mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-06 05:06:45 +00:00
deff621abd
same, now that getConstant has overloads consistent with ConstantInt::get. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102965 91177308-0d34-0410-b5e6-96231b3b80d8
1354 lines
53 KiB
C++
1354 lines
53 KiB
C++
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the implementation of the scalar evolution expander,
|
|
// which is used to generate the code corresponding to a given scalar evolution
|
|
// expression.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
|
|
/// which must be possible with a noop cast, doing what we can to share
|
|
/// the casts.
|
|
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
|
|
Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
|
|
assert((Op == Instruction::BitCast ||
|
|
Op == Instruction::PtrToInt ||
|
|
Op == Instruction::IntToPtr) &&
|
|
"InsertNoopCastOfTo cannot perform non-noop casts!");
|
|
assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
|
|
"InsertNoopCastOfTo cannot change sizes!");
|
|
|
|
// Short-circuit unnecessary bitcasts.
|
|
if (Op == Instruction::BitCast && V->getType() == Ty)
|
|
return V;
|
|
|
|
// Short-circuit unnecessary inttoptr<->ptrtoint casts.
|
|
if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
|
|
SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
|
|
if (CastInst *CI = dyn_cast<CastInst>(V))
|
|
if ((CI->getOpcode() == Instruction::PtrToInt ||
|
|
CI->getOpcode() == Instruction::IntToPtr) &&
|
|
SE.getTypeSizeInBits(CI->getType()) ==
|
|
SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
|
|
return CI->getOperand(0);
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
if ((CE->getOpcode() == Instruction::PtrToInt ||
|
|
CE->getOpcode() == Instruction::IntToPtr) &&
|
|
SE.getTypeSizeInBits(CE->getType()) ==
|
|
SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
|
return CE->getOperand(0);
|
|
}
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return ConstantExpr::getCast(Op, C, Ty);
|
|
|
|
if (Argument *A = dyn_cast<Argument>(V)) {
|
|
// Check to see if there is already a cast!
|
|
for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
|
|
UI != E; ++UI)
|
|
if ((*UI)->getType() == Ty)
|
|
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
|
|
if (CI->getOpcode() == Op) {
|
|
// If the cast isn't the first instruction of the function, move it.
|
|
if (BasicBlock::iterator(CI) !=
|
|
A->getParent()->getEntryBlock().begin()) {
|
|
// Recreate the cast at the beginning of the entry block.
|
|
// The old cast is left in place in case it is being used
|
|
// as an insert point.
|
|
Instruction *NewCI =
|
|
CastInst::Create(Op, V, Ty, "",
|
|
A->getParent()->getEntryBlock().begin());
|
|
NewCI->takeName(CI);
|
|
CI->replaceAllUsesWith(NewCI);
|
|
return NewCI;
|
|
}
|
|
return CI;
|
|
}
|
|
|
|
Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
|
|
A->getParent()->getEntryBlock().begin());
|
|
rememberInstruction(I);
|
|
return I;
|
|
}
|
|
|
|
Instruction *I = cast<Instruction>(V);
|
|
|
|
// Check to see if there is already a cast. If there is, use it.
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI) {
|
|
if ((*UI)->getType() == Ty)
|
|
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
|
|
if (CI->getOpcode() == Op) {
|
|
BasicBlock::iterator It = I; ++It;
|
|
if (isa<InvokeInst>(I))
|
|
It = cast<InvokeInst>(I)->getNormalDest()->begin();
|
|
while (isa<PHINode>(It)) ++It;
|
|
if (It != BasicBlock::iterator(CI)) {
|
|
// Recreate the cast after the user.
|
|
// The old cast is left in place in case it is being used
|
|
// as an insert point.
|
|
Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
|
|
NewCI->takeName(CI);
|
|
CI->replaceAllUsesWith(NewCI);
|
|
rememberInstruction(NewCI);
|
|
return NewCI;
|
|
}
|
|
rememberInstruction(CI);
|
|
return CI;
|
|
}
|
|
}
|
|
BasicBlock::iterator IP = I; ++IP;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
|
|
IP = II->getNormalDest()->begin();
|
|
while (isa<PHINode>(IP)) ++IP;
|
|
Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
|
|
rememberInstruction(CI);
|
|
return CI;
|
|
}
|
|
|
|
/// InsertBinop - Insert the specified binary operator, doing a small amount
|
|
/// of work to avoid inserting an obviously redundant operation.
|
|
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
|
|
Value *LHS, Value *RHS) {
|
|
// Fold a binop with constant operands.
|
|
if (Constant *CLHS = dyn_cast<Constant>(LHS))
|
|
if (Constant *CRHS = dyn_cast<Constant>(RHS))
|
|
return ConstantExpr::get(Opcode, CLHS, CRHS);
|
|
|
|
// Do a quick scan to see if we have this binop nearby. If so, reuse it.
|
|
unsigned ScanLimit = 6;
|
|
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
|
|
// Scanning starts from the last instruction before the insertion point.
|
|
BasicBlock::iterator IP = Builder.GetInsertPoint();
|
|
if (IP != BlockBegin) {
|
|
--IP;
|
|
for (; ScanLimit; --IP, --ScanLimit) {
|
|
// Don't count dbg.value against the ScanLimit, to avoid perturbing the
|
|
// generated code.
|
|
if (isa<DbgInfoIntrinsic>(IP))
|
|
ScanLimit++;
|
|
if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
|
|
IP->getOperand(1) == RHS)
|
|
return IP;
|
|
if (IP == BlockBegin) break;
|
|
}
|
|
}
|
|
|
|
// Save the original insertion point so we can restore it when we're done.
