llvm-6502/lib/Target/CBackend/CBackend.cpp
Anton Korobeynikov 57fc00d5cf Implemented correct stack probing on mingw/cygwin for dynamic alloca's.
Also, fixed static case in presence of eax livin. This fixes PR331

PS: Why don't we still have push/pop instructions? :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36195 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-17 09:20:00 +00:00

2913 lines
96 KiB
C++

//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to C code, compilable by GCC and other C
// compilers.
//
//===----------------------------------------------------------------------===//
#include "CTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Config/config.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
namespace {
// Register the target.
RegisterTarget<CTargetMachine> X("c", " C backend");
/// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
/// any unnamed structure types that are used by the program, and merges
/// external functions with the same name.
///
class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<FindUsedTypes>();
}
virtual const char *getPassName() const {
return "C backend type canonicalizer";
}
virtual bool runOnModule(Module &M);
};
/// CWriter - This class is the main chunk of code that converts an LLVM
/// module to a C translation unit.
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
std::ostream &Out;
IntrinsicLowering *IL;
Mangler *Mang;
LoopInfo *LI;
const Module *TheModule;
const TargetAsmInfo* TAsm;
const TargetData* TD;
std::map<const Type *, std::string> TypeNames;
std::map<const ConstantFP *, unsigned> FPConstantMap;
std::set<Function*> intrinsicPrototypesAlreadyGenerated;
public:
CWriter(std::ostream &o) : Out(o), IL(0), Mang(0), LI(0), TheModule(0),
TAsm(0), TD(0) {}
virtual const char *getPassName() const { return "C backend"; }
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
virtual bool doInitialization(Module &M);
bool runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfo>();
// Get rid of intrinsics we can't handle.
lowerIntrinsics(F);
// Output all floating point constants that cannot be printed accurately.
printFloatingPointConstants(F);
printFunction(F);
FPConstantMap.clear();
return false;
}
virtual bool doFinalization(Module &M) {
// Free memory...
delete Mang;
TypeNames.clear();
return false;
}
std::ostream &printType(std::ostream &Out, const Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false);
std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
void printStructReturnPointerFunctionType(std::ostream &Out,
const PointerType *Ty);
void writeOperand(Value *Operand);
void writeOperandRaw(Value *Operand);
void writeOperandInternal(Value *Operand);
void writeOperandWithCast(Value* Operand, unsigned Opcode);
void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
bool writeInstructionCast(const Instruction &I);
private :
std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
void lowerIntrinsics(Function &F);
void printModule(Module *M);
void printModuleTypes(const TypeSymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
void printFloatingPointConstants(Function &F);
void printFunctionSignature(const Function *F, bool Prototype);
void printFunction(Function &);
void printBasicBlock(BasicBlock *BB);
void printLoop(Loop *L);
void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
void printConstant(Constant *CPV);
void printConstantWithCast(Constant *CPV, unsigned Opcode);
bool printConstExprCast(const ConstantExpr *CE);
void printConstantArray(ConstantArray *CPA);
void printConstantVector(ConstantVector *CP);
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Always inline cmp instructions, even if they are shared by multiple
// expressions. GCC generates horrible code if we don't.
if (isa<CmpInst>(I))
return true;
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I) || isa<VAArgInst>(I))
// Don't inline a load across a store or other bad things!
return false;
// Must not be used in inline asm
if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
// Only inline instruction it if it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
// variables which are accessed with the & operator. This causes GCC to
// generate significantly better code than to emit alloca calls directly.
//
static const AllocaInst *isDirectAlloca(const Value *V) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI) return false;
if (AI->isArrayAllocation())
return 0; // FIXME: we can also inline fixed size array allocas!
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
return 0;
return AI;
}
// isInlineAsm - Check if the instruction is a call to an inline asm chunk
static bool isInlineAsm(const Instruction& I) {
if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
return true;
return false;
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitInvokeInst(InvokeInst &I) {
assert(0 && "Lowerinvoke pass didn't work!");
}
void visitUnwindInst(UnwindInst &I) {
assert(0 && "Lowerinvoke pass didn't work!");
}
void visitUnreachableInst(UnreachableInst &I);
void visitPHINode(PHINode &I);
void visitBinaryOperator(Instruction &I);
void visitICmpInst(ICmpInst &I);
void visitFCmpInst(FCmpInst &I);
void visitCastInst (CastInst &I);
void visitSelectInst(SelectInst &I);
void visitCallInst (CallInst &I);
void visitInlineAsm(CallInst &I);
void visitMallocInst(MallocInst &I);
void visitAllocaInst(AllocaInst &I);
void visitFreeInst (FreeInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitVAArgInst (VAArgInst &I);
void visitInstruction(Instruction &I) {
cerr << "C Writer does not know about " << I;
abort();
}
void outputLValue(Instruction *I) {
Out << " " << GetValueName(I) << " = ";
}
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
void printPHICopiesForSuccessor(BasicBlock *CurBlock,
BasicBlock *Successor, unsigned Indent);
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printIndexingExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E);
std::string GetValueName(const Value *Operand);
};
}
/// This method inserts names for any unnamed structure types that are used by
/// the program, and removes names from structure types that are not used by the
/// program.
///
bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
// Get a set of types that are used by the program...
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
// Loop over the module symbol table, removing types from UT that are
// already named, and removing names for types that are not used.
//
TypeSymbolTable &TST = M.getTypeSymbolTable();
for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
TI != TE; ) {
TypeSymbolTable::iterator I = TI++;
// If this isn't a struct type, remove it from our set of types to name.
// This simplifies emission later.
if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
TST.remove(I);
} else {
// If this is not used, remove it from the symbol table.
std::set<const Type *>::iterator UTI = UT.find(I->second);
if (UTI == UT.end())
TST.remove(I);
else
UT.erase(UTI); // Only keep one name for this type.
}
}
// UT now contains types that are not named. Loop over it, naming
// structure types.
//
bool Changed = false;
unsigned RenameCounter = 0;
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
I != E; ++I)
if (const StructType *ST = dyn_cast<StructType>(*I)) {
while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
++RenameCounter;
Changed = true;
}
// Loop over all external functions and globals. If we have two with
// identical names, merge them.
