where both registers are reloaded before
|
|
// the INSERT_SUBREG and both target registers that would overlap.
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
int SSorRMId = DoReMat
|
|
? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
|
|
int ReuseSlot = SSorRMId;
|
|
|
|
// Check to see if this stack slot is available.
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
|
|
|
|
// If this is a sub-register use, make sure the reuse register is in the
|
|
// right register class. For example, for x86 not all of the 32-bit
|
|
// registers have accessible sub-registers.
|
|
// Similarly so for EXTRACT_SUBREG. Consider this:
|
|
// EDI = op
|
|
// MOV32_mr fi#1, EDI
|
|
// ...
|
|
// = EXTRACT_SUBREG fi#1
|
|
// fi#1 is available in EDI, but it cannot be reused because it's not in
|
|
// the right register file.
|
|
if (PhysReg && !AvoidReload && SubIdx) {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
if (!RC->contains(PhysReg))
|
|
PhysReg = 0;
|
|
}
|
|
|
|
if (PhysReg && !AvoidReload) {
|
|
// This spilled operand might be part of a two-address operand. If this
|
|
// is the case, then changing it will necessarily require changing the
|
|
// def part of the instruction as well. However, in some cases, we
|
|
// aren't allowed to modify the reused register. If none of these cases
|
|
// apply, reuse it.
|
|
bool CanReuse = true;
|
|
bool isTied = MI.isRegTiedToDefOperand(i);
|
|
if (isTied) {
|
|
// Okay, we have a two address operand. We can reuse this physreg as
|
|
// long as we are allowed to clobber the value and there isn't an
|
|
// earlier def that has already clobbered the physreg.
|
|
CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
|
|
Spills.canClobberPhysReg(PhysReg);
|
|
}
|
|
// If this is an asm, and a PhysReg alias is used elsewhere as an
|
|
// earlyclobber operand, we can't also use it as an input.
|
|
if (MI.isInlineAsm()) {
|
|
for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
|
|
MachineOperand &MOk = MI.getOperand(k);
|
|
if (MOk.isReg() && MOk.isEarlyClobber() &&
|
|
TRI->regsOverlap(MOk.getReg(), PhysReg)) {
|
|
CanReuse = false;
|
|
DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
|
|
<< " for " << PrintReg(VirtReg) << ": " << MOk
|
|
<< '\n');
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CanReuse) {
|
|
// If this stack slot value is already available, reuse it!
|
|
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(PhysReg) << " for " << PrintReg(VirtReg)
|
|
<< " instead of reloading into "
|
|
<< PrintReg(VRM->getPhys(VirtReg), TRI) << '\n');
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
|
|
// Reusing a physreg may resurrect it. But we expect ProcessUses to
|
|
// update the kill flags for the current instr after processing it.
|
|
|
|
// The only technical detail we have is that we don't know that
|
|
// PhysReg won't be clobbered by a reloaded stack slot that occurs
|
|
// later in the instruction. In particular, consider 'op V1, V2'.
|
|
// If V1 is available in physreg R0, we would choose to reuse it
|
|
// here, instead of reloading it into the register the allocator
|
|
// indicated (say R1). However, V2 might have to be reloaded
|
|
// later, and it might indicate that it needs to live in R0. When
|
|
// this occurs, we need to have information available that
|
|
// indicates it is safe to use R1 for the reload instead of R0.
|
|
//
|
|
// To further complicate matters, we might conflict with an alias,
|
|
// or R0 and R1 might not be compatible with each other. In this
|
|
// case, we actually insert a reload for V1 in R1, ensuring that
|
|
// we can get at R0 or its alias.
|
|
ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
|
|
VRM->getPhys(VirtReg), VirtReg);
|
|
if (isTied)
|
|
// Only mark it clobbered if this is a use&def operand.
