mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 21:32:10 +00:00
d735ee85db
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44348 91177308-0d34-0410-b5e6-96231b3b80d8
498 lines
18 KiB
C++
498 lines
18 KiB
C++
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a simple loop unroller. It works best when loops have
|
|
// been canonicalized by the -indvars pass, allowing it to determine the trip
|
|
// counts of loops easily.
|
|
//
|
|
// This pass will multi-block loops only if they contain no non-unrolled
|
|
// subloops. The process of unrolling can produce extraneous basic blocks
|
|
// linked with unconditional branches. This will be corrected in the future.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include <cstdio>
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
|
|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
|
|
|
|
namespace {
|
|
cl::opt<unsigned>
|
|
UnrollThreshold
|
|
("unroll-threshold", cl::init(100), cl::Hidden,
|
|
cl::desc("The cut-off point for automatic loop unrolling"));
|
|
|
|
cl::opt<unsigned>
|
|
UnrollCount
|
|
("unroll-count", cl::init(0), cl::Hidden,
|
|
cl::desc("Use this unroll count for all loops, for testing purposes"));
|
|
|
|
class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
|
|
LoopInfo *LI; // The current loop information
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopUnroll() : LoopPass((intptr_t)&ID) {}
|
|
|
|
/// A magic value for use with the Threshold parameter to indicate
|
|
/// that the loop unroll should be performed regardless of how much
|
|
/// code expansion would result.
|
|
static const unsigned NoThreshold = UINT_MAX;
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM);
|
|
bool unrollLoop(Loop *L, unsigned Count, unsigned Threshold);
|
|
BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB);
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addPreservedID(LCSSAID);
|
|
AU.addPreserved<LoopInfo>();
|
|
}
|
|
};
|
|
char LoopUnroll::ID = 0;
|
|
RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
|
|
}
|
|
|
|
LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
|
|
|
|
/// ApproximateLoopSize - Approximate the size of the loop.
|
|
static unsigned ApproximateLoopSize(const Loop *L) {
|
|
unsigned Size = 0;
|
|
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
|
|
BasicBlock *BB = L->getBlocks()[i];
|
|
Instruction *Term = BB->getTerminator();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
if (isa<PHINode>(I) && BB == L->getHeader()) {
|
|
// Ignore PHI nodes in the header.
|
|
} else if (I->hasOneUse() && I->use_back() == Term) {
|
|
// Ignore instructions only used by the loop terminator.
|
|
} else if (isa<DbgInfoIntrinsic>(I)) {
|
|
// Ignore debug instructions
|
|
} else {
|
|
++Size;
|
|
}
|
|
|
|
// TODO: Ignore expressions derived from PHI and constants if inval of phi
|
|
// is a constant, or if operation is associative. This will get induction
|
|
// variables.
|
|
}
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
// RemapInstruction - Convert the instruction operands from referencing the
|
|
// current values into those specified by ValueMap.
|
|
//
|
|
static inline void RemapInstruction(Instruction *I,
|
|
DenseMap<const Value *, Value*> &ValueMap) {
|
|
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
|
|
Value *Op = I->getOperand(op);
|
|
DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
|
|
if (It != ValueMap.end()) Op = It->second;
|
|
I->setOperand(op, Op);
|
|
}
|
|
}
|
|
|
|
// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
|
|
// only has one predecessor, and that predecessor only has one successor.
|
|
// Returns the new combined block.
|
|
BasicBlock *LoopUnroll::FoldBlockIntoPredecessor(BasicBlock *BB) {
|
|
// Merge basic blocks into their predecessor if there is only one distinct
|
|
// pred, and if there is only one distinct successor of the predecessor, and
|
|
// if there are no PHI nodes.
|
|
//
|
|
BasicBlock *OnlyPred = BB->getSinglePredecessor();
|
|
if (!OnlyPred) return 0;
|
|
|
|
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
|
|
return 0;
|
|
|
|
DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
|
|
|
|
// Resolve any PHI nodes at the start of the block. They are all
|
|
// guaranteed to have exactly one entry if they exist, unless there are
|
|
// multiple duplicate (but guaranteed to be equal) entries for the
|
|
// incoming edges. This occurs when there are multiple edges from
|
|
// OnlyPred to OnlySucc.