// FIXME: This code should disappear when we don't allow values with the same
// names when they have different types!
std::map<std::string, GlobalValue*> ExtSymbols;
for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
Function *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
// Do the same for globals.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E;) {
GlobalVariable *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}
/// printStructReturnPointerFunctionType - This is like printType for a struct
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
/// print it as "Struct (*)(...)", for struct return functions.
void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
const PointerType *TheTy) {
const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
std::stringstream FunctionInnards;
FunctionInnards << " (*) (";
bool PrintedType = false;
FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
const Type *RetTy = cast<PointerType>(I->get())->getElementType();
unsigned Idx = 1;
const ParamAttrsList *Attrs = FTy->getParamAttrs();
for (++I; I != E; ++I) {
if (PrintedType)
FunctionInnards << ", ";
printType(FunctionInnards, *I,
/*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
PrintedType = true;
}
if (FTy->isVarArg()) {
if (PrintedType)
FunctionInnards << ", ...";
} else if (!PrintedType) {
FunctionInnards << "void";
}
FunctionInnards << ')';
std::string tstr = FunctionInnards.str();
printType(Out, RetTy,
/*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
}
std::ostream &
CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
"Invalid type for printSimpleType");
switch (Ty->getTypeID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return Out << "bool " << NameSoFar;
else if (NumBits <= 8)
return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
else if (NumBits <= 16)
return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
else if (NumBits <= 32)
return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
else {
assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
}
}
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
default :
cerr << "Unknown primitive type: " << *Ty << "\n";
abort();
}
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
bool isSigned, const std::string &NameSoFar,
bool IgnoreName) {
if (Ty->isPrimitiveType() || Ty->isInteger()) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
}
// Check to see if the type is named.
if (!IgnoreName || isa<OpaqueType>(Ty)) {
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
}
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
std::stringstream FunctionInnards;
FunctionInnards << " (" << NameSoFar << ") (";
const ParamAttrsList *Attrs = FTy->getParamAttrs();
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
FunctionInnards << ", ";
printType(FunctionInnards, *I,
/*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt), "");
++Idx;
}
if (FTy->isVarArg()) {
if (FTy->getNumParams())
FunctionInnards << ", ...";
} else if (!FTy->getNumParams()) {
FunctionInnards << "void";
}
FunctionInnards << ')';
std::string tstr = FunctionInnards.str();
printType(Out, FTy->getReturnType(),
/*isSigned=*/Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt), tstr);
return Out;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
Out << " ";
printType(Out, *I, false, "field" + utostr(Idx++));
Out << ";\n";
}
return Out << '}';
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
if (isa<ArrayType>(PTy->getElementType()) ||
isa<VectorType>(PTy->getElementType()))
ptrName = "(" + ptrName + ")";
return printType(Out, PTy->getElementType(), false, ptrName);
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
if (NumElements == 0) NumElements = 1;
return printType(Out, ATy->getElementType(), false,
NameSoFar + "[" + utostr(NumElements) + "]");
}
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
unsigned NumElements = PTy->getNumElements();
if (NumElements == 0) NumElements = 1;
return printType(Out, PTy->getElementType(), false,
NameSoFar + "[" + utostr(NumElements) + "]");
}
case Type::OpaqueTyID: {
static int Count = 0;
std::string TyName = "struct opaque_" + itostr(Count++);
assert(TypeNames.find(Ty) == TypeNames.end());
TypeNames[Ty] = TyName;
return Out << TyName << ' ' << NameSoFar;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
abort();
}
return Out;
}
void CWriter::printConstantArray(ConstantArray *CPA) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CPA->getType()->getElementType();
bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
isString = false;
if (isString) {
Out << '\"';
// Keep track of whether the last number was a hexadecimal escape
bool LastWasHex = false;
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
// Print it out literally if it is a printable character. The only thing
// to be careful about is when the last letter output was a hex escape
// code, in which case we have to be careful not to print out hex digits
// explicitly (the C compiler thinks it is a continuation of the previous
// character, sheesh...)
//
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
LastWasHex = false;
if (C == '"' || C == '\\')
Out << "\\" << C;
else
Out << C;
} else {
LastWasHex = false;
switch (C) {
case '\n': Out << "\\n"; break;
case '\t': Out << "\\t"; break;
case '\r': Out << "\\r"; break;
case '\v': Out << "\\v"; break;
case '\a': Out << "\\a"; break;
case '\"': Out << "\\\""; break;
case '\'': Out << "\\\'"; break;
default:
Out << "\\x";
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
LastWasHex = true;
break;
}
}
}
Out << '\"';
} else {
Out << '{';
if (CPA->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPA->getOperand(0)));
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPA->getOperand(i)));
}
}
Out << " }";
}
}
void CWriter::printConstantVector(ConstantVector *CP) {
Out << '{';
if (CP->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CP->getOperand(0)));
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CP->getOperand(i)));
}
}
Out << " }";
}
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
// textually as a double (rather than as a reference to a stack-allocated
// variable). We decide this by converting CFP to a string and back into a
// double, and then checking whether the conversion results in a bit-equal
// double to the original value of CFP. This depends on us and the target C
// compiler agreeing on the conversion process (which is pretty likely since we
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%a", CFP->getValue());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
return atof(Buffer) == CFP->getValue();
return false;
#else
std::string StrVal = ftostr(CFP->getValue());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return atof(StrVal.c_str()) == CFP->getValue();
return false;
#endif
}
/// Print out the casting for a cast operation. This does the double casting
/// necessary for conversion to the destination type, if necessary.
/// @brief Print a cast
void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
// Print the destination type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::IntToPtr:
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
Out << '(';
printType(Out, DstTy);
Out << ')';
break;
case Instruction::ZExt:
case Instruction::PtrToInt:
case Instruction::FPToUI: // For these, make sure we get an unsigned dest
Out << '(';
printSimpleType(Out, DstTy, false);
Out << ')';
break;
case Instruction::SExt:
case Instruction::FPToSI: // For these, make sure we get a signed dest
Out << '(';
printSimpleType(Out, DstTy, true);
Out << ')';
break;
default:
assert(0 && "Invalid cast opcode");
}
// Print the source type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::ZExt:
Out << '(';
printSimpleType(Out, SrcTy, false);
Out << ')';
break;
case Instruction::SIToFP:
case Instruction::SExt:
Out << '(';
printSimpleType(Out, SrcTy, true);
Out << ')';
break;
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// Avoid "cast to pointer from integer of different size" warnings
Out << "(unsigned long)";
break;
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::FPToSI:
case Instruction::FPToUI:
break; // These don't need a source cast.