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
++NumReused;
|
|
|
|
if (MI.getOperand(i).isKill() &&
|
|
ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
|
|
|
|
// The store of this spilled value is potentially dead, but we
|
|
// won't know for certain until we've confirmed that the re-use
|
|
// above is valid, which means waiting until the other operands
|
|
// are processed. For now we just track the spill slot, we'll
|
|
// remove it after the other operands are processed if valid.
|
|
|
|
PotentialDeadStoreSlots.push_back(ReuseSlot);
|
|
}
|
|
|
|
// Mark is isKill if it's there no other uses of the same virtual
|
|
// register and it's not a two-address operand. IsKill will be
|
|
// unset if reg is reused.
|
|
if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
|
|
MI.getOperand(i).setIsKill();
|
|
KilledMIRegs.insert(VirtReg);
|
|
}
|
|
continue;
|
|
} // CanReuse
|
|
|
|
// Otherwise we have a situation where we have a two-address instruction
|
|
// whose mod/ref operand needs to be reloaded. This reload is already
|
|
// available in some register "PhysReg", but if we used PhysReg as the
|
|
// operand to our 2-addr instruction, the instruction would modify
|
|
// PhysReg. This isn't cool if something later uses PhysReg and expects
|
|
// to get its initial value.
|
|
//
|
|
// To avoid this problem, and to avoid doing a load right after a store,
|
|
// we emit a copy from PhysReg into the designated register for this
|
|
// operand.
|
|
//
|
|
// This case also applies to an earlyclobber'd PhysReg.
|
|
unsigned DesignatedReg = VRM->getPhys(VirtReg);
|
|
assert(DesignatedReg && "Must map virtreg to physreg!");
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
DesignatedReg = ReusedOperands.
|
|
GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
|
|
MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
|
|
// If the mapped designated register is actually the physreg we have
|
|
// incoming, we don't need to inserted a dead copy.
|
|
if (DesignatedReg == PhysReg) {
|
|
// If this stack slot value is already available, reuse it!
|
|
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
|
|
DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
|
|
<< " for " << PrintReg(VirtReg)
|
|
<< " instead of reloading into same physreg.\n");
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
ReusedOperands.markClobbered(RReg);
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
MRI->setPhysRegUsed(DesignatedReg);
|
|
ReusedOperands.markClobbered(DesignatedReg);
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
|
|
SSorRMId, TII, *MBB->getParent());
|
|
MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY),
|
|
DesignatedReg).addReg(PhysReg);
|
|
CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
|
|
|
|
// This invalidates DesignatedReg.
|
|
Spills.ClobberPhysReg(DesignatedReg);
|
|
|
|
Spills.addAvailable(ReuseSlot, DesignatedReg);
|
|
unsigned RReg =
|
|
SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
++NumReused;
|
|
continue;
|
|
} // if (PhysReg)
|
|
|
|
// Otherwise, reload it and remember that we have it.
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
assert(PhysReg && "Must map virtreg to physreg!");
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
|
|
Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
|
|
MRI->setPhysRegUsed(PhysReg);
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
if (AvoidReload)
|
|
++NumAvoided;
|
|
else {
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
|
|
SSorRMId, TII, *MBB->getParent());
|
|
|
|
if (DoReMat) {
|
|
ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
|
|
} else {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SSorRMId, LoadMI);
|
|
++NumLoads;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
// This invalidates PhysReg.
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
if (!DoReMat)
|
|
MaybeDeadStores[SSorRMId] = NULL;
|
|
Spills.addAvailable(SSorRMId, PhysReg);
|
|
// Assumes this is the last use. IsKill will be unset if reg is reused
|
|
// unless it's a two-address operand.
|
|
if (!MI.isRegTiedToDefOperand(i) &&
|
|
KilledMIRegs.count(VirtReg) == 0) {
|
|
MI.getOperand(i).setIsKill();
|
|
KilledMIRegs.insert(VirtReg);
|
|
}
|
|
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
}
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
}
|
|
|
|
// Ok - now we can remove stores that have been confirmed dead.
|
|
for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
|
|
// This was the last use and the spilled value is still available
|
|
// for reuse. That means the spill was unnecessary!
