llvm-6502/lib/VMCore/DominatorInternals.cpp
2007-09-28 01:23:47 +00:00

141 lines
4.2 KiB
C++

//==- DominatorInternals.cpp - Dominator Calculation -------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
// A Fast Algorithm for Finding Dominators in a Flowgraph
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller. The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//
namespace llvm {
void Compress(DominatorTreeBase& DT, BasicBlock *VIn) {
std::vector<BasicBlock *> Work;
SmallPtrSet<BasicBlock *, 32> Visited;
BasicBlock *VInAncestor = DT.Info[VIn].Ancestor;
DominatorTreeBase::InfoRec &VInVAInfo = DT.Info[VInAncestor];
if (VInVAInfo.Ancestor != 0)
Work.push_back(VIn);
while (!Work.empty()) {
BasicBlock *V = Work.back();
DominatorTree::InfoRec &VInfo = DT.Info[V];
BasicBlock *VAncestor = VInfo.Ancestor;
DominatorTreeBase::InfoRec &VAInfo = DT.Info[VAncestor];
// Process Ancestor first
if (Visited.insert(VAncestor) &&
VAInfo.Ancestor != 0) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VAInfo.Ancestor == 0)
continue;
BasicBlock *VAncestorLabel = VAInfo.Label;
BasicBlock *VLabel = VInfo.Label;
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Ancestor = VAInfo.Ancestor;
}
}
BasicBlock *Eval(DominatorTreeBase& DT, BasicBlock *V) {
DominatorTreeBase::InfoRec &VInfo = DT.Info[V];
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
if (VInfo.Ancestor == 0)
return V;
Compress(DT, V);
return VInfo.Label;
#else
// Lower-complexity but slower implementation
if (VInfo.Ancestor == 0)
return VInfo.Label;
Compress(DT, V);
BasicBlock *VLabel = VInfo.Label;
BasicBlock *VAncestorLabel = DT.Info[VInfo.Ancestor].Label;
if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi)
return VLabel;
else
return VAncestorLabel;
#endif
}
void Link(DominatorTreeBase& DT, BasicBlock *V, BasicBlock *W,
DominatorTreeBase::InfoRec &WInfo) {
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
WInfo.Ancestor = V;
#else
// Lower-complexity but slower implementation
BasicBlock *WLabel = WInfo.Label;
unsigned WLabelSemi = DT.Info[WLabel].Semi;
BasicBlock *S = W;
InfoRec *SInfo = &DT.Info[S];
BasicBlock *SChild = SInfo->Child;
InfoRec *SChildInfo = &DT.Info[SChild];
while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) {
BasicBlock *SChildChild = SChildInfo->Child;
if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) {
SChildInfo->Ancestor = S;
SInfo->Child = SChild = SChildChild;
SChildInfo = &DT.Info[SChild];
} else {
SChildInfo->Size = SInfo->Size;
S = SInfo->Ancestor = SChild;
SInfo = SChildInfo;
SChild = SChildChild;
SChildInfo = &DT.Info[SChild];
}
}
DominatorTreeBase::InfoRec &VInfo = DT.Info[V];
SInfo->Label = WLabel;
assert(V != W && "The optimization here will not work in this case!");
unsigned WSize = WInfo.Size;
unsigned VSize = (VInfo.Size += WSize);
if (VSize < 2*WSize)
std::swap(S, VInfo.Child);
while (S) {
SInfo = &DT.Info[S];
SInfo->Ancestor = V;
S = SInfo->Child;
}
#endif
}
}