llvm-6502/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
Chandler Carruth 974a445bd9 Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-07 11:48:04 +00:00

1573 lines
60 KiB
C++

//===- AArch64Disassembler.cpp - Disassembler for AArch64 ISA -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the functions necessary to decode AArch64 instruction
// bitpatterns into MCInsts (with the help of TableGenerated information from
// the instruction definitions).
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-disassembler"
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "AArch64Subtarget.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
typedef MCDisassembler::DecodeStatus DecodeStatus;
namespace {
/// AArch64 disassembler for all AArch64 platforms.
class AArch64Disassembler : public MCDisassembler {
OwningPtr<const MCRegisterInfo> RegInfo;
public:
/// Initializes the disassembler.
///
AArch64Disassembler(const MCSubtargetInfo &STI, const MCRegisterInfo *Info)
: MCDisassembler(STI), RegInfo(Info) {
}
~AArch64Disassembler() {}
/// See MCDisassembler.
DecodeStatus getInstruction(MCInst &instr,
uint64_t &size,
const MemoryObject &region,
uint64_t address,
raw_ostream &vStream,
raw_ostream &cStream) const;
const MCRegisterInfo *getRegInfo() const { return RegInfo.get(); }
};
}
// Forward-declarations used in the auto-generated files.
static DecodeStatus DecodeGPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus
DecodeGPR64xspRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeGPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus
DecodeGPR32wspRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR8RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR16RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR64LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR128RegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeFPR128LoRegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeGPR64noxzrRegisterClass(llvm::MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeDPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeQPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeDTripleRegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeQTripleRegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeDQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeQQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeAddrRegExtendOperand(llvm::MCInst &Inst,
unsigned OptionHiS,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeBitfield32ImmOperand(llvm::MCInst &Inst,
unsigned Imm6Bits,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCVT32FixedPosOperand(llvm::MCInst &Inst,
unsigned Imm6Bits,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeFPZeroOperand(llvm::MCInst &Inst,
unsigned RmBits,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftRightImm8(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftRightImm16(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftRightImm32(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftRightImm64(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftLeftImm8(MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeShiftLeftImm16(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftLeftImm32(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeShiftLeftImm64(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
template<int RegWidth>
static DecodeStatus DecodeMoveWideImmOperand(llvm::MCInst &Inst,
unsigned FullImm,
uint64_t Address,
const void *Decoder);
template<int RegWidth>
static DecodeStatus DecodeLogicalImmOperand(llvm::MCInst &Inst,
unsigned Bits,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeRegExtendOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
uint64_t Address,
const void *Decoder);
template <A64SE::ShiftExtSpecifiers Ext, bool IsHalf>
static DecodeStatus
DecodeNeonMovImmShiftOperand(llvm::MCInst &Inst, unsigned ShiftAmount,
uint64_t Address, const void *Decoder);
static DecodeStatus Decode32BitShiftOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeBitfieldInstruction(llvm::MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeLDSTPairInstruction(llvm::MCInst &Inst,
unsigned Insn,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeLoadPairExclusiveInstruction(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder);
template<typename SomeNamedImmMapper>
static DecodeStatus DecodeNamedImmOperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus
DecodeSysRegOperand(const A64SysReg::SysRegMapper &InstMapper,
llvm::MCInst &Inst, unsigned Val,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeMRSOperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeMSROperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeSingleIndexedInstruction(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeSHLLInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder);
static bool Check(DecodeStatus &Out, DecodeStatus In);
#include "AArch64GenDisassemblerTables.inc"
#include "AArch64GenInstrInfo.inc"
static bool Check(DecodeStatus &Out, DecodeStatus In) {
switch (In) {
case MCDisassembler::Success:
// Out stays the same.
return true;
case MCDisassembler::SoftFail:
Out = In;
return true;
case MCDisassembler::Fail:
Out = In;
return false;
}
llvm_unreachable("Invalid DecodeStatus!");
}
DecodeStatus AArch64Disassembler::getInstruction(MCInst &MI, uint64_t &Size,
const MemoryObject &Region,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
CommentStream = &cs;
uint8_t bytes[4];
// We want to read exactly 4 bytes of data.
if (Region.readBytes(Address, 4, bytes) == -1) {
Size = 0;
return MCDisassembler::Fail;
}
// Encoded as a small-endian 32-bit word in the stream.
uint32_t insn = (bytes[3] << 24) |
(bytes[2] << 16) |
(bytes[1] << 8) |
(bytes[0] << 0);
// Calling the auto-generated decoder function.