default:
assert(0 && "Invalid cast opcode");
break;
}
}
// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Out << "(";
printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
if (CE->getOpcode() == Instruction::SExt &&
CE->getOperand(0)->getType() == Type::Int1Ty) {
// Make sure we really sext from bool here by subtracting from 0
Out << "0-";
}
printConstant(CE->getOperand(0));
if (CE->getType() == Type::Int1Ty &&
(CE->getOpcode() == Instruction::Trunc ||
CE->getOpcode() == Instruction::FPToUI ||
CE->getOpcode() == Instruction::FPToSI ||
CE->getOpcode() == Instruction::PtrToInt)) {
// Make sure we really truncate to bool here by anding with 1
Out << "&1u";
}
Out << ')';
return;
case Instruction::GetElementPtr:
Out << "(&(";
printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
gep_type_end(CPV));
Out << "))";
return;
case Instruction::Select:
Out << '(';
printConstant(CE->getOperand(0));
Out << '?';
printConstant(CE->getOperand(1));
Out << ':';
printConstant(CE->getOperand(2));
Out << ')';
return;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
{
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE);
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
switch (CE->getOpcode()) {
case Instruction::Add: Out << " + "; break;
case Instruction::Sub: Out << " - "; break;
case Instruction::Mul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl: Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
case Instruction::ICmp:
switch (CE->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: Out << " < "; break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE: Out << " <= "; break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: Out << " > "; break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE: Out << " >= "; break;
default: assert(0 && "Illegal ICmp predicate");
}
break;
default: assert(0 && "Illegal opcode here!");
}
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
case Instruction::FCmp: {
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE);
if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
Out << "0";
else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
Out << "1";
else {
const char* op = 0;
switch (CE->getPredicate()) {
default: assert(0 && "Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
Out << ", ";
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
Out << ")";
}
if (NeedsClosingParens)
Out << "))";
Out << ')';
}
default:
cerr << "CWriter Error: Unhandled constant expression: "
<< *CE << "\n";
abort();
}
} else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*UNDEF*/0)";
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
const Type* Ty = CI->getType();
if (Ty == Type::Int1Ty)
Out << (CI->getZExtValue() ? '1' : '0') ;
else {
Out << "((";
printSimpleType(Out, Ty, false) << ')';
if (CI->isMinValue(true))
Out << CI->getZExtValue() << 'u';
else
Out << CI->getSExtValue();
if (Ty->getPrimitiveSizeInBits() > 32)
Out << "ll";
Out << ')';
}
return;
}
switch (CPV->getType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID: {
ConstantFP *FPC = cast<ConstantFP>(CPV);
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FPConstant" << I->second << ')';
} else {
if (IsNAN(FPC->getValue())) {
// The value is NaN
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
//const unsigned long SignalNaN = 0x7ff4UL;
// We need to grab the first part of the FP #
char Buffer[100];
uint64_t ll = DoubleToBits(FPC->getValue());
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
unsigned long Val = strtoul(Num.c_str(), 0, 16);
if (FPC->getType() == Type::FloatTy)
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
<< Buffer << "\") /*nan*/ ";
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
} else if (IsInf(FPC->getValue())) {
// The value is Inf
if (FPC->getValue() < 0) Out << '-';
Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
<< " /*inf*/ ";
} else {
std::string Num;
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
sprintf(Buffer, "%a", FPC->getValue());
Num = Buffer;
#else
Num = ftostr(FPC->getValue());
#endif
Out << Num;
}
}
break;
}
case Type::ArrayTyID:
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
const ArrayType *AT = cast<ArrayType>(CPV->getType());
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Constant::getNullValue(AT->getElementType());
printConstant(CZ);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ);
}
}
Out << " }";
} else {
printConstantArray(cast<ConstantArray>(CPV));
}
break;
case Type::VectorTyID:
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
const VectorType *AT = cast<VectorType>(CPV->getType());
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Constant::getNullValue(AT->getElementType());
printConstant(CZ);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ);
}
}
Out << " }";
} else {
printConstantVector(cast<ConstantVector>(CPV));
}
break;
case Type::StructTyID:
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
const StructType *ST = cast<StructType>(CPV->getType());
Out << '{';
if (ST->getNumElements()) {
Out << ' ';
printConstant(Constant::getNullValue(ST->getElementType(0)));
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(Constant::getNullValue(ST->getElementType(i)));
}
}
Out << " }";
} else {
Out << '{';
if (CPV->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPV->getOperand(i)));
}
}
Out << " }";
}
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*NULL*/0)";
break;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
writeOperand(GV);
break;
}
// FALL THROUGH
default:
cerr << "Unknown constant type: " << *CPV << "\n";
abort();
}
}
// Some constant expressions need to be casted back to the original types
// because their operands were casted to the expected type. This function takes
// care of detecting that case and printing the cast for the ConstantExpr.
bool CWriter::printConstExprCast(const ConstantExpr* CE) {
bool NeedsExplicitCast = false;
const Type *Ty = CE->getOperand(0)->getType();
bool TypeIsSigned = false;
switch (CE->getOpcode()) {
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv: NeedsExplicitCast = true; break;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
case Instruction::SExt:
Ty = CE->getType();
NeedsExplicitCast = true;
TypeIsSigned = true;
break;
case Instruction::ZExt:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Ty = CE->getType();
NeedsExplicitCast = true;
break;
default: break;
}
if (NeedsExplicitCast) {
Out << "((";
if (Ty->isInteger() && Ty != Type::Int1Ty)
printSimpleType(Out, Ty, TypeIsSigned);
else
printType(Out, Ty); // not integer, sign doesn't matter
Out << ")(";
}
return NeedsExplicitCast;
}
// Print a constant assuming that it is the operand for a given Opcode. The
// opcodes that care about sign need to cast their operands to the expected
// type before the operation proceeds. This function does the casting.
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = CPV->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
bool typeIsSigned = false;
// Based on the Opcode for which this Constant is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true so it gets
// casted below.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem:
shouldCast = true;
break;
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem:
shouldCast = true;
typeIsSigned = true;
break;
}
// Write out the casted constant if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, typeIsSigned);
Out << ")";
printConstant(CPV);
Out << ")";
} else
printConstant(CPV);
}
std::string CWriter::GetValueName(const Value *Operand) {
std::string Name;
if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
std::string VarName;
Name = Operand->getName();
VarName.reserve(Name.capacity());
for (std::string::iterator I = Name.begin(), E = Name.end();
I != E; ++I) {
char ch = *I;
if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
(ch >= '0' && ch <= '9') || ch == '_'))
VarName += '_';
else
VarName += ch;
}
Name = "llvm_cbe_" + VarName;
} else {
Name = Mang->getValueName(Operand);
}
return Name;
}
void CWriter::writeOperandInternal(Value *Operand) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
// Should we inline this instruction to build a tree?
Out << '(';
visit(*I);
Out << ')';
return;
}
Constant* CPV = dyn_cast<Constant>(Operand);
if (CPV && !isa<GlobalValue>(CPV))
printConstant(CPV);
else
Out << GetValueName(Operand);
}
void CWriter::writeOperandRaw(Value *Operand) {
Constant* CPV = dyn_cast<Constant>(Operand);
if (CPV && !isa<GlobalValue>(CPV)) {
printConstant(CPV);
} else {
Out << GetValueName(Operand);
}
}
void CWriter::writeOperand(Value *Operand) {
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Out << "(&"; // Global variables are referenced as their addresses by llvm
writeOperandInternal(Operand);
if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
Out << ')';
}
// Some instructions need to have their result value casted back to the
// original types because their operands were casted to the expected type.
// This function takes care of detecting that case and printing the cast
// for the Instruction.
bool CWriter::writeInstructionCast(const Instruction &I) {
const Type *Ty = I.getOperand(0)->getType();
switch (I.getOpcode()) {
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv:
Out << "((";
printSimpleType(Out, Ty, false);
Out << ")(";
return true;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv:
Out << "((";
printSimpleType(Out, Ty, true);
Out << ")(";
return true;
default: break;
}
return false;
}
// Write the operand with a cast to another type based on the Opcode being used.