|
|
int PDSSlot = PotentialDeadStoreSlots[j];
|
|
MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
|
|
if (DeadStore) {
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
|
|
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
|
|
EraseInstr(DeadStore);
|
|
MaybeDeadStores[PDSSlot] = NULL;
|
|
++NumDSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rewriteMBB - Keep track of which spills are available even after the
|
|
/// register allocator is done with them. If possible, avoid reloading vregs.
|
|
void
|
|
LocalRewriter::RewriteMBB(LiveIntervals *LIs,
|
|
AvailableSpills &Spills, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
|
|
<< MBB->getName() << "':\n");
|
|
|
|
MachineFunction &MF = *MBB->getParent();
|
|
|
|
// MaybeDeadStores - When we need to write a value back into a stack slot,
|
|
// keep track of the inserted store. If the stack slot value is never read
|
|
// (because the value was used from some available register, for example), and
|
|
// subsequently stored to, the original store is dead. This map keeps track
|
|
// of inserted stores that are not used. If we see a subsequent store to the
|
|
// same stack slot, the original store is deleted.
|
|
std::vector<MachineInstr*> MaybeDeadStores;
|
|
MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
|
|
|
|
// ReMatDefs - These are rematerializable def MIs which are not deleted.
|
|
SmallSet<MachineInstr*, 4> ReMatDefs;
|
|
|
|
// Keep track of the registers we have already spilled in case there are
|
|
// multiple defs of the same register in MI.
|
|
SmallSet<unsigned, 8> SpilledMIRegs;
|
|
|
|
RegKills.reset();
|
|
KillOps.clear();
|
|
KillOps.resize(TRI->getNumRegs(), NULL);
|
|
|
|
DistanceMap.clear();
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E; ) {
|
|
MachineBasicBlock::iterator NextMII = llvm::next(MII);
|
|
|
|
if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
|
|
NextMII = llvm::next(MII);
|
|
|
|
if (InsertEmergencySpills(MII))
|
|
NextMII = llvm::next(MII);
|
|
|
|
InsertRestores(MII, Spills, RegKills, KillOps);
|
|
|
|
if (InsertSpills(MII))
|
|
NextMII = llvm::next(MII);
|
|
|
|
bool Erased = false;
|
|
bool BackTracked = false;
|
|
MachineInstr &MI = *MII;
|
|
|
|
// Remember DbgValue's which reference stack slots.
|
|
if (MI.isDebugValue() && MI.getOperand(0).isFI())
|
|
Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
|
|
|
|
/// ReusedOperands - Keep track of operand reuse in case we need to undo
|
|
/// reuse.
|
|
ReuseInfo ReusedOperands(MI, TRI);
|
|
|
|
ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
|
|
|
|
DEBUG(dbgs() << '\t' << MI);
|
|
|
|
|
|
// If we have folded references to memory operands, make sure we clear all
|
|
// physical registers that may contain the value of the spilled virtual
|
|
// register
|
|
|
|
// Copy the folded virts to a small vector, we may change MI2VirtMap.
|
|
SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
|
|
// C++0x FTW!
|
|
for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
|
|
VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
|
|
VRM->getFoldedVirts(&MI);
|
|
FVRange.first != FVRange.second; ++FVRange.first)
|
|
FoldedVirts.push_back(FVRange.first->second);
|
|
|
|
SmallSet<int, 2> FoldedSS;
|
|
for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
|
|
unsigned VirtReg = FoldedVirts[FVI].first;
|
|
VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
|
|
DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR);
|
|
|
|
int SS = VRM->getStackSlot(VirtReg);
|
|
if (SS == VirtRegMap::NO_STACK_SLOT)
|
|
continue;
|
|
FoldedSS.insert(SS);
|
|
DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
|
|
|
|
// If this folded instruction is just a use, check to see if it's a
|
|
// straight load from the virt reg slot.