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
|
|
// Move the insertion point out of as many loops as we can.
|
|
while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
|
|
if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) break;
|
|
|
|
// Ok, move up a level.
|
|
Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
|
|
}
|
|
|
|
// If we haven't found this binop, insert it.
|
|
Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
|
|
rememberInstruction(BO);
|
|
|
|
// Restore the original insert point.
|
|
if (SaveInsertBB)
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
|
|
return BO;
|
|
}
|
|
|
|
/// FactorOutConstant - Test if S is divisible by Factor, using signed
|
|
/// division. If so, update S with Factor divided out and return true.
|
|
/// S need not be evenly divisible if a reasonable remainder can be
|
|
/// computed.
|
|
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
|
|
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
|
|
/// check to see if the divide was folded.
|
|
static bool FactorOutConstant(const SCEV *&S,
|
|
const SCEV *&Remainder,
|
|
const SCEV *Factor,
|
|
ScalarEvolution &SE,
|
|
const TargetData *TD) {
|
|
// Everything is divisible by one.
|
|
if (Factor->isOne())
|
|
return true;
|
|
|
|
// x/x == 1.
|
|
if (S == Factor) {
|
|
S = SE.getConstant(S->getType(), 1);
|
|
return true;
|
|
}
|
|
|
|
// For a Constant, check for a multiple of the given factor.
|
|
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
|
|
// 0/x == 0.
|
|
if (C->isZero())
|
|
return true;
|
|
// Check for divisibility.
|
|
if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
|
|
ConstantInt *CI =
|
|
ConstantInt::get(SE.getContext(),
|
|
C->getValue()->getValue().sdiv(
|
|
FC->getValue()->getValue()));
|
|
// If the quotient is zero and the remainder is non-zero, reject
|
|
// the value at this scale. It will be considered for subsequent
|
|
// smaller scales.
|
|
if (!CI->isZero()) {
|
|
const SCEV *Div = SE.getConstant(CI);
|
|
S = Div;
|
|
Remainder =
|
|
SE.getAddExpr(Remainder,
|
|
SE.getConstant(C->getValue()->getValue().srem(
|
|
FC->getValue()->getValue())));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// In a Mul, check if there is a constant operand which is a multiple
|
|
// of the given factor.
|
|
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
|
|
if (TD) {
|
|
// With TargetData, the size is known. Check if there is a constant
|
|
// operand which is a multiple of the given factor. If so, we can
|
|
// factor it.
|
|
const SCEVConstant *FC = cast<SCEVConstant>(Factor);
|
|
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
|
|
if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
|
|
SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
|
|
NewMulOps[0] =
|
|
SE.getConstant(C->getValue()->getValue().sdiv(
|
|
FC->getValue()->getValue()));
|
|
S = SE.getMulExpr(NewMulOps);
|
|
return true;
|
|
}
|
|
} else {
|
|
// Without TargetData, check if Factor can be factored out of any of the
|
|
// Mul's operands. If so, we can just remove it.
|
|
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
|
|
const SCEV *SOp = M->getOperand(i);
|
|
const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
|
|
if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
|
|
Remainder->isZero()) {
|
|
SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
|
|
NewMulOps[i] = SOp;
|
|
S = SE.getMulExpr(NewMulOps);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// In an AddRec, check if both start and step are divisible.
|
|
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
const SCEV *Step = A->getStepRecurrence(SE);
|
|
const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
|
|
if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
|
|
return false;
|
|
if (!StepRem->isZero())
|
|
return false;
|
|
const SCEV *Start = A->getStart();
|
|
if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
|
|
return false;
|
|
S = SE.getAddRecExpr(Start, Step, A->getLoop());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
|
|
/// is the number of SCEVAddRecExprs present, which are kept at the end of
|
|
/// the list.
|
|
///
|
|
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
|
|
const Type *Ty,
|
|
ScalarEvolution &SE) {
|
|
unsigned NumAddRecs = 0;
|
|
for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
|
|
++NumAddRecs;
|
|
// Group Ops into non-addrecs and addrecs.
|
|
SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
|
|
SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
|
|
// Let ScalarEvolution sort and simplify the non-addrecs list.
|
|
const SCEV *Sum = NoAddRecs.empty() ?
|
|
SE.getConstant(Ty, 0) :
|
|
SE.getAddExpr(NoAddRecs);
|
|
// If it returned an add, use the operands. Otherwise it simplified
|
|
// the sum into a single value, so just use that.
|
|
Ops.clear();
|
|
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
|
|
Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
|
|
else if (!Sum->isZero())
|
|
Ops.push_back(Sum);
|
|
// Then append the addrecs.
|
|
Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
|
|
}
|
|
|
|
/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
|
|
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
|
|
/// This helps expose more opportunities for folding parts of the expressions
|
|
/// into GEP indices.
|
|
///
|
|
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
|
|
const Type *Ty,
|
|
ScalarEvolution &SE) {
|
|
// Find the addrecs.
|
|
SmallVector<const SCEV *, 8> AddRecs;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
|
|
const SCEV *Start = A->getStart();
|
|
if (Start->isZero()) break;
|
|
const SCEV *Zero = SE.getConstant(Ty, 0);
|
|
AddRecs.push_back(SE.getAddRecExpr(Zero,
|
|
A->getStepRecurrence(SE),
|
|
A->getLoop()));
|
|
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
|
|
Ops[i] = Zero;
|
|
Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
|
|
e += Add->getNumOperands();
|
|
} else {
|
|
Ops[i] = Start;
|
|
}
|
|
}
|
|
if (!AddRecs.empty()) {
|
|
// Add the addrecs onto the end of the list.
|
|
Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
|
|
// Resort the operand list, moving any constants to the front.
|
|
SimplifyAddOperands(Ops, Ty, SE);
|
|
}
|
|
}
|
|
|
|
/// expandAddToGEP - Expand an addition expression with a pointer type into
|
|
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
|
|
/// BasicAliasAnalysis and other passes analyze the result. See the rules
|
|
/// for getelementptr vs. inttoptr in
|
|
/// http://llvm.org/docs/LangRef.html#pointeraliasing
|
|
/// for details.
|
|
///
|
|
/// Design note: The correctness of using getelementptr here depends on
|
|
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
|
|
/// they may introduce pointer arithmetic which may not be safely converted
|
|
/// into getelementptr.
|
|
///
|
|
/// Design note: It might seem desirable for this function to be more
|
|
/// loop-aware. If some of the indices are loop-invariant while others
|
|
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
|
|
/// loop-invariant portions of the overall computation outside the loop.