// This will be used in cases where an instruction has specific type
// requirements (usually signedness) for its operands.
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = Operand->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
// Indicate whether the cast should be to a signed type or not.
bool castIsSigned = false;
// Based on the Opcode for which this Operand is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem: // Cast to unsigned first
shouldCast = true;
castIsSigned = false;
break;
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem: // Cast to signed first
shouldCast = true;
castIsSigned = true;
break;
}
// Write out the casted operand if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
} else
writeOperand(Operand);
}
// Write the operand with a cast to another type based on the icmp predicate
// being used.
void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
// Extract the operand's type, we'll need it.
const Type* OpTy = Operand->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
// Indicate whether the cast should be to a signed type or not.
bool castIsSigned = false;
// Based on the Opcode for which this Operand is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true.
switch (predicate) {
default:
// for eq and ne, it doesn't matter
break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
shouldCast = true;
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
shouldCast = true;
castIsSigned = true;
break;
}
// Write out the casted operand if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
if (OpTy->isInteger() && OpTy != Type::Int1Ty)
printSimpleType(Out, OpTy, castIsSigned);
else
printType(Out, OpTy); // not integer, sign doesn't matter
Out << ")";
writeOperand(Operand);
Out << ")";
} else
writeOperand(Operand);
}
// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
static void generateCompilerSpecificCode(std::ostream& Out) {
// Alloca is hard to get, and we don't want to include stdlib.h here.
Out << "/* get a declaration for alloca */\n"
<< "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
<< "#define alloca(x) __builtin_alloca((x))\n"
<< "#define _alloca(x) __builtin_alloca((x))\n"
<< "#elif defined(__APPLE__)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#define longjmp _longjmp\n"
<< "#define setjmp _setjmp\n"
<< "#elif defined(__sun__)\n"
<< "#if defined(__sparcv9)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#else\n"
<< "extern void *__builtin_alloca(unsigned int);\n"
<< "#endif\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(_MSC_VER)\n"
<< "#define inline _inline\n"
<< "#define alloca(x) _alloca(x)\n"
<< "#else\n"
<< "#include <alloca.h>\n"
<< "#endif\n\n";
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
// If we aren't being compiled with GCC, just drop these attributes.
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
<< "#define __attribute__(X)\n"
<< "#endif\n\n";
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __EXTERNAL_WEAK__\n"
<< "#endif\n\n";
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#endif\n\n";
// Add hidden visibility support. FIXME: APPLE_CC?
Out << "#if defined(__GNUC__)\n"
<< "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
<< "#endif\n\n";
// Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
// From the GCC documentation:
//
// double __builtin_nan (const char *str)
//
// This is an implementation of the ISO C99 function nan.
//
// Since ISO C99 defines this function in terms of strtod, which we do
// not implement, a description of the parsing is in order. The string is
// parsed as by strtol; that is, the base is recognized by leading 0 or
// 0x prefixes. The number parsed is placed in the significand such that
// the least significant bit of the number is at the least significant
// bit of the significand. The number is truncated to fit the significand
// field provided. The significand is forced to be a quiet NaN.
//
// This function, if given a string literal, is evaluated early enough
// that it is considered a compile-time constant.
//
// float __builtin_nanf (const char *str)
//
// Similar to __builtin_nan, except the return type is float.
//
// double __builtin_inf (void)
//
// Similar to __builtin_huge_val, except a warning is generated if the
// target floating-point format does not support infinities. This
// function is suitable for implementing the ISO C99 macro INFINITY.
//
// float __builtin_inff (void)
//
// Similar to __builtin_inf, except the return type is float.
Out << "#ifdef __GNUC__\n"
<< "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
<< "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
<< "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
<< "#define LLVM_INF __builtin_inf() /* Double */\n"
<< "#define LLVM_INFF __builtin_inff() /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) "
"__builtin_prefetch(addr,rw,locality)\n"
<< "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
<< "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
<< "#define LLVM_ASM __asm__\n"
<< "#else\n"
<< "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_INF ((double)0.0) /* Double */\n"
<< "#define LLVM_INFF 0.0F /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
<< "#define __ATTRIBUTE_CTOR__\n"
<< "#define __ATTRIBUTE_DTOR__\n"
<< "#define LLVM_ASM(X)\n"
<< "#endif\n\n";
// Output target-specific code that should be inserted into main.
Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
// On X86, set the FP control word to 64-bits of precision instead of 80 bits.
Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
<< "#if defined(i386) || defined(__i386__) || defined(__i386) || "
<< "defined(__x86_64__)\n"
<< "#undef CODE_FOR_MAIN\n"
<< "#define CODE_FOR_MAIN() \\\n"
<< " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
<< " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
<< "#endif\n#endif\n";
}
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
/// the StaticTors set.
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
Constant *FP = CS->getOperand(1);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP))
StaticTors.insert(F);
}
}
enum SpecialGlobalClass {
NotSpecial = 0,
GlobalCtors, GlobalDtors,
NotPrinted
};
/// getGlobalVariableClass - If this is a global that is specially recognized
/// by LLVM, return a code that indicates how we should handle it.
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
// If this is a global ctors/dtors list, handle it now.
if (GV->hasAppendingLinkage() && GV->use_empty()) {
if (GV->getName() == "llvm.global_ctors")
return GlobalCtors;
else if (GV->getName() == "llvm.global_dtors")
return GlobalDtors;
}
// Otherwise, it it is other metadata, don't print it. This catches things
// like debug information.
if (GV->getSection() == "llvm.metadata")
return NotPrinted;
return NotSpecial;
}
bool CWriter::doInitialization(Module &M) {
// Initialize
TheModule = &M;
TD = new TargetData(&M);
IL = new IntrinsicLowering(*TD);
IL->AddPrototypes(M);
// Ensure that all structure types have names...
Mang = new Mangler(M);
Mang->markCharUnacceptable('.');
// Keep track of which functions are static ctors/dtors so they can have
// an attribute added to their prototypes.
std::set<Function*> StaticCtors, StaticDtors;
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
switch (getGlobalVariableClass(I)) {
default: break;
case GlobalCtors:
FindStaticTors(I, StaticCtors);
break;
case GlobalDtors:
FindStaticTors(I, StaticDtors);
break;
}
}
// get declaration for alloca
Out << "/* Provide Declarations */\n";
Out << "#include <stdarg.h>\n"; // Varargs support
Out << "#include <setjmp.h>\n"; // Unwind support
generateCompilerSpecificCode(Out);
// Provide a definition for `bool' if not compiling with a C++ compiler.