DecodeStatus result = decodeInstruction(DecoderTableA6432, MI, insn, Address,
this, STI);
if (result != MCDisassembler::Fail) {
Size = 4;
return result;
}
MI.clear();
Size = 0;
return MCDisassembler::Fail;
}
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo) {
const AArch64Disassembler *Dis = static_cast<const AArch64Disassembler*>(D);
return Dis->getRegInfo()->getRegClass(RC).getRegister(RegNo);
}
static DecodeStatus DecodeGPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR64RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeGPR64xspRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR64xspRegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeGPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR32RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeGPR32wspRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR32wspRegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR8RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::FPR8RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR16RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::FPR16RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::FPR32RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::FPR64RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR64LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 15)
return MCDisassembler::Fail;
return DecodeFPR64RegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus
DecodeFPR128RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::FPR128RegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus
DecodeFPR128LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder) {
if (RegNo > 15)
return MCDisassembler::Fail;
return DecodeFPR128RegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus DecodeGPR64noxzrRegisterClass(llvm::MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder) {
if (RegNo > 30)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, AArch64::GPR64noxzrRegClassID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeRegisterClassByID(llvm::MCInst &Inst, unsigned RegNo,
unsigned RegID,
const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
uint16_t Register = getReg(Decoder, RegID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeDPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::DPairRegClassID,
Decoder);
}
static DecodeStatus DecodeQPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::QPairRegClassID,
Decoder);
}
static DecodeStatus DecodeDTripleRegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::DTripleRegClassID,
Decoder);
}
static DecodeStatus DecodeQTripleRegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::QTripleRegClassID,
Decoder);
}
static DecodeStatus DecodeDQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::DQuadRegClassID,
Decoder);
}
static DecodeStatus DecodeQQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeRegisterClassByID(Inst, RegNo, AArch64::QQuadRegClassID,
Decoder);
}
static DecodeStatus DecodeAddrRegExtendOperand(llvm::MCInst &Inst,
unsigned OptionHiS,
uint64_t Address,
const void *Decoder) {
// Option{1} must be 1. OptionHiS is made up of {Option{2}, Option{1},
// S}. Hence we want to check bit 1.
if (!(OptionHiS & 2))
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(OptionHiS));
return MCDisassembler::Success;
}
static DecodeStatus DecodeBitfield32ImmOperand(llvm::MCInst &Inst,
unsigned Imm6Bits,
uint64_t Address,
const void *Decoder) {
// In the 32-bit variant, bit 6 must be zero. I.e. the immediate must be
// between 0 and 31.
if (Imm6Bits > 31)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Imm6Bits));
return MCDisassembler::Success;
}
static DecodeStatus DecodeCVT32FixedPosOperand(llvm::MCInst &Inst,
unsigned Imm6Bits,
uint64_t Address,
const void *Decoder) {
// 1 <= Imm <= 32. Encoded as 64 - Imm so: 63 >= Encoded >= 32.
if (Imm6Bits < 32)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Imm6Bits));
return MCDisassembler::Success;
}
static DecodeStatus DecodeFPZeroOperand(llvm::MCInst &Inst,
unsigned RmBits,
uint64_t Address,
const void *Decoder) {
// Any bits are valid in the instruction (they're architecturally ignored),
// but a code generator should insert 0.