|
|
/// However, there are a few reasons this is not done here. Hoisting simple
|
|
/// arithmetic is a low-level optimization that often isn't very
|
|
/// important until late in the optimization process. In fact, passes
|
|
/// like InstructionCombining will combine GEPs, even if it means
|
|
/// pushing loop-invariant computation down into loops, so even if the
|
|
/// GEPs were split here, the work would quickly be undone. The
|
|
/// LoopStrengthReduction pass, which is usually run quite late (and
|
|
/// after the last InstructionCombining pass), takes care of hoisting
|
|
/// loop-invariant portions of expressions, after considering what
|
|
/// can be folded using target addressing modes.
|
|
///
|
|
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
|
|
const SCEV *const *op_end,
|
|
const PointerType *PTy,
|
|
const Type *Ty,
|
|
Value *V) {
|
|
const Type *ElTy = PTy->getElementType();
|
|
SmallVector<Value *, 4> GepIndices;
|
|
SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
|
|
bool AnyNonZeroIndices = false;
|
|
|
|
// Split AddRecs up into parts as either of the parts may be usable
|
|
// without the other.
|
|
SplitAddRecs(Ops, Ty, SE);
|
|
|
|
// Descend down the pointer's type and attempt to convert the other
|
|
// operands into GEP indices, at each level. The first index in a GEP
|
|
// indexes into the array implied by the pointer operand; the rest of
|
|
// the indices index into the element or field type selected by the
|
|
// preceding index.
|
|
for (;;) {
|
|
// If the scale size is not 0, attempt to factor out a scale for
|
|
// array indexing.
|
|
SmallVector<const SCEV *, 8> ScaledOps;
|
|
if (ElTy->isSized()) {
|
|
const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
|
|
if (!ElSize->isZero()) {
|
|
SmallVector<const SCEV *, 8> NewOps;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
const SCEV *Op = Ops[i];
|
|
const SCEV *Remainder = SE.getConstant(Ty, 0);
|
|
if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
|
|
// Op now has ElSize factored out.
|
|
ScaledOps.push_back(Op);
|
|
if (!Remainder->isZero())
|
|
NewOps.push_back(Remainder);
|
|
AnyNonZeroIndices = true;
|
|
} else {
|
|
// The operand was not divisible, so add it to the list of operands
|
|
// we'll scan next iteration.
|
|
NewOps.push_back(Ops[i]);
|
|
}
|
|
}
|
|
// If we made any changes, update Ops.
|
|
if (!ScaledOps.empty()) {
|
|
Ops = NewOps;
|
|
SimplifyAddOperands(Ops, Ty, SE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record the scaled array index for this level of the type. If
|
|
// we didn't find any operands that could be factored, tentatively
|
|
// assume that element zero was selected (since the zero offset
|
|
// would obviously be folded away).
|
|
Value *Scaled = ScaledOps.empty() ?
|
|
Constant::getNullValue(Ty) :
|
|
expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
|
|
GepIndices.push_back(Scaled);
|
|
|
|
// Collect struct field index operands.
|
|
while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
|
|
bool FoundFieldNo = false;
|
|
// An empty struct has no fields.
|
|
if (STy->getNumElements() == 0) break;
|
|
if (SE.TD) {
|
|
// With TargetData, field offsets are known. See if a constant offset
|
|
// falls within any of the struct fields.
|
|
if (Ops.empty()) break;
|
|
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
|
|
if (SE.getTypeSizeInBits(C->getType()) <= 64) {
|
|
const StructLayout &SL = *SE.TD->getStructLayout(STy);
|
|
uint64_t FullOffset = C->getValue()->getZExtValue();
|
|
if (FullOffset < SL.getSizeInBytes()) {
|
|
unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
|
|
GepIndices.push_back(
|
|
ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
|
|
ElTy = STy->getTypeAtIndex(ElIdx);
|
|
Ops[0] =
|
|
SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
|
|
AnyNonZeroIndices = true;
|
|
FoundFieldNo = true;
|
|
}
|
|
}
|
|
} else {
|
|
// Without TargetData, just check for an offsetof expression of the
|
|
// appropriate struct type.
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
|
|
const Type *CTy;
|
|
Constant *FieldNo;
|
|
if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
|
|
GepIndices.push_back(FieldNo);
|
|
ElTy =
|
|
STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
|
|
Ops[i] = SE.getConstant(Ty, 0);
|
|
AnyNonZeroIndices = true;
|
|
FoundFieldNo = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If no struct field offsets were found, tentatively assume that
|
|
// field zero was selected (since the zero offset would obviously
|
|
// be folded away).
|
|
if (!FoundFieldNo) {
|
|
ElTy = STy->getTypeAtIndex(0u);
|
|
GepIndices.push_back(
|
|
Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
|
|
}
|
|
}
|
|
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
|
|
ElTy = ATy->getElementType();
|
|
else
|
|
break;
|
|
}
|
|
|
|
// If none of the operands were convertible to proper GEP indices, cast
|
|
// the base to i8* and do an ugly getelementptr with that. It's still
|
|
// better than ptrtoint+arithmetic+inttoptr at least.
|
|
if (!AnyNonZeroIndices) {
|
|
// Cast the base to i8*.
|
|
V = InsertNoopCastOfTo(V,
|
|
Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
|
|
|
|
// Expand the operands for a plain byte offset.
|
|
Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
|
|
|
|
// Fold a GEP with constant operands.
|
|
if (Constant *CLHS = dyn_cast<Constant>(V))
|
|
if (Constant *CRHS = dyn_cast<Constant>(Idx))
|
|
return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
|
|
|
|
// Do a quick scan to see if we have this GEP nearby. If so, reuse it.
|
|
unsigned ScanLimit = 6;
|
|
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
|
|
// Scanning starts from the last instruction before the insertion point.
|
|
BasicBlock::iterator IP = Builder.GetInsertPoint();
|
|
if (IP != BlockBegin) {
|
|
--IP;
|
|
for (; ScanLimit; --IP, --ScanLimit) {
|
|
// Don't count dbg.value against the ScanLimit, to avoid perturbing the
|
|
// generated code.
|
|
if (isa<DbgInfoIntrinsic>(IP))
|
|
ScanLimit++;
|
|
if (IP->getOpcode() == Instruction::GetElementPtr &&
|
|
IP->getOperand(0) == V && IP->getOperand(1) == Idx)
|
|
return IP;
|
|
if (IP == BlockBegin) break;
|
|
}
|
|
}
|
|
|
|
// Save the original insertion point so we can restore it when we're done.