Out << "\n"
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
<< "\n\n/* Support for floating point constants */\n"
<< "typedef unsigned long long ConstantDoubleTy;\n"
<< "typedef unsigned int ConstantFloatTy;\n"
<< "\n\n/* Global Declarations */\n";
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
// Loop over the symbol table, emitting all named constants...
printModuleTypes(M.getTypeSymbolTable());
// Global variable declarations...
if (!M.global_empty()) {
Out << "\n/* External Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
Out << "extern ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else
continue; // Internal Global
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false, GetValueName(I));
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
Out << ";\n";
}
}
// Function declarations
Out << "\n/* Function Declarations */\n";
Out << "double fmod(double, double);\n"; // Support for FP rem
Out << "float fmodf(float, float);\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
// Don't print declarations for intrinsic functions.
if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
I->getName() != "longjmp" && I->getName() != "_setjmp") {
if (I->hasExternalWeakLinkage())
Out << "extern ";
printFunctionSignature(I, true);
if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (StaticCtors.count(I))
Out << " __ATTRIBUTE_CTOR__";
if (StaticDtors.count(I))
Out << " __ATTRIBUTE_DTOR__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
if (I->hasName() && I->getName()[0] == 1)
Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
Out << ";\n";
}
}
// Output the global variable declarations
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasInternalLinkage())
Out << "static ";
else
Out << "extern ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
Out << ";\n";
}
}
// Output the global variable definitions and contents...
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasInternalLinkage())
Out << "static ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else if (I->hasDLLExportLinkage())
Out << "__declspec(dllexport) ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
// If the initializer is not null, emit the initializer. If it is null,
// we try to avoid emitting large amounts of zeros. The problem with
// this, however, occurs when the variable has weak linkage. In this
// case, the assembler will complain about the variable being both weak
// and common, so we disable this optimization.
if (!I->getInitializer()->isNullValue()) {
Out << " = " ;
writeOperand(I->getInitializer());
} else if (I->hasWeakLinkage()) {
// We have to specify an initializer, but it doesn't have to be
// complete. If the value is an aggregate, print out { 0 }, and let
// the compiler figure out the rest of the zeros.
Out << " = " ;
if (isa<StructType>(I->getInitializer()->getType()) ||
isa<ArrayType>(I->getInitializer()->getType()) ||
isa<VectorType>(I->getInitializer()->getType())) {
Out << "{ 0 }";
} else {
// Just print it out normally.
writeOperand(I->getInitializer());
}
}
Out << ";\n";
}
}
if (!M.empty())
Out << "\n\n/* Function Bodies */\n";
// Emit some helper functions for dealing with FCMP instruction's
// predicates
Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
Out << "return X == X && Y == Y; }\n";
Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
Out << "return X != X || Y != Y; }\n";
Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
Out << "return X != Y; }\n";
Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
Out << "return X == Y ; }\n";
Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
Out << "return X < Y ; }\n";
Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
Out << "return X > Y ; }\n";
Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
Out << "return X <= Y ; }\n";
Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
Out << "return X >= Y ; }\n";
return false;
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Function &F) {
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
static unsigned FPCounter = 0;
for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
I != E; ++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
!FPConstantMap.count(FPC)) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << DoubleToBits(Val) << std::dec
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << FloatToBits(Val) << std::dec
<< "U; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << '\n';
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit its declaration...
///
void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
Out << "/* Helper union for bitcasts */\n";
Out << "typedef union {\n";
Out << " unsigned int Int32;\n";
Out << " unsigned long long Int64;\n";
Out << " float Float;\n";
Out << " double Double;\n";
Out << "} llvmBitCastUnion;\n";
// We are only interested in the type plane of the symbol table.
TypeSymbolTable::const_iterator I = TST.begin();
TypeSymbolTable::const_iterator End = TST.end();
// If there are no type names, exit early.
if (I == End) return;
// Print out forward declarations for structure types before anything else!
Out << "/* Structure forward decls */\n";
for (; I != End; ++I) {
std::string Name = "struct l_" + Mang->makeNameProper(I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(I->second, Name));
}
Out << '\n';
// Now we can print out typedefs. Above, we guaranteed that this can only be
// for struct or opaque types.
Out << "/* Typedefs */\n";
for (I = TST.begin(); I != End; ++I) {
std::string Name = "l_" + Mang->makeNameProper(I->first);
Out << "typedef ";
printType(Out, I->second, false, Name);
Out << ";\n";
}
Out << '\n';
// Keep track of which structures have been printed so far...
std::set<const StructType *> StructPrinted;
// Loop over all structures then push them into the stack so they are
// printed in the correct order.
//
Out << "/* Structure contents */\n";
for (I = TST.begin(); I != End; ++I)
if (const StructType *STy = dyn_cast<StructType>(I->second))
// Only print out used types!
printContainedStructs(STy, StructPrinted);
}
// Push the struct onto the stack and recursively push all structs
// this one depends on.
//
// TODO: Make this work properly with vector types
//
void CWriter::printContainedStructs(const Type *Ty,
std::set<const StructType*> &StructPrinted){
// Don't walk through pointers.
if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
// Print all contained types first.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
printContainedStructs(*I, StructPrinted);
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
// Check to see if we have already printed this struct.
if (StructPrinted.insert(STy).second) {
// Print structure type out.
std::string Name = TypeNames[STy];
printType(Out, STy, false, Name, true);
Out << ";\n\n";
}
}
}
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F->getFunctionType()->isStructReturn();
if (F->hasInternalLinkage()) Out << "static ";
if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Out << "__stdcall ";
break;
case CallingConv::X86_FastCall:
Out << "__fastcall ";
break;
}
// Loop over the arguments, printing them...
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
const ParamAttrsList *Attrs = FT->getParamAttrs();
std::stringstream FunctionInnards;
// Print out the name...
FunctionInnards << GetValueName(F) << '(';
bool PrintedArg = false;
if (!F->isDeclaration()) {
if (!F->arg_empty()) {
Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
}
std::string ArgName;
unsigned Idx = 1;
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
if (I->hasName() || !Prototype)
ArgName = GetValueName(I);
else
ArgName = "";
printType(FunctionInnards, I->getType(),
/*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt),
ArgName);
PrintedArg = true;
++Idx;
}
}
} else {
// Loop over the arguments, printing them.
FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
}
unsigned Idx = 1;
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
printType(FunctionInnards, *I,
/*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
PrintedArg = true;
++Idx;
}
}
// Finish printing arguments... if this is a vararg function, print the ...,
// unless there are no known types, in which case, we just emit ().
//
if (FT->isVarArg() && PrintedArg) {
if (PrintedArg) FunctionInnards << ", ";
FunctionInnards << "..."; // Output varargs portion of signature!
} else if (!FT->isVarArg() && !PrintedArg) {
FunctionInnards << "void"; // ret() -> ret(void) in C.
}
FunctionInnards << ')';
// Get the return tpe for the function.
const Type *RetTy;
if (!isStructReturn)
RetTy = F->getReturnType();
else {
// If this is a struct-return function, print the struct-return type.
RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
}
// Print out the return type and the signature built above.
printType(Out, RetTy,
/*isSigned=*/ Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
FunctionInnards.str());
}
static inline bool isFPIntBitCast(const Instruction &I) {
if (!isa<BitCastInst>(I))
return false;
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DstTy = I.getType();
return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
(DstTy->isFloatingPoint() && SrcTy->isInteger());
}
void CWriter::printFunction(Function &F) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F.getFunctionType()->isStructReturn();
printFunctionSignature(&F, false);
Out << " {\n";
// If this is a struct return function, handle the result with magic.
if (isStructReturn) {
const Type *StructTy =
cast<PointerType>(F.arg_begin()->getType())->getElementType();
Out << " ";
printType(Out, StructTy, false, "StructReturn");
Out << "; /* Struct return temporary */\n";
Out << " ";
printType(Out, F.arg_begin()->getType(), false,
GetValueName(F.arg_begin()));
Out << " = &StructReturn;\n";
}
bool PrintedVar = false;
// print local variable information for the function
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (const AllocaInst *AI = isDirectAlloca(&*I)) {
Out << " ";
printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
Out << "; /* Address-exposed local */\n";
PrintedVar = true;
} else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
Out << " ";
printType(Out, I->getType(), false, GetValueName(&*I));
Out << ";\n";
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, I->getType(), false,
GetValueName(&*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
PrintedVar = true;
}
// We need a temporary for the BitCast to use so it can pluck a value out
// of a union to do the BitCast. This is separate from the need for a
// variable to hold the result of the BitCast.
if (isFPIntBitCast(*I)) {
Out << " llvmBitCastUnion " << GetValueName(&*I)
<< "__BITCAST_TEMPORARY;\n";
PrintedVar = true;
}
}
if (PrintedVar)
Out << '\n';
if (F.hasExternalLinkage() && F.getName() == "main")
Out << " CODE_FOR_MAIN();\n";
// print the basic blocks
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (Loop *L = LI->getLoopFor(BB)) {
if (L->getHeader() == BB && L->getParentLoop() == 0)
printLoop(L);
} else {
printBasicBlock(BB);
}
}
Out << "}\n\n";
}
void CWriter::printLoop(Loop *L) {
Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
<< "' to make GCC happy */\n";
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
Loop *BBLoop = LI->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
printLoop(BBLoop);
}
Out << " } while (1); /* end of syntactic loop '"
<< L->getHeader()->getName() << "' */\n";
}
void CWriter::printBasicBlock(BasicBlock *BB) {
// Don't print the label for the basic block if there are no uses, or if
// the only terminator use is the predecessor basic block's terminator.
// We have to scan the use list because PHI nodes use basic blocks too but
// do not require a label to be generated.
//
bool NeedsLabel = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (isGotoCodeNecessary(*PI, BB)) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << GetValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
++II) {
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
outputLValue(II);
else
Out << " ";
visit(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator...
visit(*BB->getTerminator());
}
// Specific Instruction type classes... note that all of the casts are
// necessary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// If this is a struct return function, return the temporary struct.
bool isStructReturn = I.getParent()->getParent()->
getFunctionType()->isStructReturn();
if (isStructReturn) {
Out << " return StructReturn;\n";
return;
}
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << ' ';
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
void CWriter::visitSwitchInst(SwitchInst &SI) {
Out << " switch (";
writeOperand(SI.getOperand(0));
Out << ") {\n default:\n";
printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
Out << ";\n";
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
Out << " case ";
writeOperand(SI.getOperand(i));
Out << ":\n";
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
printBranchToBlock(SI.getParent(), Succ, 2);
if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
Out << " break;\n";
}
Out << " }\n";
}
void CWriter::visitUnreachableInst(UnreachableInst &I) {
Out << " /*UNREACHABLE*/;\n";
}
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
/// FIXME: This should be reenabled, but loop reordering safe!!
return true;
if (next(Function::iterator(From)) != Function::iterator(To))
return true; // Not the direct successor, we need a goto.
//isa<SwitchInst>(From->getTerminator())
if (LI->getLoopFor(From) != LI->getLoopFor(To))
return true;
return false;
}
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
BasicBlock *Successor,
unsigned Indent) {
for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Now we have to do the printing.
Value *IV = PN->getIncomingValueForBlock(CurBlock);
if (!isa<UndefValue>(IV)) {
Out << std::string(Indent, ' ');
Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
writeOperand(IV);
Out << "; /* for PHI node */\n";
}
}
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
if (isGotoCodeNecessary(CurBB, Succ)) {
Out << std::string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Branch instruction printing - Avoid printing out a branch to a basic block
// that immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not necessary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks. We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
writeOperand(&I);
Out << "__PHI_TEMPORARY";
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
assert(!isa<PointerType>(I.getType()));
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
|| (I.getType() == Type::FloatTy)) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), false);
Out << ")(";
}
// If this is a negation operation, print it out as such. For FP, we don't
// want to print "-0.0 - X".
if (BinaryOperator::isNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (I.getOpcode() == Instruction::FRem) {
// Output a call to fmod/fmodf instead of emitting a%b
if (I.getType() == Type::FloatTy)
Out << "fmodf(";
else
Out << "fmod(";
writeOperand(I.getOperand(0));
Out << ", ";
writeOperand(I.getOperand(1));
Out << ")";
} else {
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain instructions require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I.getOpcode());
switch (I.getOpcode()) {
case Instruction::Add: Out << " + "; break;
case Instruction::Sub: Out << " - "; break;
case Instruction::Mul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
default: cerr << "Invalid operator type!" << I; abort();
}
writeOperandWithCast(I.getOperand(1), I.getOpcode());
if (NeedsClosingParens)
Out << "))";
}
if (needsCast) {
Out << "))";
}
}
void CWriter::visitICmpInst(ICmpInst &I) {
// We must cast the results of icmp which might be promoted.
bool needsCast = false;
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain icmp predicate require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I.getPredicate());
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE: Out << " <= "; break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: Out << " >= "; break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT: Out << " < "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: Out << " > "; break;
default: cerr << "Invalid icmp predicate!" << I; abort();
}
writeOperandWithCast(I.getOperand(1), I.getPredicate());
if (NeedsClosingParens)
Out << "))";
if (needsCast) {
Out << "))";
}
}
void CWriter::visitFCmpInst(FCmpInst &I) {
if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
Out << "0";
return;
}
if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
Out << "1";
return;
}
const char* op = 0;
switch (I.getPredicate()) {
default: assert(0 && "Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
// Write the first operand
writeOperand(I.getOperand(0));
Out << ", ";
// Write the second operand
writeOperand(I.getOperand(1));
Out << ")";
}
static const char * getFloatBitCastField(const Type *Ty) {
switch (Ty->getTypeID()) {
default: assert(0 && "Invalid Type");
case Type::FloatTyID: return "Float";
case Type::DoubleTyID: return "Double";
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits <= 32)
return "Int32";
else
return "Int64";
}
}
}
void CWriter::visitCastInst(CastInst &I) {
const Type *DstTy = I.getType();
const Type *SrcTy = I.getOperand(0)->getType();
Out << '(';
if (isFPIntBitCast(I)) {
// These int<->float and long<->double casts need to be handled specially
Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
writeOperand(I.getOperand(0));
Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getType());
} else {
printCast(I.getOpcode(), SrcTy, DstTy);
if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
// Make sure we really get a sext from bool by subtracing the bool from 0
Out << "0-";
}
writeOperand(I.getOperand(0));
if (DstTy == Type::Int1Ty &&
(I.getOpcode() == Instruction::Trunc ||
I.getOpcode() == Instruction::FPToUI ||
I.getOpcode() == Instruction::FPToSI ||
I.getOpcode() == Instruction::PtrToInt)) {
// Make sure we really get a trunc to bool by anding the operand with 1
Out << "&1u";
}
}
Out << ')';
}
void CWriter::visitSelectInst(SelectInst &I) {
Out << "((";
writeOperand(I.getCondition());
Out << ") ? (";
writeOperand(I.getTrueValue());
Out << ") : (";
writeOperand(I.getFalseValue());
Out << "))";
}
void CWriter::lowerIntrinsics(Function &F) {
// This is used to keep track of intrinsics that get generated to a lowered
// function. We must generate the prototypes before the function body which
// will only be expanded on first use (by the loop below).
