llvm-6502/lib/CodeGen/LiveIntervalUnion.cpp
Andrew Trick 3d26d5d524 Remove the vector of live vregs. I thought we would need to track
them, but hopefully we won't. And this is not the right data structure
to do it anyway.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117412 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-26 22:58:24 +00:00

165 lines
6.2 KiB
C++

//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
// used during coalescing to represent a congruence class, or during register
// allocation to model liveness of a physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
// Merge a LiveInterval's segments. Guarantee no overlaps.
//
// Consider coalescing adjacent segments to save space, even though it makes
// extraction more complicated.
void LiveIntervalUnion::unify(LiveInterval &lvr) {
// Insert each of the virtual register's live segments into the map
SegmentIter segPos = segments_.begin();
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
lvrI != lvrEnd; ++lvrI ) {
LiveSegment segment(lvrI->start, lvrI->end, lvr);
segPos = segments_.insert(segPos, segment);
assert(*segPos == segment && "need equal val for equal key");
#ifndef NDEBUG
// check for overlap (inductively)
if (segPos != segments_.begin()) {
SegmentIter prevPos = segPos;
--prevPos;
assert(prevPos->end <= segment.start && "overlapping segments" );
}
SegmentIter nextPos = segPos;
++nextPos;
if (nextPos != segments_.end())
assert(segment.end <= nextPos->start && "overlapping segments" );
#endif // NDEBUG
}
}
// Low-level helper to find the first segment in the range [segI,segEnd) that
// intersects with a live virtual register segment, or segI.start >= lvr.end
//
// This logic is tied to the underlying LiveSegments data structure. For now, we
// use a binary search within the vector to find the nearest starting position,
// then reverse iterate to find the first overlap.
//
// Upon entry we have segI.start < lvrSeg.end
// seg |--...
// \ .
// lvr ...-|
//
// After binary search, we have segI.start >= lvrSeg.start:
// seg |--...
// /
// lvr |--...
//
// Assuming intervals are disjoint, if an intersection exists, it must be the
// segment found or immediately behind it. We continue reverse iterating to
// return the first overlap.
typedef LiveIntervalUnion::SegmentIter SegmentIter;
static SegmentIter upperBound(SegmentIter segBegin,
SegmentIter segEnd,
const LiveRange &lvrSeg) {
assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
// get the next LIU segment such that setg.start is not less than
// lvrSeg.start
SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
while (segI != segBegin) {
--segI;
if (lvrSeg.start >= segI->end)
return ++segI;
}
return segI;
}
// Private interface accessed by Query.
//
// Find a pair of segments that intersect, one in the live virtual register
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
// is responsible for advancing the LiveIntervalUnion segments to find a
// "notable" intersection, which requires query-specific logic.
//
// This design assumes only a fast mechanism for intersecting a single live
// virtual register segment with a set of LiveIntervalUnion segments. This may
// be ok since most LVRs have very few segments. If we had a data
// structure that optimizd MxN intersection of segments, then we would bypass
// the loop that advances within the LiveInterval.
//
// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
// segment whose start point is greater than LiveInterval's end point.
//
// Assumes that segments are sorted by start position in both
// LiveInterval and LiveSegments.
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
LiveInterval::iterator lvrEnd = lvr_.end();
SegmentIter liuEnd = liu_.end();
while (ir.liuSegI_ != liuEnd) {
// Slowly advance the live virtual reg iterator until we surpass the next
// segment in this union. If this is ever used for coalescing of fixed
// registers and we have a LiveInterval with thousands of segments, then use
// upper bound instead.
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
++ir.lvrSegI_;
if (ir.lvrSegI_ == lvrEnd)
break;
// lvrSegI_ may have advanced far beyond liuSegI_,
// do a fast intersection test to "catch up"
ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
if (ir.liuSegI_ == liuEnd)
break;
if (ir.liuSegI_->start < ir.lvrSegI_->end) {
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
break;
}
}
if (ir.liuSegI_ == liuEnd)
ir.lvrSegI_ = lvrEnd;
}
// Find the first intersection, and cache interference info
// (retain segment iterators into both lvr_ and liu_).
LiveIntervalUnion::InterferenceResult
LiveIntervalUnion::Query::firstInterference() {
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
return firstInterference_;
}
firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
findIntersection(firstInterference_);
return firstInterference_;
}
// Treat the result as an iterator and advance to the next interfering pair
// of segments. This is a plain iterator with no filter.
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
assert(isInterference(ir) && "iteration past end of interferences");
// Advance either the lvr or liu segment to ensure that we visit all unique
// overlapping pairs.
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
if (++ir.lvrSegI_ == lvr_.end())
return false;
}
else {
if (++ir.liuSegI_ == liu_.end()) {
ir.lvrSegI_ = lvr_.end();
return false;
}
}
if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
return true;
// find the next intersection
findIntersection(ir);
return isInterference(ir);
}