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
|
|
// Move the insertion point out of as many loops as we can.
|
|
while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
|
|
if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) break;
|
|
|
|
// Ok, move up a level.
|
|
Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
|
|
}
|
|
|
|
// Emit a GEP.
|
|
Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
|
|
rememberInstruction(GEP);
|
|
|
|
// Restore the original insert point.
|
|
if (SaveInsertBB)
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
|
|
return GEP;
|
|
}
|
|
|
|
// Save the original insertion point so we can restore it when we're done.
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
|
|
// Move the insertion point out of as many loops as we can.
|
|
while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
|
|
if (!L->isLoopInvariant(V)) break;
|
|
|
|
bool AnyIndexNotLoopInvariant = false;
|
|
for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
|
|
E = GepIndices.end(); I != E; ++I)
|
|
if (!L->isLoopInvariant(*I)) {
|
|
AnyIndexNotLoopInvariant = true;
|
|
break;
|
|
}
|
|
if (AnyIndexNotLoopInvariant)
|
|
break;
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader) break;
|
|
|
|
// Ok, move up a level.
|
|
Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
|
|
}
|
|
|
|
// Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
|
|
// because ScalarEvolution may have changed the address arithmetic to
|
|
// compute a value which is beyond the end of the allocated object.
|
|
Value *Casted = V;
|
|
if (V->getType() != PTy)
|
|
Casted = InsertNoopCastOfTo(Casted, PTy);
|
|
Value *GEP = Builder.CreateGEP(Casted,
|
|
GepIndices.begin(),
|
|
GepIndices.end(),
|
|
"scevgep");
|
|
Ops.push_back(SE.getUnknown(GEP));
|
|
rememberInstruction(GEP);
|
|
|
|
// Restore the original insert point.
|
|
if (SaveInsertBB)
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
|
|
return expand(SE.getAddExpr(Ops));
|
|
}
|
|
|
|
/// isNonConstantNegative - Return true if the specified scev is negated, but
|
|
/// not a constant.
|
|
static bool isNonConstantNegative(const SCEV *F) {
|
|
const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
|
|
if (!Mul) return false;
|
|
|
|
// If there is a constant factor, it will be first.
|
|
const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
|
|
if (!SC) return false;
|
|
|
|
// Return true if the value is negative, this matches things like (-42 * V).
|
|
return SC->getValue()->getValue().isNegative();
|
|
}
|
|
|
|
/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
|
|
/// SCEV expansion. If they are nested, this is the most nested. If they are
|
|
/// neighboring, pick the later.
|
|
static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
|
|
DominatorTree &DT) {
|
|
if (!A) return B;
|
|
if (!B) return A;
|
|
if (A->contains(B)) return B;
|
|
if (B->contains(A)) return A;
|
|
if (DT.dominates(A->getHeader(), B->getHeader())) return B;
|
|
if (DT.dominates(B->getHeader(), A->getHeader())) return A;
|
|
return A; // Arbitrarily break the tie.
|
|
}
|
|
|
|
/// GetRelevantLoop - Get the most relevant loop associated with the given
|
|
/// expression, according to PickMostRelevantLoop.
|
|
static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
|
|
DominatorTree &DT) {
|
|
if (isa<SCEVConstant>(S))
|
|
return 0;
|
|
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
|
|
return LI.getLoopFor(I->getParent());
|
|
return 0;
|
|
}
|
|
if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
|
|
const Loop *L = 0;
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
|
|
L = AR->getLoop();
|
|
for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
|
|
I != E; ++I)
|
|
L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
|
|
return L;
|
|
}
|
|
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
|
|
return GetRelevantLoop(C->getOperand(), LI, DT);
|
|
if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
|
|
return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
|
|
GetRelevantLoop(D->getRHS(), LI, DT),
|
|
DT);
|
|
llvm_unreachable("Unexpected SCEV type!");
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// LoopCompare - Compare loops by PickMostRelevantLoop.
|
|
class LoopCompare {
|
|
DominatorTree &DT;
|
|
public:
|
|
explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
|
|
|
|
bool operator()(std::pair<const Loop *, const SCEV *> LHS,
|
|
std::pair<const Loop *, const SCEV *> RHS) const {
|
|
// Compare loops with PickMostRelevantLoop.
|
|
if (LHS.first != RHS.first)
|
|
return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
|
|
|
|
// If one operand is a non-constant negative and the other is not,
|
|
// put the non-constant negative on the right so that a sub can
|
|
// be used instead of a negate and add.
|
|
if (isNonConstantNegative(LHS.second)) {
|
|
if (!isNonConstantNegative(RHS.second))
|
|
return false;
|
|
} else if (isNonConstantNegative(RHS.second))
|
|
return true;
|
|
|
|
// Otherwise they are equivalent according to this comparison.
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
|
|
// Collect all the add operands in a loop, along with their associated loops.
|
|
// Iterate in reverse so that constants are emitted last, all else equal, and
|
|
// so that pointer operands are inserted first, which the code below relies on
|
|
// to form more involved GEPs.
|
|
SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
|
|
for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
|
|
E(S->op_begin()); I != E; ++I)
|
|
OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
|
|
*I));
|
|
|
|
// Sort by loop. Use a stable sort so that constants follow non-constants and
|
|
// pointer operands precede non-pointer operands.
|
|
std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
|
|
|
|
// Emit instructions to add all the operands. Hoist as much as possible
|
|
// out of loops, and form meaningful getelementptrs where possible.
|
|
Value *Sum = 0;
|
|
for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
|
|
I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
|
|
const Loop *CurLoop = I->first;
|
|
const SCEV *Op = I->second;
|
|
if (!Sum) {
|
|
// This is the first operand. Just expand it.
|
|
Sum = expand(Op);
|
|
++I;
|
|
} else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
|
|
// The running sum expression is a pointer. Try to form a getelementptr
|
|
// at this level with that as the base.