Inst.addOperand(MCOperand::CreateImm(0));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftRightImm8(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
Inst.addOperand(MCOperand::CreateImm(8 - Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftRightImm16(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
Inst.addOperand(MCOperand::CreateImm(16 - Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftRightImm32(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
Inst.addOperand(MCOperand::CreateImm(32 - Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftRightImm64(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
Inst.addOperand(MCOperand::CreateImm(64 - Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftLeftImm8(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
if (Val > 7)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftLeftImm16(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
if (Val > 15)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftLeftImm32(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
if (Val > 31)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
static DecodeStatus DecodeShiftLeftImm64(MCInst &Inst, unsigned Val,
uint64_t Address,
const void *Decoder) {
if (Val > 63)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
template<int RegWidth>
static DecodeStatus DecodeMoveWideImmOperand(llvm::MCInst &Inst,
unsigned FullImm,
uint64_t Address,
const void *Decoder) {
unsigned Imm16 = FullImm & 0xffff;
unsigned Shift = FullImm >> 16;
if (RegWidth == 32 && Shift > 1) return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Imm16));
Inst.addOperand(MCOperand::CreateImm(Shift));
return MCDisassembler::Success;
}
template<int RegWidth>
static DecodeStatus DecodeLogicalImmOperand(llvm::MCInst &Inst,
unsigned Bits,
uint64_t Address,
const void *Decoder) {
uint64_t Imm;
if (!A64Imms::isLogicalImmBits(RegWidth, Bits, Imm))
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(Bits));
return MCDisassembler::Success;
}
static DecodeStatus DecodeRegExtendOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
uint64_t Address,
const void *Decoder) {
// Only values 0-4 are valid for this 3-bit field
if (ShiftAmount > 4)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(ShiftAmount));
return MCDisassembler::Success;
}
static DecodeStatus Decode32BitShiftOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
uint64_t Address,
const void *Decoder) {
// Only values below 32 are valid for a 32-bit register
if (ShiftAmount > 31)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(ShiftAmount));
return MCDisassembler::Success;
}
static DecodeStatus DecodeBitfieldInstruction(llvm::MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned ImmS = fieldFromInstruction(Insn, 10, 6);
unsigned ImmR = fieldFromInstruction(Insn, 16, 6);
unsigned SF = fieldFromInstruction(Insn, 31, 1);
// Undef for 0b11 just in case it occurs. Don't want the compiler to optimise
// out assertions that it thinks should never be hit.
enum OpcTypes { SBFM = 0, BFM, UBFM, Undef } Opc;
Opc = (OpcTypes)fieldFromInstruction(Insn, 29, 2);
if (!SF) {
// ImmR and ImmS must be between 0 and 31 for 32-bit instructions.
if (ImmR > 31 || ImmS > 31)
return MCDisassembler::Fail;
}
if (SF) {
DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
// BFM MCInsts use Rd as a source too.
if (Opc == BFM) DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
} else {
DecodeGPR32RegisterClass(Inst, Rd, Address, Decoder);
// BFM MCInsts use Rd as a source too.
if (Opc == BFM) DecodeGPR32RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR32RegisterClass(Inst, Rn, Address, Decoder);
}
// ASR and LSR have more specific patterns so they won't get here:
assert(!(ImmS == 31 && !SF && Opc != BFM)
&& "shift should have used auto decode");
assert(!(ImmS == 63 && SF && Opc != BFM)
&& "shift should have used auto decode");
// Extension instructions similarly:
if (Opc == SBFM && ImmR == 0) {
assert((ImmS != 7 && ImmS != 15) && "extension got here");
assert((ImmS != 31 || SF == 0) && "extension got here");
} else if (Opc == UBFM && ImmR == 0) {
assert((SF != 0 || (ImmS != 7 && ImmS != 15)) && "extension got here");
}
if (Opc == UBFM) {
// It might be a LSL instruction, which actually takes the shift amount
// itself as an MCInst operand.
if (SF && (ImmS + 1) % 64 == ImmR) {
Inst.setOpcode(AArch64::LSLxxi);
Inst.addOperand(MCOperand::CreateImm(63 - ImmS));
return MCDisassembler::Success;
} else if (!SF && (ImmS + 1) % 32 == ImmR) {
Inst.setOpcode(AArch64::LSLwwi);
Inst.addOperand(MCOperand::CreateImm(31 - ImmS));
return MCDisassembler::Success;
}
}
// Otherwise it's definitely either an extract or an insert depending on which
// of ImmR or ImmS is larger.