|
|
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
|
|
int FrameIdx;
|
|
unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
|
|
if (DestReg && FrameIdx == SS) {
|
|
// If this spill slot is available, turn it into a copy (or nothing)
|
|
// instead of leaving it as a load!
|
|
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
|
|
DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
|
|
if (DestReg != InReg) {
|
|
MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
|
|
MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY))
|
|
.addReg(DestReg, RegState::Define, DefMO->getSubReg())
|
|
.addReg(InReg, RegState::Kill);
|
|
// Revisit the copy so we make sure to notice the effects of the
|
|
// operation on the destreg (either needing to RA it if it's
|
|
// virtual or needing to clobber any values if it's physical).
|
|
NextMII = CopyMI;
|
|
NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
BackTracked = true;
|
|
} else {
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
// InvalidateKills resurrects any prior kill of the copy's source
|
|
// allowing the source reg to be reused in place of the copy.
|
|
Spills.disallowClobberPhysReg(InReg);
|
|
}
|
|
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
} else {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (PhysReg &&
|
|
TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
|
|
MBB->insert(MII, NewMIs[0]);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
--NextMII; // backtrack to the unfolded instruction.
|
|
BackTracked = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
MachineInstr* DeadStore = MaybeDeadStores[SS];
|
|
if (DeadStore) {
|
|
bool isDead = !(MR & VirtRegMap::isRef);
|
|
MachineInstr *NewStore = NULL;
|
|
if (MR & VirtRegMap::isModRef) {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
// We can reuse this physreg as long as we are allowed to clobber
|
|
// the value and there isn't an earlier def that has already clobbered
|
|
// the physreg.
|
|
if (PhysReg &&
|
|
!ReusedOperands.isClobbered(PhysReg) &&
|
|
Spills.canClobberPhysReg(PhysReg) &&
|
|
!TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
|
|
MachineOperand *KillOpnd =
|
|
DeadStore->findRegisterUseOperand(PhysReg, true);
|
|
// Note, if the store is storing a sub-register, it's possible the
|
|
// super-register is needed below.
|
|
if (KillOpnd && !KillOpnd->getSubReg() &&
|
|
TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
|
|
MBB->insert(MII, NewMIs[0]);
|
|
NewStore = NewMIs[1];
|
|
MBB->insert(MII, NewStore);
|
|
VRM->addSpillSlotUse(SS, NewStore);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
--NextMII;
|
|
--NextMII; // backtrack to the unfolded instruction.
|
|
BackTracked = true;
|
|
isDead = true;
|
|
++NumSUnfold;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isDead) { // Previous store is dead.
|
|
// If we get here, the store is dead, nuke it now.
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
|
|
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
|
|
EraseInstr(DeadStore);
|
|
if (!NewStore)
|
|
++NumDSE;
|
|
}
|
|
|
|
MaybeDeadStores[SS] = NULL;
|
|
if (NewStore) {
|
|
// Treat this store as a spill merged into a copy. That makes the
|
|
// stack slot value available.
|
|
VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
|
|
// If the spill slot value is available, and this is a new definition of
|
|
// the value, the value is not available anymore.
|
|
if (MR & VirtRegMap::isMod) {
|
|
// Notice that the value in this stack slot has been modified.
|
|
Spills.ModifyStackSlotOrReMat(SS);
|
|
|
|
// If this is *just* a mod of the value, check to see if this is just a
|
|
// store to the spill slot (i.e. the spill got merged into the copy). If
|
|
// so, realize that the vreg is available now, and add the store to the
|
|
// MaybeDeadStore info.
|
|
int StackSlot;
|
|
if (!(MR & VirtRegMap::isRef)) {
|
|
if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
|
|
"Src hasn't been allocated yet?");
|
|
|
|
if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
|
|
Spills, RegKills, KillOps, TRI)) {
|
|
NextMII = llvm::next(MII);
|
|
BackTracked = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
// Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
|
|
// this as a potentially dead store in case there is a subsequent
|
|
// store into the stack slot without a read from it.
|
|
MaybeDeadStores[StackSlot] = &MI;
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register
|
|
// available in PhysReg.