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
for (; I != E && I->first == CurLoop; ++I)
|
|
NewOps.push_back(I->second);
|
|
Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
|
|
} else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
|
|
// The running sum is an integer, and there's a pointer at this level.
|
|
// Try to form a getelementptr. If the running sum is instructions,
|
|
// use a SCEVUnknown to avoid re-analyzing them.
|
|
SmallVector<const SCEV *, 4> NewOps;
|
|
NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
|
|
SE.getSCEV(Sum));
|
|
for (++I; I != E && I->first == CurLoop; ++I)
|
|
NewOps.push_back(I->second);
|
|
Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
|
|
} else if (isNonConstantNegative(Op)) {
|
|
// Instead of doing a negate and add, just do a subtract.
|
|
Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
|
|
Sum = InsertNoopCastOfTo(Sum, Ty);
|
|
Sum = InsertBinop(Instruction::Sub, Sum, W);
|
|
++I;
|
|
} else {
|
|
// A simple add.
|
|
Value *W = expandCodeFor(Op, Ty);
|
|
Sum = InsertNoopCastOfTo(Sum, Ty);
|
|
// Canonicalize a constant to the RHS.
|
|
if (isa<Constant>(Sum)) std::swap(Sum, W);
|
|
Sum = InsertBinop(Instruction::Add, Sum, W);
|
|
++I;
|
|
}
|
|
}
|
|
|
|
return Sum;
|
|
}
|
|
|
|
Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
|
|
// Collect all the mul operands in a loop, along with their associated loops.
|
|
// Iterate in reverse so that constants are emitted last, all else equal.
|
|
SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
|
|
for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
|
|
E(S->op_begin()); I != E; ++I)
|
|
OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
|
|
*I));
|
|
|
|
// Sort by loop. Use a stable sort so that constants follow non-constants.
|
|
std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
|
|
|
|
// Emit instructions to mul all the operands. Hoist as much as possible
|
|
// out of loops.
|
|
Value *Prod = 0;
|
|
for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
|
|
I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
|
|
const SCEV *Op = I->second;
|
|
if (!Prod) {
|
|
// This is the first operand. Just expand it.
|
|
Prod = expand(Op);
|
|
++I;
|
|
} else if (Op->isAllOnesValue()) {
|
|
// Instead of doing a multiply by negative one, just do a negate.
|
|
Prod = InsertNoopCastOfTo(Prod, Ty);
|
|
Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
|
|
++I;
|
|
} else {
|
|
// A simple mul.
|
|
Value *W = expandCodeFor(Op, Ty);
|
|
Prod = InsertNoopCastOfTo(Prod, Ty);
|
|
// Canonicalize a constant to the RHS.
|
|
if (isa<Constant>(Prod)) std::swap(Prod, W);
|
|
Prod = InsertBinop(Instruction::Mul, Prod, W);
|
|
++I;
|
|
}
|
|
}
|
|
|
|
return Prod;
|
|
}
|
|
|
|
Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
|
|
Value *LHS = expandCodeFor(S->getLHS(), Ty);
|
|
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
|
|
const APInt &RHS = SC->getValue()->getValue();
|
|
if (RHS.isPowerOf2())
|
|
return InsertBinop(Instruction::LShr, LHS,
|
|
ConstantInt::get(Ty, RHS.logBase2()));
|
|
}
|
|
|
|
Value *RHS = expandCodeFor(S->getRHS(), Ty);
|
|
return InsertBinop(Instruction::UDiv, LHS, RHS);
|
|
}
|
|
|
|
/// Move parts of Base into Rest to leave Base with the minimal
|
|
/// expression that provides a pointer operand suitable for a
|
|
/// GEP expansion.
|
|
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
|
|
ScalarEvolution &SE) {
|
|
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
|
|
Base = A->getStart();
|
|
Rest = SE.getAddExpr(Rest,
|
|
SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
|
|
A->getStepRecurrence(SE),
|
|
A->getLoop()));
|
|
}
|
|
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
|
|
Base = A->getOperand(A->getNumOperands()-1);
|
|
SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
|
|
NewAddOps.back() = Rest;
|
|
Rest = SE.getAddExpr(NewAddOps);
|
|
ExposePointerBase(Base, Rest, SE);
|
|
}
|
|
}
|
|
|
|
/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
|
|
/// the base addrec, which is the addrec without any non-loop-dominating
|
|
/// values, and return the PHI.
|
|
PHINode *
|
|
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
|
|
const Loop *L,
|
|
const Type *ExpandTy,
|
|
const Type *IntTy) {
|
|
// Reuse a previously-inserted PHI, if present.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
if (SE.isSCEVable(PN->getType()) &&
|
|
(SE.getEffectiveSCEVType(PN->getType()) ==
|
|
SE.getEffectiveSCEVType(Normalized->getType())) &&
|
|
SE.getSCEV(PN) == Normalized)
|
|
if (BasicBlock *LatchBlock = L->getLoopLatch()) {
|
|
Instruction *IncV =
|
|
cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
|
|
|
|
// Determine if this is a well-behaved chain of instructions leading
|
|
// back to the PHI. It probably will be, if we're scanning an inner
|
|
// loop already visited by LSR for example, but it wouldn't have
|
|
// to be.
|
|
do {
|
|
if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
|
|
IncV = 0;
|
|
break;
|
|
}
|
|
// If any of the operands don't dominate the insert position, bail.
|
|
// Addrec operands are always loop-invariant, so this can only happen
|
|
// if there are instructions which haven't been hoisted.
|
|
for (User::op_iterator OI = IncV->op_begin()+1,
|
|
OE = IncV->op_end(); OI != OE; ++OI)
|
|
if (Instruction *OInst = dyn_cast<Instruction>(OI))
|
|
if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
|
|
IncV = 0;
|
|
break;
|
|
}
|
|
if (!IncV)
|
|
break;
|
|
// Advance to the next instruction.