unsigned ExtractOp, InsertOp;
switch (Opc) {
default: llvm_unreachable("unexpected instruction trying to decode bitfield");
case SBFM:
ExtractOp = SF ? AArch64::SBFXxxii : AArch64::SBFXwwii;
InsertOp = SF ? AArch64::SBFIZxxii : AArch64::SBFIZwwii;
break;
case BFM:
ExtractOp = SF ? AArch64::BFXILxxii : AArch64::BFXILwwii;
InsertOp = SF ? AArch64::BFIxxii : AArch64::BFIwwii;
break;
case UBFM:
ExtractOp = SF ? AArch64::UBFXxxii : AArch64::UBFXwwii;
InsertOp = SF ? AArch64::UBFIZxxii : AArch64::UBFIZwwii;
break;
}
// Otherwise it's a boring insert or extract
Inst.addOperand(MCOperand::CreateImm(ImmR));
Inst.addOperand(MCOperand::CreateImm(ImmS));
if (ImmS < ImmR)
Inst.setOpcode(InsertOp);
else
Inst.setOpcode(ExtractOp);
return MCDisassembler::Success;
}
static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
// This decoder exists to add the dummy Lane operand to the MCInst, which must
// be 1 in assembly but has no other real manifestation.
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned IsToVec = fieldFromInstruction(Insn, 16, 1);
if (IsToVec) {
DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
} else {
DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
}
// Add the lane
Inst.addOperand(MCOperand::CreateImm(1));
return MCDisassembler::Success;
}
static DecodeStatus DecodeLDSTPairInstruction(llvm::MCInst &Inst,
unsigned Insn,
uint64_t Address,
const void *Decoder) {
DecodeStatus Result = MCDisassembler::Success;
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rt2 = fieldFromInstruction(Insn, 10, 5);
unsigned SImm7 = fieldFromInstruction(Insn, 15, 7);
unsigned L = fieldFromInstruction(Insn, 22, 1);
unsigned V = fieldFromInstruction(Insn, 26, 1);
unsigned Opc = fieldFromInstruction(Insn, 30, 2);
// Not an official name, but it turns out that bit 23 distinguishes indexed
// from non-indexed operations.
unsigned Indexed = fieldFromInstruction(Insn, 23, 1);
if (Indexed && L == 0) {
// The MCInst for an indexed store has an out operand and 4 ins:
// Rn_wb, Rt, Rt2, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
// You shouldn't load to the same register twice in an instruction...
if (L && Rt == Rt2)
Result = MCDisassembler::SoftFail;
// ... or do any operation that writes-back to a transfer register. But note
// that "stp xzr, xzr, [sp], #4" is fine because xzr and sp are different.
if (Indexed && V == 0 && Rn != 31 && (Rt == Rn || Rt2 == Rn))
Result = MCDisassembler::SoftFail;
// Exactly how we decode the MCInst's registers depends on the Opc and V
// fields of the instruction. These also obviously determine the size of the
// operation so we can fill in that information while we're at it.
if (V) {
// The instruction operates on the FP/SIMD registers
switch (Opc) {
default: return MCDisassembler::Fail;
case 0:
DecodeFPR32RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR32RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 1:
DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 2:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
DecodeFPR128RegisterClass(Inst, Rt2, Address, Decoder);
break;
}
} else {
switch (Opc) {
default: return MCDisassembler::Fail;
case 0:
DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR32RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 1:
assert(L && "unexpected \"store signed\" attempt");
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
case 2:
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder);
break;
}
}
if (Indexed && L == 1) {
// The MCInst for an indexed load has 3 out operands and an 3 ins:
// Rt, Rt2, Rn_wb, Rt2, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
Inst.addOperand(MCOperand::CreateImm(SImm7));
return Result;
}
static DecodeStatus DecodeLoadPairExclusiveInstruction(llvm::MCInst &Inst,
uint32_t Val,
uint64_t Address,
const void *Decoder) {
unsigned Rt = fieldFromInstruction(Val, 0, 5);
unsigned Rn = fieldFromInstruction(Val, 5, 5);
unsigned Rt2 = fieldFromInstruction(Val, 10, 5);
unsigned MemSize = fieldFromInstruction(Val, 30, 2);
DecodeStatus S = MCDisassembler::Success;
if (Rt == Rt2) S = MCDisassembler::SoftFail;
switch (MemSize) {
case 2:
if (!Check(S, DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler::Fail;
if (!Check(S, DecodeGPR32RegisterClass(Inst, Rt2, Address, Decoder)))
return MCDisassembler::Fail;
break;
case 3:
if (!Check(S, DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder)))
return MCDisassembler::Fail;
if (!Check(S, DecodeGPR64RegisterClass(Inst, Rt2, Address, Decoder)))
return MCDisassembler::Fail;
break;
default:
llvm_unreachable("Invalid MemSize in DecodeLoadPairExclusiveInstruction");
}
if (!Check(S, DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder)))
return MCDisassembler::Fail;
return S;
}
template<typename SomeNamedImmMapper>
static DecodeStatus DecodeNamedImmOperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder) {
SomeNamedImmMapper Mapper;
bool ValidNamed;
Mapper.toString(Val, ValidNamed);
if (ValidNamed || Mapper.validImm(Val)) {
Inst.addOperand(MCOperand::CreateImm(Val));
return MCDisassembler::Success;
}
return MCDisassembler::Fail;
}
static DecodeStatus DecodeSysRegOperand(const A64SysReg::SysRegMapper &Mapper,
llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder) {
bool ValidNamed;
Mapper.toString(Val, ValidNamed);
Inst.addOperand(MCOperand::CreateImm(Val));
return ValidNamed ? MCDisassembler::Success : MCDisassembler::Fail;
}
static DecodeStatus DecodeMRSOperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder) {
return DecodeSysRegOperand(A64SysReg::MRSMapper(), Inst, Val, Address,
Decoder);
}
static DecodeStatus DecodeMSROperand(llvm::MCInst &Inst,
unsigned Val,
uint64_t Address,
const void *Decoder) {
return DecodeSysRegOperand(A64SysReg::MSRMapper(), Inst, Val, Address,
Decoder);
}
static DecodeStatus DecodeSingleIndexedInstruction(llvm::MCInst &Inst,
unsigned Insn,
uint64_t Address,
const void *Decoder) {
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Imm9 = fieldFromInstruction(Insn, 12, 9);
unsigned Opc = fieldFromInstruction(Insn, 22, 2);
unsigned V = fieldFromInstruction(Insn, 26, 1);
unsigned Size = fieldFromInstruction(Insn, 30, 2);
if (Opc == 0 || (V == 1 && Opc == 2)) {
// It's a store, the MCInst gets: Rn_wb, Rt, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
if (V == 0 && (Opc == 2 || Size == 3)) {
DecodeGPR64RegisterClass(Inst, Rt, Address, Decoder);
} else if (V == 0) {
DecodeGPR32RegisterClass(Inst, Rt, Address, Decoder);
} else if (V == 1 && (Opc & 2)) {
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
} else {
switch (Size) {
case 0:
DecodeFPR8RegisterClass(Inst, Rt, Address, Decoder);
break;
case 1:
DecodeFPR16RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeFPR32RegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
if (Opc != 0 && (V != 1 || Opc != 2)) {
// It's a load, the MCInst gets: Rt, Rn_wb, Rn, Imm
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
}
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
Inst.addOperand(MCOperand::CreateImm(Imm9));
// N.b. The official documentation says undpredictable if Rt == Rn, but this
// takes place at the architectural rather than encoding level:
//
// "STR xzr, [sp], #4" is perfectly valid.
if (V == 0 && Rt == Rn && Rn != 31)
return MCDisassembler::SoftFail;
else
return MCDisassembler::Success;
}
static MCDisassembler *createAArch64Disassembler(const Target &T,
const MCSubtargetInfo &STI) {
return new AArch64Disassembler(STI, T.createMCRegInfo(""));
}
extern "C" void LLVMInitializeAArch64Disassembler() {
TargetRegistry::RegisterMCDisassembler(TheAArch64Target,
createAArch64Disassembler);
}
template <A64SE::ShiftExtSpecifiers Ext, bool IsHalf>
static DecodeStatus
DecodeNeonMovImmShiftOperand(llvm::MCInst &Inst, unsigned ShiftAmount,
uint64_t Address, const void *Decoder) {
bool IsLSL = false;
if (Ext == A64SE::LSL)
IsLSL = true;
else if (Ext != A64SE::MSL)
return MCDisassembler::Fail;
// MSL and LSLH accepts encoded shift amount 0 or 1.
if ((!IsLSL || (IsLSL && IsHalf)) && ShiftAmount != 0 && ShiftAmount != 1)
return MCDisassembler::Fail;
// LSL accepts encoded shift amount 0, 1, 2 or 3.
if (IsLSL && ShiftAmount > 3)
return MCDisassembler::Fail;
Inst.addOperand(MCOperand::CreateImm(ShiftAmount));
return MCDisassembler::Success;
}
// Decode post-index vector load/store instructions.
// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
// operand is an immediate equal the the length of vector list in bytes,
// or Rm is decoded to a GPR64noxzr register.
static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rm = fieldFromInstruction(Insn, 16, 5);
unsigned Opcode = fieldFromInstruction(Insn, 12, 4);
unsigned IsLoad = fieldFromInstruction(Insn, 22, 1);
// 0 for 64bit vector list, 1 for 128bit vector list
unsigned Is128BitVec = fieldFromInstruction(Insn, 30, 1);
unsigned NumVecs;
switch (Opcode) {
case 0: // ld4/st4
case 2: // ld1/st1 with 4 vectors
NumVecs = 4; break;
case 4: // ld3/st3
case 6: // ld1/st1 with 3 vectors
NumVecs = 3; break;
case 7: // ld1/st1 with 1 vector
NumVecs = 1; break;
case 8: // ld2/st2
case 10: // ld1/st1 with 2 vectors
NumVecs = 2; break;
default:
llvm_unreachable("Invalid opcode for post-index load/store instructions");
}
// Decode vector list of 1/2/3/4 vectors for load instructions.
if (IsLoad) {
switch (NumVecs) {
case 1:
Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the vector list length in byte
Inst.addOperand(MCOperand::CreateImm(NumVecs * (Is128BitVec ? 16 : 8)));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
// Decode vector list of 1/2/3/4 vectors for load instructions.
if (!IsLoad) {
switch (NumVecs) {
case 1:
Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
break;
}
}
return MCDisassembler::Success;
}
// Decode post-index vector load/store lane instructions.
// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
// operand is an immediate equal the the length of the changed bytes,
// or Rm is decoded to a GPR64noxzr register.
static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
bool Is64bitVec = false;
bool IsLoadDup = false;
bool IsLoad = false;
// The total number of bytes transferred.
// TransferBytes = NumVecs * OneLaneBytes
unsigned TransferBytes = 0;
unsigned NumVecs = 0;
unsigned Opc = Inst.getOpcode();
switch (Opc) {
case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register: {
switch (Opc) {
case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
TransferBytes = 1; break;
case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
TransferBytes = 2; break;
case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
TransferBytes = 4; break;
case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register:
TransferBytes = 8; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register: {
switch (Opc) {
case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
TransferBytes = 1; break;
case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
TransferBytes = 2; break;
case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
TransferBytes = 4; break;
case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register:
TransferBytes = 8; break;
}
IsLoadDup = true;
NumVecs = 1;
break;
}
case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register: {
switch (Opc) {
case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
TransferBytes = 2; break;
case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
TransferBytes = 4; break;
case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
TransferBytes = 8; break;
case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register:
TransferBytes = 16; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register: {
switch (Opc) {
case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
TransferBytes = 2; break;
case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
TransferBytes = 4; break;
case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
TransferBytes = 8; break;
case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register:
TransferBytes = 16; break;
}
IsLoadDup = true;
NumVecs = 2;
break;
}
case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register: {
switch (Opc) {
case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
TransferBytes = 3; break;
case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
TransferBytes = 6; break;
case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
TransferBytes = 12; break;
case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register:
TransferBytes = 24; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_8H_register:
case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_4S_register:
case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register: {
switch (Opc) {
case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
TransferBytes = 3; break;
case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_8H_register:
TransferBytes = 6; break;
case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_4S_register:
TransferBytes = 12; break;
case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register:
TransferBytes = 24; break;
}
IsLoadDup = true;
NumVecs = 3;
break;
}
case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register: {
switch (Opc) {
case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
TransferBytes = 4; break;
case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
TransferBytes = 8; break;
case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
TransferBytes = 16; break;
case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register:
TransferBytes = 32; break;
}
Is64bitVec = true;
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_8H_register:
case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_4S_register:
case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register: {
switch (Opc) {
case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
TransferBytes = 4; break;
case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_8H_register:
TransferBytes = 8; break;
case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_4S_register:
TransferBytes = 16; break;
case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register:
TransferBytes = 32; break;