|
|
//
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
BB->getInstList().pop_front(); // Delete the phi node...
|
|
}
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
OnlyPred->getInstList().pop_back();
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(OnlyPred);
|
|
|
|
std::string OldName = BB->getName();
|
|
|
|
// Erase basic block from the function...
|
|
LI->removeBlock(BB);
|
|
BB->eraseFromParent();
|
|
|
|
// Inherit predecessor's name if it exists...
|
|
if (!OldName.empty() && !OnlyPred->hasName())
|
|
OnlyPred->setName(OldName);
|
|
|
|
return OnlyPred;
|
|
}
|
|
|
|
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
LI = &getAnalysis<LoopInfo>();
|
|
|
|
// Unroll the loop.
|
|
if (!unrollLoop(L, UnrollCount, UnrollThreshold))
|
|
return false;
|
|
|
|
// Update the loop information for this loop.
|
|
// If we completely unrolled the loop, remove it from the parent.
|
|
if (L->getNumBackEdges() == 0)
|
|
LPM.deleteLoopFromQueue(L);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Unroll the given loop by UnrollCount, or by a heuristically-determined
|
|
/// value if Count is zero. If Threshold is not NoThreshold, it is a value
|
|
/// to limit code size expansion. If the loop size would expand beyond the
|
|
/// threshold value, unrolling is suppressed. The return value is true if
|
|
/// any transformations are performed.
|
|
///
|
|
bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) {
|
|
assert(L->isLCSSAForm());
|
|
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
|
|
|
DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
|
|
<< "] Loop %" << Header->getName() << "\n";
|
|
|
|
if (!BI || BI->isUnconditional()) {
|
|
// The loop-rorate pass can be helpful to avoid this in many cases.
|
|
DOUT << " Can't unroll; loop not terminated by a conditional branch.\n";
|
|
return false;
|
|
}
|
|
|
|
// Determine the trip count and/or trip multiple. A TripCount value of zero
|
|
// is used to mean an unknown trip count. The TripMultiple value is the
|
|
// greatest known integer multiple of the trip count.
|
|
unsigned TripCount = 0;
|
|
unsigned TripMultiple = 1;
|
|
if (Value *TripCountValue = L->getTripCount()) {
|
|
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCountValue)) {
|
|
// Guard against huge trip counts. This also guards against assertions in
|
|
// APInt from the use of getZExtValue, below.
|
|
if (TripCountC->getValue().getActiveBits() <= 32) {
|
|
TripCount = (unsigned)TripCountC->getZExtValue();
|
|
}
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCountValue)) {
|
|
switch (BO->getOpcode()) {
|
|
case BinaryOperator::Mul:
|
|
if (ConstantInt *MultipleC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
|
if (MultipleC->getValue().getActiveBits() <= 32) {
|
|
TripMultiple = (unsigned)MultipleC->getZExtValue();
|
|
}
|
|
}
|
|
break;
|
|
default: break;
|
|
}
|
|
}
|
|
}
|
|
if (TripCount != 0)
|
|
DOUT << " Trip Count = " << TripCount << "\n";
|
|
if (TripMultiple != 1)
|
|
DOUT << " Trip Multiple = " << TripMultiple << "\n";
|
|
|
|
// Automatically select an unroll count.
|
|
if (Count == 0) {
|
|
// Conservative heuristic: if we know the trip count, see if we can
|
|
// completely unroll (subject to the threshold, checked below); otherwise
|
|
// don't unroll.
|
|
if (TripCount != 0) {
|
|
Count = TripCount;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Effectively "DCE" unrolled iterations that are beyond the tripcount
|
|
// and will never be executed.
|
|
if (TripCount != 0 && Count > TripCount)
|
|
Count = TripCount;
|
|
|
|
assert(Count > 0);
|
|
assert(TripMultiple > 0);
|
|
assert(TripCount == 0 || TripCount % TripMultiple == 0);
|
|
|
|
// Enforce the threshold.