std::vector<Function*> prototypesToGen;
// Examine all the instructions in this function to find the intrinsics that
// need to be lowered.
for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
case Intrinsic::setjmp:
case Intrinsic::longjmp:
case Intrinsic::prefetch:
case Intrinsic::dbg_stoppoint:
case Intrinsic::powi_f32:
case Intrinsic::powi_f64:
// We directly implement these intrinsics
break;
default:
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we handle it.
const char *BuiltinName = "";
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
// If we handle it, don't lower it.
if (BuiltinName[0]) break;
// All other intrinsic calls we must lower.
Instruction *Before = 0;
if (CI != &BB->front())
Before = prior(BasicBlock::iterator(CI));
IL->LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
// If the intrinsic got lowered to another call, and that call has
// a definition then we need to make sure its prototype is emitted
// before any calls to it.
if (CallInst *Call = dyn_cast<CallInst>(I))
if (Function *NewF = Call->getCalledFunction())
if (!NewF->isDeclaration())
prototypesToGen.push_back(NewF);
break;
}
// We may have collected some prototypes to emit in the loop above.
// Emit them now, before the function that uses them is emitted. But,
// be careful not to emit them twice.
std::vector<Function*>::iterator I = prototypesToGen.begin();
std::vector<Function*>::iterator E = prototypesToGen.end();
for ( ; I != E; ++I) {
if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
Out << '\n';
printFunctionSignature(*I, true);
Out << ";\n";
}
}
}
void CWriter::visitCallInst(CallInst &I) {
//check if we have inline asm
if (isInlineAsm(I)) {
visitInlineAsm(I);
return;
}
bool WroteCallee = false;
// Handle intrinsic function calls first...
if (Function *F = I.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
switch (ID) {
default: {
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we emit it here.
const char *BuiltinName = "";
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
Out << BuiltinName;
WroteCallee = true;
break;
}
case Intrinsic::vastart:
Out << "0; ";
Out << "va_start(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ", ";
// Output the last argument to the enclosing function...
if (I.getParent()->getParent()->arg_empty()) {
cerr << "The C backend does not currently support zero "
<< "argument varargs functions, such as '"
<< I.getParent()->getParent()->getName() << "'!\n";
abort();
}
writeOperand(--I.getParent()->getParent()->arg_end());
Out << ')';
return;
case Intrinsic::vaend:
if (!isa<ConstantPointerNull>(I.getOperand(1))) {
Out << "0; va_end(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ')';
} else {
Out << "va_end(*(va_list*)0)";
}
return;
case Intrinsic::vacopy:
Out << "0; ";
Out << "va_copy(*(va_list*)";
writeOperand(I.getOperand(1));
Out << ", *(va_list*)";
writeOperand(I.getOperand(2));
Out << ')';
return;
case Intrinsic::returnaddress:
Out << "__builtin_return_address(";
writeOperand(I.getOperand(1));
Out << ')';
return;
case Intrinsic::frameaddress:
Out << "__builtin_frame_address(";
writeOperand(I.getOperand(1));
Out << ')';
return;
case Intrinsic::powi_f32:
case Intrinsic::powi_f64:
Out << "__builtin_powi(";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ')';
return;
case Intrinsic::setjmp:
Out << "setjmp(*(jmp_buf*)";
writeOperand(I.getOperand(1));
Out << ')';
return;
case Intrinsic::longjmp:
Out << "longjmp(*(jmp_buf*)";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ')';
return;
case Intrinsic::prefetch:
Out << "LLVM_PREFETCH((const void *)";
writeOperand(I.getOperand(1));
Out << ", ";
writeOperand(I.getOperand(2));
Out << ", ";
writeOperand(I.getOperand(3));
Out << ")";
return;
case Intrinsic::dbg_stoppoint: {
// If we use writeOperand directly we get a "u" suffix which is rejected
// by gcc.
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
Out << "\n#line "
<< SPI.getLine()
<< " \"" << SPI.getDirectory()
<< SPI.getFileName() << "\"\n";
return;
}
}
}
Value *Callee = I.getCalledValue();
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
// If this is a call to a struct-return function, assign to the first
// parameter instead of passing it to the call.
bool isStructRet = FTy->isStructReturn();
if (isStructRet) {
Out << "*(";
writeOperand(I.getOperand(1));
Out << ") = ";
}
if (I.isTailCall()) Out << " /*tail*/ ";
if (!WroteCallee) {
// If this is an indirect call to a struct return function, we need to cast
// the pointer.
bool NeedsCast = isStructRet && !isa<Function>(Callee);
// GCC is a real PITA. It does not permit codegening casts of functions to
// function pointers if they are in a call (it generates a trap instruction
// instead!). We work around this by inserting a cast to void* in between
// the function and the function pointer cast. Unfortunately, we can't just
// form the constant expression here, because the folder will immediately
// nuke it.
//
// Note finally, that this is completely unsafe. ANSI C does not guarantee
// that void* and function pointers have the same size. :( To deal with this
// in the common case, we handle casts where the number of arguments passed
// match exactly.
//
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
if (CE->isCast())
if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
NeedsCast = true;
Callee = RF;
}
if (NeedsCast) {
// Ok, just cast the pointer type.
Out << "((";
if (!isStructRet)
printType(Out, I.getCalledValue()->getType());
else
printStructReturnPointerFunctionType(Out,
cast<PointerType>(I.getCalledValue()->getType()));
Out << ")(void*)";
}
writeOperand(Callee);
if (NeedsCast) Out << ')';
}
Out << '(';
unsigned NumDeclaredParams = FTy->getNumParams();
CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
unsigned ArgNo = 0;
if (isStructRet) { // Skip struct return argument.