|
|
IncV = dyn_cast<Instruction>(IncV->getOperand(0));
|
|
if (!IncV)
|
|
break;
|
|
if (IncV->mayHaveSideEffects()) {
|
|
IncV = 0;
|
|
break;
|
|
}
|
|
} while (IncV != PN);
|
|
|
|
if (IncV) {
|
|
// Ok, the add recurrence looks usable.
|
|
// Remember this PHI, even in post-inc mode.
|
|
InsertedValues.insert(PN);
|
|
// Remember the increment.
|
|
IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
|
|
rememberInstruction(IncV);
|
|
if (L == IVIncInsertLoop)
|
|
do {
|
|
if (SE.DT->dominates(IncV, IVIncInsertPos))
|
|
break;
|
|
// Make sure the increment is where we want it. But don't move it
|
|
// down past a potential existing post-inc user.
|
|
IncV->moveBefore(IVIncInsertPos);
|
|
IVIncInsertPos = IncV;
|
|
IncV = cast<Instruction>(IncV->getOperand(0));
|
|
} while (IncV != PN);
|
|
return PN;
|
|
}
|
|
}
|
|
|
|
// Save the original insertion point so we can restore it when we're done.
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
|
|
// Expand code for the start value.
|
|
Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
|
|
L->getHeader()->begin());
|
|
|
|
// Expand code for the step value. Insert instructions right before the
|
|
// terminator corresponding to the back-edge. Do this before creating the PHI
|
|
// so that PHI reuse code doesn't see an incomplete PHI. If the stride is
|
|
// negative, insert a sub instead of an add for the increment (unless it's a
|
|
// constant, because subtracts of constants are canonicalized to adds).
|
|
const SCEV *Step = Normalized->getStepRecurrence(SE);
|
|
bool isPointer = ExpandTy->isPointerTy();
|
|
bool isNegative = !isPointer && isNonConstantNegative(Step);
|
|
if (isNegative)
|
|
Step = SE.getNegativeSCEV(Step);
|
|
Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
|
|
|
|
// Create the PHI.
|
|
Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
|
|
PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
|
|
rememberInstruction(PN);
|
|
|
|
// Create the step instructions and populate the PHI.
|
|
BasicBlock *Header = L->getHeader();
|
|
for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
|
|
HPI != HPE; ++HPI) {
|
|
BasicBlock *Pred = *HPI;
|
|
|
|
// Add a start value.
|
|
if (!L->contains(Pred)) {
|
|
PN->addIncoming(StartV, Pred);
|
|
continue;
|
|
}
|
|
|
|
// Create a step value and add it to the PHI. If IVIncInsertLoop is
|
|
// non-null and equal to the addrec's loop, insert the instructions
|
|
// at IVIncInsertPos.
|
|
Instruction *InsertPos = L == IVIncInsertLoop ?
|
|
IVIncInsertPos : Pred->getTerminator();
|
|
Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
|
|
Value *IncV;
|
|
// If the PHI is a pointer, use a GEP, otherwise use an add or sub.
|
|
if (isPointer) {
|
|
const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
|
|
// If the step isn't constant, don't use an implicitly scaled GEP, because
|
|
// that would require a multiply inside the loop.
|
|
if (!isa<ConstantInt>(StepV))
|
|
GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
|
|
GEPPtrTy->getAddressSpace());
|
|
const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
|
|
IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
|
|
if (IncV->getType() != PN->getType()) {
|
|
IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
|
|
rememberInstruction(IncV);
|
|
}
|
|
} else {
|
|
IncV = isNegative ?
|
|
Builder.CreateSub(PN, StepV, "lsr.iv.next") :
|
|
Builder.CreateAdd(PN, StepV, "lsr.iv.next");
|
|
rememberInstruction(IncV);
|
|
}
|
|
PN->addIncoming(IncV, Pred);
|
|
}
|
|
|
|
// Restore the original insert point.
|
|
if (SaveInsertBB)
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
|
|
// Remember this PHI, even in post-inc mode.
|
|
InsertedValues.insert(PN);
|
|
|
|
return PN;
|
|
}
|
|
|
|
Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
|
|
const Type *STy = S->getType();
|
|
const Type *IntTy = SE.getEffectiveSCEVType(STy);
|
|
const Loop *L = S->getLoop();
|
|
|
|
// Determine a normalized form of this expression, which is the expression
|
|
// before any post-inc adjustment is made.
|
|
const SCEVAddRecExpr *Normalized = S;
|
|
if (PostIncLoops.count(L)) {
|
|
PostIncLoopSet Loops;
|
|
Loops.insert(L);
|
|
Normalized =
|
|
cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
|
|
Loops, SE, *SE.DT));
|
|
}
|
|
|
|
// Strip off any non-loop-dominating component from the addrec start.
|
|
const SCEV *Start = Normalized->getStart();
|
|
const SCEV *PostLoopOffset = 0;
|
|
if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
|
|
PostLoopOffset = Start;
|
|
Start = SE.getConstant(Normalized->getType(), 0);
|
|
Normalized =
|
|
cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
|
|
Normalized->getStepRecurrence(SE),
|
|
Normalized->getLoop()));
|
|
}
|
|
|
|
// Strip off any non-loop-dominating component from the addrec step.
|
|
const SCEV *Step = Normalized->getStepRecurrence(SE);
|
|
const SCEV *PostLoopScale = 0;
|
|
if (!Step->dominates(L->getHeader(), SE.DT)) {
|
|
PostLoopScale = Step;
|
|
Step = SE.getConstant(Normalized->getType(), 1);
|
|
Normalized =
|
|
cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
|
|
Normalized->getLoop()));
|
|
}
|
|
|
|
// Expand the core addrec. If we need post-loop scaling, force it to
|
|
// expand to an integer type to avoid the need for additional casting.
|
|
const Type *ExpandTy = PostLoopScale ? IntTy : STy;
|
|
PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
|
|
|
|
// Accommodate post-inc mode, if necessary.
|
|
Value *Result;
|
|
if (!PostIncLoops.count(L))
|
|
Result = PN;
|
|
else {
|
|
// In PostInc mode, use the post-incremented value.