|
|
if (Threshold != NoThreshold) {
|
|
unsigned LoopSize = ApproximateLoopSize(L);
|
|
DOUT << " Loop Size = " << LoopSize << "\n";
|
|
uint64_t Size = (uint64_t)LoopSize*Count;
|
|
if (TripCount != 1 && Size > Threshold) {
|
|
DOUT << " TOO LARGE TO UNROLL: "
|
|
<< Size << ">" << Threshold << "\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Are we eliminating the loop control altogether?
|
|
bool CompletelyUnroll = Count == TripCount;
|
|
|
|
// If we know the trip count, we know the multiple...
|
|
unsigned BreakoutTrip = 0;
|
|
if (TripCount != 0) {
|
|
BreakoutTrip = TripCount % Count;
|
|
TripMultiple = 0;
|
|
} else {
|
|
// Figure out what multiple to use.
|
|
BreakoutTrip = TripMultiple =
|
|
(unsigned)GreatestCommonDivisor64(Count, TripMultiple);
|
|
}
|
|
|
|
if (CompletelyUnroll) {
|
|
DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
|
|
<< " with trip count " << TripCount << "!\n";
|
|
} else {
|
|
DOUT << "UNROLLING loop %" << Header->getName()
|
|
<< " by " << Count;
|
|
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
|
|
DOUT << " with a breakout at trip " << BreakoutTrip;
|
|
} else if (TripMultiple != 1) {
|
|
DOUT << " with " << TripMultiple << " trips per branch";
|
|
}
|
|
DOUT << "!\n";
|
|
}
|
|
|
|
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
|
|
|
|
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
|
|
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
|
|
|
|
// For the first iteration of the loop, we should use the precloned values for
|
|
// PHI nodes. Insert associations now.
|
|
typedef DenseMap<const Value*, Value*> ValueMapTy;
|
|
ValueMapTy LastValueMap;
|
|
std::vector<PHINode*> OrigPHINode;
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
OrigPHINode.push_back(PN);
|
|
if (Instruction *I =
|
|
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
|
|
if (L->contains(I->getParent()))
|
|
LastValueMap[I] = I;
|
|
}
|
|
|
|
std::vector<BasicBlock*> Headers;
|
|
std::vector<BasicBlock*> Latches;
|
|
Headers.push_back(Header);
|
|
Latches.push_back(LatchBlock);
|
|
|
|
for (unsigned It = 1; It != Count; ++It) {
|
|
char SuffixBuffer[100];
|
|
sprintf(SuffixBuffer, ".%d", It);
|
|
|
|
std::vector<BasicBlock*> NewBlocks;
|
|
|
|
for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
|
|
E = LoopBlocks.end(); BB != E; ++BB) {
|
|
ValueMapTy ValueMap;
|
|
BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
|
|
Header->getParent()->getBasicBlockList().push_back(New);
|
|
|
|
// Loop over all of the PHI nodes in the block, changing them to use the
|
|
// incoming values from the previous block.
|
|
if (*BB == Header)
|
|
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
|
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
|
|
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
|
if (It > 1 && L->contains(InValI->getParent()))
|
|
InVal = LastValueMap[InValI];
|
|
ValueMap[OrigPHINode[i]] = InVal;
|
|
New->getInstList().erase(NewPHI);
|
|
}
|
|
|
|
// Update our running map of newest clones
|
|
LastValueMap[*BB] = New;
|
|
for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
|
|
VI != VE; ++VI)
|
|
LastValueMap[VI->first] = VI->second;
|
|
|
|
L->addBasicBlockToLoop(New, LI->getBase());
|
|
|
|
// Add phi entries for newly created values to all exit blocks except
|
|
// the successor of the latch block. The successor of the exit block will
|
|
// be updated specially after unrolling all the way.
|
|
if (*BB != LatchBlock)
|
|
for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
|
|
UI != UE; ++UI) {
|
|
Instruction *UseInst = cast<Instruction>(*UI);
|
|
if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
|
|
PHINode *phi = cast<PHINode>(UseInst);
|
|
Value *Incoming = phi->getIncomingValueForBlock(*BB);
|
|
phi->addIncoming(Incoming, New);
|
|
}
|
|
}
|
|
|
|
// Keep track of new headers and latches as we create them, so that
|
|
// we can insert the proper branches later.