++AI;
++ArgNo;
}
const ParamAttrsList *Attrs = FTy->getParamAttrs();
bool PrintedArg = false;
unsigned Idx = 1;
for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
if (PrintedArg) Out << ", ";
if (ArgNo < NumDeclaredParams &&
(*AI)->getType() != FTy->getParamType(ArgNo)) {
Out << '(';
printType(Out, FTy->getParamType(ArgNo),
/*isSigned=*/Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt));
Out << ')';
}
writeOperand(*AI);
PrintedArg = true;
}
Out << ')';
}
//This converts the llvm constraint string to something gcc is expecting.
//TODO: work out platform independent constraints and factor those out
// of the per target tables
// handle multiple constraint codes
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
const char** table = 0;
//Grab the translation table from TargetAsmInfo if it exists
if (!TAsm) {
std::string E;
const TargetMachineRegistry::Entry* Match =
TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
if (Match) {
//Per platform Target Machines don't exist, so create it
// this must be done only once
const TargetMachine* TM = Match->CtorFn(*TheModule, "");
TAsm = TM->getTargetAsmInfo();
}
}
if (TAsm)
table = TAsm->getAsmCBE();
//Search the translation table if it exists
for (int i = 0; table && table[i]; i += 2)
if (c.Codes[0] == table[i])
return table[i+1];
//default is identity
return c.Codes[0];
}
//TODO: import logic from AsmPrinter.cpp
static std::string gccifyAsm(std::string asmstr) {
for (std::string::size_type i = 0; i != asmstr.size(); ++i)
if (asmstr[i] == '\n')
asmstr.replace(i, 1, "\\n");
else if (asmstr[i] == '\t')
asmstr.replace(i, 1, "\\t");
else if (asmstr[i] == '$') {
if (asmstr[i + 1] == '{') {
std::string::size_type a = asmstr.find_first_of(':', i + 1);
std::string::size_type b = asmstr.find_first_of('}', i + 1);
std::string n = "%" +
asmstr.substr(a + 1, b - a - 1) +
asmstr.substr(i + 2, a - i - 2);
asmstr.replace(i, b - i + 1, n);
i += n.size() - 1;
} else
asmstr.replace(i, 1, "%");
}
else if (asmstr[i] == '%')//grr
{ asmstr.replace(i, 1, "%%"); ++i;}
return asmstr;
}
//TODO: assumptions about what consume arguments from the call are likely wrong
// handle communitivity
void CWriter::visitInlineAsm(CallInst &CI) {
InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
std::vector<std::pair<std::string, Value*> > Input;
std::vector<std::pair<std::string, Value*> > Output;
std::string Clobber;
int count = CI.getType() == Type::VoidTy ? 1 : 0;
for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string c =
InterpretASMConstraint(*I);
switch(I->Type) {
default:
assert(0 && "Unknown asm constraint");
break;
case InlineAsm::isInput: {
if (c.size()) {
Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
++count; //consume arg
}
break;
}
case InlineAsm::isOutput: {
if (c.size()) {
Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
count ? CI.getOperand(count) : &CI));
++count; //consume arg
}
break;
}
case InlineAsm::isClobber: {
if (c.size())
Clobber += ",\"" + c + "\"";
break;
}
}
}
//fix up the asm string for gcc
std::string asmstr = gccifyAsm(as->getAsmString());
Out << "__asm__ volatile (\"" << asmstr << "\"\n";
Out << " :";
for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
E = Output.end(); I != E; ++I) {
Out << "\"" << I->first << "\"(";
writeOperandRaw(I->second);
Out << ")";
if (I + 1 != E)
Out << ",";
}
Out << "\n :";
for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
E = Input.end(); I != E; ++I) {
Out << "\"" << I->first << "\"(";
writeOperandRaw(I->second);
Out << ")";
if (I + 1 != E)
Out << ",";
}
if (Clobber.size())
Out << "\n :" << Clobber.substr(1);
Out << ")";
}
void CWriter::visitMallocInst(MallocInst &I) {
assert(0 && "lowerallocations pass didn't work!");
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << '(';
printType(Out, I.getType());
Out << ") alloca(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ')';
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ')';
}
void CWriter::visitFreeInst(FreeInst &I) {
assert(0 && "lowerallocations pass didn't work!");
}
void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E) {
bool HasImplicitAddress = false;
// If accessing a global value with no indexing, avoid *(&GV) syndrome
if (isa<GlobalValue>(Ptr)) {
HasImplicitAddress = true;
} else if (isDirectAlloca(Ptr)) {
HasImplicitAddress = true;
}
if (I == E) {
if (!HasImplicitAddress)
Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
writeOperandInternal(Ptr);
return;
}
const Constant *CI = dyn_cast<Constant>(I.getOperand());
if (HasImplicitAddress && (!CI || !CI->isNullValue()))
Out << "(&";
writeOperandInternal(Ptr);
if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
Out << ')';
HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
}
assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
"Can only have implicit address with direct accessing");
if (HasImplicitAddress) {
++I;
} else if (CI && CI->isNullValue()) {
gep_type_iterator TmpI = I; ++TmpI;
// Print out the -> operator if possible...
if (TmpI != E && isa<StructType>(*TmpI)) {
Out << (HasImplicitAddress ? "." : "->");
Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
I = ++TmpI;
}
}
for (; I != E; ++I)
if (isa<StructType>(*I)) {
Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
} else {
Out << '[';
writeOperand(I.getOperand());
Out << ']';
}
}
void CWriter::visitLoadInst(LoadInst &I) {
Out << '*';
if (I.isVolatile()) {
Out << "((";
printType(Out, I.getType(), false, "volatile*");
Out << ")";
}
writeOperand(I.getOperand(0));
if (I.isVolatile())
Out << ')';
}
void CWriter::visitStoreInst(StoreInst &I) {
Out << '*';
if (I.isVolatile()) {
Out << "((";
printType(Out, I.getOperand(0)->getType(), false, " volatile*");
Out << ")";
}
writeOperand(I.getPointerOperand());
if (I.isVolatile()) Out << ')';
Out << " = ";
Value *Operand = I.getOperand(0);
Constant *BitMask = 0;
if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
if (!ITy->isPowerOf2ByteWidth())
// We have a bit width that doesn't match an even power-of-2 byte
// size. Consequently we must & the value with the type's bit mask
BitMask = ConstantInt::get(ITy, ITy->getBitMask());
if (BitMask)
Out << "((";
writeOperand(Operand);
if (BitMask) {
Out << ") & ";
printConstant(BitMask);
Out << ")";
}
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Out << '&';
printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
gep_type_end(I));
}
void CWriter::visitVAArgInst(VAArgInst &I) {
Out << "va_arg(*(va_list*)";
writeOperand(I.getOperand(0));
Out << ", ";
printType(Out, I.getType());
Out << ");\n ";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
std::ostream &o,
CodeGenFileType FileType,
bool Fast) {
if (FileType != TargetMachine::AssemblyFile) return true;
PM.add(createLowerGCPass());
PM.add(createLowerAllocationsPass(true));
PM.add(createLowerInvokePass());
PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
PM.add(new CWriter(o));
return false;
}