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
assert(LatchBlock && "PostInc mode requires a unique loop latch!");
|
|
Result = PN->getIncomingValueForBlock(LatchBlock);
|
|
}
|
|
|
|
// Re-apply any non-loop-dominating scale.
|
|
if (PostLoopScale) {
|
|
Result = InsertNoopCastOfTo(Result, IntTy);
|
|
Result = Builder.CreateMul(Result,
|
|
expandCodeFor(PostLoopScale, IntTy));
|
|
rememberInstruction(Result);
|
|
}
|
|
|
|
// Re-apply any non-loop-dominating offset.
|
|
if (PostLoopOffset) {
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
|
|
const SCEV *const OffsetArray[1] = { PostLoopOffset };
|
|
Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
|
|
} else {
|
|
Result = InsertNoopCastOfTo(Result, IntTy);
|
|
Result = Builder.CreateAdd(Result,
|
|
expandCodeFor(PostLoopOffset, IntTy));
|
|
rememberInstruction(Result);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
|
|
if (!CanonicalMode) return expandAddRecExprLiterally(S);
|
|
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
const Loop *L = S->getLoop();
|
|
|
|
// First check for an existing canonical IV in a suitable type.
|
|
PHINode *CanonicalIV = 0;
|
|
if (PHINode *PN = L->getCanonicalInductionVariable())
|
|
if (SE.isSCEVable(PN->getType()) &&
|
|
SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
|
|
SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
|
|
CanonicalIV = PN;
|
|
|
|
// Rewrite an AddRec in terms of the canonical induction variable, if
|
|
// its type is more narrow.
|
|
if (CanonicalIV &&
|
|
SE.getTypeSizeInBits(CanonicalIV->getType()) >
|
|
SE.getTypeSizeInBits(Ty)) {
|
|
SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
|
|
for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
|
|
NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
|
|
Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
BasicBlock::iterator NewInsertPt =
|
|
llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
|
|
while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
|
|
V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
|
|
NewInsertPt);
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
return V;
|
|
}
|
|
|
|
// {X,+,F} --> X + {0,+,F}
|
|
if (!S->getStart()->isZero()) {
|
|
SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
|
|
NewOps[0] = SE.getConstant(Ty, 0);
|
|
const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
|
|
|
|
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
|
|
// comments on expandAddToGEP for details.
|
|
const SCEV *Base = S->getStart();
|
|
const SCEV *RestArray[1] = { Rest };
|
|
// Dig into the expression to find the pointer base for a GEP.
|
|
ExposePointerBase(Base, RestArray[0], SE);
|
|
// If we found a pointer, expand the AddRec with a GEP.
|
|
if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
|
|
// Make sure the Base isn't something exotic, such as a multiplied
|
|
// or divided pointer value. In those cases, the result type isn't
|
|
// actually a pointer type.
|
|
if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
|
|
Value *StartV = expand(Base);
|
|
assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
|
|
return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
|
|
}
|
|
}
|
|
|
|
// Just do a normal add. Pre-expand the operands to suppress folding.
|
|
return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
|
|
SE.getUnknown(expand(Rest))));
|
|
}
|
|
|
|
// {0,+,1} --> Insert a canonical induction variable into the loop!
|
|
if (S->isAffine() &&
|
|
S->getOperand(1) == SE.getConstant(Ty, 1)) {
|
|
// If there's a canonical IV, just use it.
|
|
if (CanonicalIV) {
|
|
assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
|
|
"IVs with types different from the canonical IV should "
|
|
"already have been handled!");
|
|
return CanonicalIV;
|
|
}
|
|
|
|
// Create and insert the PHI node for the induction variable in the
|
|
// specified loop.
|
|
BasicBlock *Header = L->getHeader();
|
|
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
|
|
rememberInstruction(PN);
|
|
|
|
Constant *One = ConstantInt::get(Ty, 1);
|
|
for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
|
|
HPI != HPE; ++HPI)
|
|
if (L->contains(*HPI)) {
|
|
// Insert a unit add instruction right before the terminator
|
|
// corresponding to the back-edge.
|
|
Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
|
|
(*HPI)->getTerminator());
|
|
rememberInstruction(Add);
|
|
PN->addIncoming(Add, *HPI);
|
|
} else {
|
|
PN->addIncoming(Constant::getNullValue(Ty), *HPI);
|
|
}
|
|
}
|
|
|
|
// {0,+,F} --> {0,+,1} * F
|
|
// Get the canonical induction variable I for this loop.
|
|
Value *I = CanonicalIV ?
|
|
CanonicalIV :
|
|
getOrInsertCanonicalInductionVariable(L, Ty);
|
|
|
|
// If this is a simple linear addrec, emit it now as a special case.
|
|
if (S->isAffine()) // {0,+,F} --> i*F
|
|
return
|
|
expand(SE.getTruncateOrNoop(
|
|
SE.getMulExpr(SE.getUnknown(I),
|
|
SE.getNoopOrAnyExtend(S->getOperand(1),
|
|
I->getType())),
|
|
Ty));
|
|
|
|
// If this is a chain of recurrences, turn it into a closed form, using the
|
|
// folders, then expandCodeFor the closed form. This allows the folders to
|
|
// simplify the expression without having to build a bunch of special code
|
|
// into this folder.
|
|
const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
|
|
|
|
// Promote S up to the canonical IV type, if the cast is foldable.
|
|
const SCEV *NewS = S;
|
|
const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
|
|
if (isa<SCEVAddRecExpr>(Ext))
|
|
NewS = Ext;
|
|
|
|
const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
|
|
//cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
|
|
|
|
// Truncate the result down to the original type, if needed.