}
IsLoadDup = true;
NumVecs = 4;
break;
}
case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register: {
switch (Opc) {
case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register:
TransferBytes = 8; break;
}
IsLoad = true;
NumVecs = 1;
break;
}
case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register: {
switch (Opc) {
case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register:
TransferBytes = 16; break;
}
IsLoad = true;
NumVecs = 2;
break;
}
case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register: {
switch (Opc) {
case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register:
TransferBytes = 24; break;
}
IsLoad = true;
NumVecs = 3;
break;
}
case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register: {
switch (Opc) {
case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
TransferBytes = 4; break;
case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
TransferBytes = 8; break;
case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
TransferBytes = 16; break;
case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register:
TransferBytes = 32; break;
}
IsLoad = true;
NumVecs = 4;
break;
}
case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register: {
switch (Opc) {
case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
TransferBytes = 1; break;
case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
TransferBytes = 2; break;
case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
TransferBytes = 4; break;
case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register:
TransferBytes = 8; break;
}
NumVecs = 1;
break;
}
case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register: {
switch (Opc) {
case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
TransferBytes = 2; break;
case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
TransferBytes = 4; break;
case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
TransferBytes = 8; break;
case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register:
TransferBytes = 16; break;
}
NumVecs = 2;
break;
}
case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register: {
switch (Opc) {
case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
TransferBytes = 3; break;
case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
TransferBytes = 6; break;
case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
TransferBytes = 12; break;
case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register:
TransferBytes = 24; break;
}
NumVecs = 3;
break;
}
case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register: {
switch (Opc) {
case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
TransferBytes = 4; break;
case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
TransferBytes = 8; break;
case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
TransferBytes = 16; break;
case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register:
TransferBytes = 32; break;
}
NumVecs = 4;
break;
}
default:
return MCDisassembler::Fail;
} // End of switch (Opc)
unsigned Rt = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned Rm = fieldFromInstruction(Insn, 16, 5);
// Decode post-index of load duplicate lane
if (IsLoadDup) {
switch (NumVecs) {
case 1:
Is64bitVec ? DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder)
: DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
Is64bitVec ? DecodeDPairRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
Is64bitVec ? DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
Is64bitVec ? DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder)
: DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
Inst.addOperand(MCOperand::CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
return MCDisassembler::Success;
}
// Decode post-index of load/store lane
// Loads have a vector list as output.
if (IsLoad) {
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
}
// Decode write back register, which is equal to Rn.
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
Inst.addOperand(MCOperand::CreateImm(TransferBytes));
else // Decode Rm
DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
// Decode the source vector list.
switch (NumVecs) {
case 1:
DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
break;
case 2:
DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
break;
case 3:
DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
break;
case 4:
DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
}
// Decode lane
unsigned Q = fieldFromInstruction(Insn, 30, 1);
unsigned S = fieldFromInstruction(Insn, 10, 3);
unsigned lane = 0;
// Calculate the number of lanes by number of vectors and transfered bytes.
// NumLanes = 16 bytes / bytes of each lane
unsigned NumLanes = 16 / (TransferBytes / NumVecs);
switch (NumLanes) {
case 16: // A vector has 16 lanes, each lane is 1 bytes.
lane = (Q << 3) | S;
break;
case 8:
lane = (Q << 2) | (S >> 1);
break;
case 4:
lane = (Q << 1) | (S >> 2);
break;
case 2:
lane = Q;
break;
}
Inst.addOperand(MCOperand::CreateImm(lane));
return MCDisassembler::Success;
}
static DecodeStatus DecodeSHLLInstruction(MCInst &Inst, unsigned Insn,
uint64_t Address,
const void *Decoder) {
unsigned Rd = fieldFromInstruction(Insn, 0, 5);
unsigned Rn = fieldFromInstruction(Insn, 5, 5);
unsigned size = fieldFromInstruction(Insn, 22, 2);
unsigned Q = fieldFromInstruction(Insn, 30, 1);
DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
if(Q)
DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
else
DecodeFPR64RegisterClass(Inst, Rn, Address, Decoder);
switch (size) {
case 0:
Inst.addOperand(MCOperand::CreateImm(8));
break;
case 1:
Inst.addOperand(MCOperand::CreateImm(16));
break;
case 2:
Inst.addOperand(MCOperand::CreateImm(32));
break;
default :
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
}