|
|
Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled defs.
|
|
SpilledMIRegs.clear();
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!(MO.isReg() && MO.getReg() && MO.isDef()))
|
|
continue;
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
// Also check if it's copying from an "undef", if so, we can't
|
|
// eliminate this or else the undef marker is lost and it will
|
|
// confuses the scavenger. This is extremely rare.
|
|
if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
|
|
MI.getNumOperands() == 2) {
|
|
++NumDCE;
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
SmallVector<unsigned, 2> KillRegs;
|
|
InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
|
|
if (MO.isDead() && !KillRegs.empty()) {
|
|
// Source register or an implicit super/sub-register use is killed.
|
|
assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
|
|
// Last def is now dead.
|
|
TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
|
|
}
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
Spills.disallowClobberPhysReg(VirtReg);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
// If it's not a no-op copy, it clobbers the value in the destreg.
|
|
Spills.ClobberPhysReg(VirtReg);
|
|
ReusedOperands.markClobbered(VirtReg);
|
|
|
|
// Check to see if this instruction is a load from a stack slot into
|
|
// a register. If so, this provides the stack slot value in the reg.
|
|
int FrameIdx;
|
|
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
|
assert(DestReg == VirtReg && "Unknown load situation!");
|
|
|
|
// If it is a folded reference, then it's not safe to clobber.
|
|
bool Folded = FoldedSS.count(FrameIdx);
|
|
// Otherwise, if it wasn't available, remember that it is now!
|
|
Spills.addAvailable(FrameIdx, DestReg, !Folded);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
unsigned SubIdx = MO.getSubReg();
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
if (DoReMat)
|
|
ReMatDefs.insert(&MI);
|
|
|
|
// The only vregs left are stack slot definitions.
|
|
int StackSlot = VRM->getStackSlot(VirtReg);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
|
|
|
|
// If this def is part of a two-address operand, make sure to execute
|
|
// the store from the correct physical register.
|
|
unsigned PhysReg;
|
|
unsigned TiedOp;
|
|
if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
|
|
PhysReg = MI.getOperand(TiedOp).getReg();
|
|
if (SubIdx) {
|
|
unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
|
|
assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
|
|
"Can't find corresponding super-register!");
|
|
PhysReg = SuperReg;
|
|
}
|
|
} else {
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
if (ReusedOperands.isClobbered(PhysReg)) {
|
|
// Another def has taken the assigned physreg. It must have been a
|
|
// use&def which got it due to reuse. Undo the reuse!
|
|
PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
|
|
Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
}
|
|
}
|
|
|
|
// If StackSlot is available in a register that also holds other stack
|
|
// slots, clobber those stack slots now.
|
|
Spills.ClobberSharingStackSlots(StackSlot);
|
|
|
|
assert(PhysReg && "VR not assigned a physical register?");
|
|
MRI->setPhysRegUsed(PhysReg);
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
ReusedOperands.markClobbered(RReg);
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
|
|
if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
|
|
MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
|
|
SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
|
|
LastStore, Spills, ReMatDefs, RegKills, KillOps);
|
|
NextMII = llvm::next(MII);
|
|
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
if (MI.isIdentityCopy()) {
|
|
++NumDCE;
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
UpdateKills(*LastStore, TRI, RegKills, KillOps);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
ProcessNextInst:
|
|
// Delete dead instructions without side effects.
|
|
if (!Erased && !BackTracked && isSafeToDelete(MI)) {
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
}
|
|
if (!Erased)
|
|
DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
|
|
if (!Erased && !BackTracked) {
|
|
for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
|
|
UpdateKills(*II, TRI, RegKills, KillOps);
|
|
}
|
|
MII = NextMII;
|
|
}
|
|
|
|
}
|
|
|
|
llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
|
|
switch (RewriterOpt) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case local:
|
|
return new LocalRewriter();
|
|
case trivial:
|
|
return new TrivialRewriter();
|
|
}
|
|
}
|