|
|
const SCEV *T = SE.getTruncateOrNoop(V, Ty);
|
|
return expand(T);
|
|
}
|
|
|
|
Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
Value *V = expandCodeFor(S->getOperand(),
|
|
SE.getEffectiveSCEVType(S->getOperand()->getType()));
|
|
Value *I = Builder.CreateTrunc(V, Ty, "tmp");
|
|
rememberInstruction(I);
|
|
return I;
|
|
}
|
|
|
|
Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
Value *V = expandCodeFor(S->getOperand(),
|
|
SE.getEffectiveSCEVType(S->getOperand()->getType()));
|
|
Value *I = Builder.CreateZExt(V, Ty, "tmp");
|
|
rememberInstruction(I);
|
|
return I;
|
|
}
|
|
|
|
Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
|
|
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
|
|
Value *V = expandCodeFor(S->getOperand(),
|
|
SE.getEffectiveSCEVType(S->getOperand()->getType()));
|
|
Value *I = Builder.CreateSExt(V, Ty, "tmp");
|
|
rememberInstruction(I);
|
|
return I;
|
|
}
|
|
|
|
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
|
|
Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
|
|
const Type *Ty = LHS->getType();
|
|
for (int i = S->getNumOperands()-2; i >= 0; --i) {
|
|
// In the case of mixed integer and pointer types, do the
|
|
// rest of the comparisons as integer.
|
|
if (S->getOperand(i)->getType() != Ty) {
|
|
Ty = SE.getEffectiveSCEVType(Ty);
|
|
LHS = InsertNoopCastOfTo(LHS, Ty);
|
|
}
|
|
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
|
|
Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
|
|
rememberInstruction(ICmp);
|
|
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
|
|
rememberInstruction(Sel);
|
|
LHS = Sel;
|
|
}
|
|
// In the case of mixed integer and pointer types, cast the
|
|
// final result back to the pointer type.
|
|
if (LHS->getType() != S->getType())
|
|
LHS = InsertNoopCastOfTo(LHS, S->getType());
|
|
return LHS;
|
|
}
|
|
|
|
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
|
|
Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
|
|
const Type *Ty = LHS->getType();
|
|
for (int i = S->getNumOperands()-2; i >= 0; --i) {
|
|
// In the case of mixed integer and pointer types, do the
|
|
// rest of the comparisons as integer.
|
|
if (S->getOperand(i)->getType() != Ty) {
|
|
Ty = SE.getEffectiveSCEVType(Ty);
|
|
LHS = InsertNoopCastOfTo(LHS, Ty);
|
|
}
|
|
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
|
|
Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
|
|
rememberInstruction(ICmp);
|
|
Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
|
|
rememberInstruction(Sel);
|
|
LHS = Sel;
|
|
}
|
|
// In the case of mixed integer and pointer types, cast the
|
|
// final result back to the pointer type.
|
|
if (LHS->getType() != S->getType())
|
|
LHS = InsertNoopCastOfTo(LHS, S->getType());
|
|
return LHS;
|
|
}
|
|
|
|
Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty,
|
|
Instruction *I) {
|
|
BasicBlock::iterator IP = I;
|
|
while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
|
|
++IP;
|
|
Builder.SetInsertPoint(IP->getParent(), IP);
|
|
return expandCodeFor(SH, Ty);
|
|
}
|
|
|
|
Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
|
|
// Expand the code for this SCEV.
|
|
Value *V = expand(SH);
|
|
if (Ty) {
|
|
assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
|
|
"non-trivial casts should be done with the SCEVs directly!");
|
|
V = InsertNoopCastOfTo(V, Ty);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
Value *SCEVExpander::expand(const SCEV *S) {
|
|
// Compute an insertion point for this SCEV object. Hoist the instructions
|
|
// as far out in the loop nest as possible.
|
|
Instruction *InsertPt = Builder.GetInsertPoint();
|
|
for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
|
|
L = L->getParentLoop())
|
|
if (S->isLoopInvariant(L)) {
|
|
if (!L) break;
|
|
if (BasicBlock *Preheader = L->getLoopPreheader())
|
|
InsertPt = Preheader->getTerminator();
|
|
} else {
|
|
// If the SCEV is computable at this level, insert it into the header
|
|
// after the PHIs (and after any other instructions that we've inserted
|
|
// there) so that it is guaranteed to dominate any user inside the loop.
|
|
if (L && S->hasComputableLoopEvolution(L) && !PostIncLoops.count(L))
|
|
InsertPt = L->getHeader()->getFirstNonPHI();
|
|
while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
|
|
InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
|
|
break;
|
|
}
|
|
|
|
// Check to see if we already expanded this here.
|
|
std::map<std::pair<const SCEV *, Instruction *>,
|
|
AssertingVH<Value> >::iterator I =
|
|
InsertedExpressions.find(std::make_pair(S, InsertPt));
|
|
if (I != InsertedExpressions.end())
|
|
return I->second;
|
|
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
|
|
|
|
// Expand the expression into instructions.
|
|
Value *V = visit(S);
|
|
|
|
// Remember the expanded value for this SCEV at this location.
|
|
if (PostIncLoops.empty())
|
|
InsertedExpressions[std::make_pair(S, InsertPt)] = V;
|
|
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
return V;
|
|
}
|
|
|
|
void SCEVExpander::rememberInstruction(Value *I) {
|
|
if (PostIncLoops.empty())
|
|
InsertedValues.insert(I);
|
|
|
|
// If we just claimed an existing instruction and that instruction had
|
|
// been the insert point, adjust the insert point forward so that
|
|
// subsequently inserted code will be dominated.
|
|
if (Builder.GetInsertPoint() == I) {
|
|
BasicBlock::iterator It = cast<Instruction>(I);
|
|
do { ++It; } while (isInsertedInstruction(It) ||
|
|
isa<DbgInfoIntrinsic>(It));
|
|
Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
|
|
}
|
|
}
|
|
|
|
void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
|
|
// If we acquired more instructions since the old insert point was saved,
|
|
// advance past them.
|
|
while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
|
|
|
|
Builder.SetInsertPoint(BB, I);
|
|
}
|
|
|
|
/// getOrInsertCanonicalInductionVariable - This method returns the
|
|
/// canonical induction variable of the specified type for the specified
|
|
/// loop (inserting one if there is none). A canonical induction variable
|
|
/// starts at zero and steps by one on each iteration.
|
|
Value *
|
|
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
|
|
const Type *Ty) {
|
|
assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
|
|
const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
|
|
SE.getConstant(Ty, 1), L);
|
|
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
|
|
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
|
|
Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
|
|
if (SaveInsertBB)
|
|
restoreInsertPoint(SaveInsertBB, SaveInsertPt);
|
|
return V;
|
|
}
|