|
|
if (*BB == Header)
|
|
Headers.push_back(New);
|
|
if (*BB == LatchBlock) {
|
|
Latches.push_back(New);
|
|
|
|
// Also, clear out the new latch's back edge so that it doesn't look
|
|
// like a new loop, so that it's amenable to being merged with adjacent
|
|
// blocks later on.
|
|
TerminatorInst *Term = New->getTerminator();
|
|
assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
|
|
assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
|
|
Term->setSuccessor(!ContinueOnTrue, NULL);
|
|
}
|
|
|
|
NewBlocks.push_back(New);
|
|
}
|
|
|
|
// Remap all instructions in the most recent iteration
|
|
for (unsigned i = 0; i < NewBlocks.size(); ++i)
|
|
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
|
E = NewBlocks[i]->end(); I != E; ++I)
|
|
RemapInstruction(I, LastValueMap);
|
|
}
|
|
|
|
// The latch block exits the loop. If there are any PHI nodes in the
|
|
// successor blocks, update them to use the appropriate values computed as the
|
|
// last iteration of the loop.
|
|
if (Count != 1) {
|
|
SmallPtrSet<PHINode*, 8> Users;
|
|
for (Value::use_iterator UI = LatchBlock->use_begin(),
|
|
UE = LatchBlock->use_end(); UI != UE; ++UI)
|
|
if (PHINode *phi = dyn_cast<PHINode>(*UI))
|
|
Users.insert(phi);
|
|
|
|
BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
|
|
for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
|
|
SI != SE; ++SI) {
|
|
PHINode *PN = *SI;
|
|
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
|
|
// If this value was defined in the loop, take the value defined by the
|
|
// last iteration of the loop.
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
|
|
if (L->contains(InValI->getParent()))
|
|
InVal = LastValueMap[InVal];
|
|
}
|
|
PN->addIncoming(InVal, LastIterationBB);
|
|
}
|
|
}
|
|
|
|
// Now, if we're doing complete unrolling, loop over the PHI nodes in the
|
|
// original block, setting them to their incoming values.
|
|
if (CompletelyUnroll) {
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
|
PHINode *PN = OrigPHINode[i];
|
|
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
|
Header->getInstList().erase(PN);
|
|
}
|
|
}
|
|
|
|
// Now that all the basic blocks for the unrolled iterations are in place,
|
|
// set up the branches to connect them.
|
|
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
|
|
// The original branch was replicated in each unrolled iteration.
|
|
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
|
|
|
|
// The branch destination.
|
|
unsigned j = (i + 1) % e;
|
|
BasicBlock *Dest = Headers[j];
|
|
bool NeedConditional = true;
|
|
|
|
// For a complete unroll, make the last iteration end with a branch
|
|
// to the exit block.
|
|
if (CompletelyUnroll && j == 0) {
|
|
Dest = LoopExit;
|
|
NeedConditional = false;
|
|
}
|
|
|
|
// If we know the trip count or a multiple of it, we can safely use an
|
|
// unconditional branch for some iterations.
|
|
if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
|
|
NeedConditional = false;
|
|
}
|
|
|
|
if (NeedConditional) {
|
|
// Update the conditional branch's successor for the following
|
|
// iteration.
|
|
Term->setSuccessor(!ContinueOnTrue, Dest);
|
|
} else {
|
|
Term->setUnconditionalDest(Dest);
|
|
// Merge adjacent basic blocks, if possible.
|
|
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest)) {
|
|
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
|
|
std::replace(Headers.begin(), Headers.end(), Dest, Fold);
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point, the code is well formed. We now do a quick sweep over the
|
|
// inserted code, doing constant propagation and dead code elimination as we
|
|
// go.
|
|
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
|
|
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
|
|
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
|
|
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
|
|
if (isInstructionTriviallyDead(Inst))
|
|
(*BB)->getInstList().erase(Inst);
|
|
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
|
Inst->replaceAllUsesWith(C);
|
|
(*BB)->getInstList().erase(Inst);
|
|
}
|
|
}
|
|
|
|
NumCompletelyUnrolled += CompletelyUnroll;
|
|
++NumUnrolled;
|
|
return true;
|
|
}
|