llvm-6502/tools/yaml2obj/yaml2obj.cpp
Rafael Espindola f59a2a86ff Remove COFFYAML::Header.
Instead, use MappingNormalization to directly parse COFF::header. Also change
the naming convention of the helper classes to be a bit shorter.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179917 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-20 02:02:25 +00:00

737 lines
23 KiB
C++

//===- yaml2obj - Convert YAML to a binary object file --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program takes a YAML description of an object file and outputs the
// binary equivalent.
//
// This is used for writing tests that require binary files.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <vector>
using namespace llvm;
static cl::opt<std::string>
Input(cl::Positional, cl::desc("<input>"), cl::init("-"));
template<class T>
typename llvm::enable_if_c<std::numeric_limits<T>::is_integer, bool>::type
getAs(const llvm::yaml::ScalarNode *SN, T &Result) {
SmallString<4> Storage;
StringRef Value = SN->getValue(Storage);
if (Value.getAsInteger(0, Result))
return false;
return true;
}
// Given a container with begin and end with ::value_type of a character type.
// Iterate through pairs of characters in the the set of [a-fA-F0-9] ignoring
// all other characters.
struct hex_pair_iterator {
StringRef::const_iterator Current, End;
typedef SmallVector<char, 2> value_type;
value_type Pair;
bool IsDone;
hex_pair_iterator(StringRef C)
: Current(C.begin()), End(C.end()), IsDone(false) {
// Initalize Pair.
++*this;
}
// End iterator.
hex_pair_iterator() : Current(), End(), IsDone(true) {}
value_type operator *() const {
return Pair;
}
hex_pair_iterator operator ++() {
// We're at the end of the input.
if (Current == End) {
IsDone = true;
return *this;
}
Pair = value_type();
for (; Current != End && Pair.size() != 2; ++Current) {
// Is a valid hex digit.
if ((*Current >= '0' && *Current <= '9') ||
(*Current >= 'a' && *Current <= 'f') ||
(*Current >= 'A' && *Current <= 'F'))
Pair.push_back(*Current);
}
// Hit the end without getting 2 hex digits. Pair is invalid.
if (Pair.size() != 2)
IsDone = true;
return *this;
}
bool operator ==(const hex_pair_iterator Other) {
return (IsDone == Other.IsDone) ||
(Current == Other.Current && End == Other.End);
}
bool operator !=(const hex_pair_iterator Other) {
return !(*this == Other);
}
};
template <class ContainerOut>
static bool hexStringToByteArray(StringRef Str, ContainerOut &Out) {
for (hex_pair_iterator I(Str), E; I != E; ++I) {
typename hex_pair_iterator::value_type Pair = *I;
typename ContainerOut::value_type Byte;
if (StringRef(Pair.data(), 2).getAsInteger(16, Byte))
return false;
Out.push_back(Byte);
}
return true;
}
// The structure of the yaml files is not an exact 1:1 match to COFF. In order
// to use yaml::IO, we use these structures which are closer to the source.
namespace COFFYAML {
struct Section {
COFF::SectionCharacteristics Characteristics;
StringRef SectionData;
std::vector<COFF::relocation> Relocations;
StringRef Name;
};
struct Symbol {
COFF::SymbolBaseType SimpleType;
uint8_t NumberOfAuxSymbols;
StringRef Name;
COFF::SymbolStorageClass StorageClass;
StringRef AuxillaryData;
COFF::SymbolComplexType ComplexType;
uint32_t Value;
uint16_t SectionNumber;
};
struct Object {
COFF::header HeaderData;
std::vector<Section> Sections;
std::vector<Symbol> Symbols;
};
}
/// This parses a yaml stream that represents a COFF object file.
/// See docs/yaml2obj for the yaml scheema.
struct COFFParser {
COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
std::memset(&Header, 0, sizeof(Header));
// A COFF string table always starts with a 4 byte size field. Offsets into
// it include this size, so allocate it now.
StringTable.append(4, 0);
}
void parseHeader() {
Header.Machine = Obj.HeaderData.Machine;
Header.Characteristics = Obj.HeaderData.Characteristics;
}
bool parseSections() {
for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
e = Obj.Sections.end(); i != e; ++i) {
const COFFYAML::Section &YamlSection = *i;
Section Sec;
std::memset(&Sec.Header, 0, sizeof(Sec.Header));
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = YamlSection.Name;
std::fill_n(Sec.Header.Name, unsigned(COFF::NameSize), 0);
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sec.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
std::string str = utostr(Index);
if (str.size() > 7) {
errs() << "String table got too large";
return false;
}
Sec.Header.Name[0] = '/';
std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
}
Sec.Header.Characteristics = YamlSection.Characteristics;
StringRef Data = YamlSection.SectionData;
if (!hexStringToByteArray(Data, Sec.Data)) {
errs() << "SectionData must be a collection of pairs of hex bytes";
return false;
}
Sections.push_back(Sec);
}
return true;
}
bool parseSymbols() {
for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
e = Obj.Symbols.end(); i != e; ++i) {
COFFYAML::Symbol YamlSymbol = *i;
Symbol Sym;
std::memset(&Sym.Header, 0, sizeof(Sym.Header));
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = YamlSymbol.Name;
std::fill_n(Sym.Header.Name, unsigned(COFF::NameSize), 0);
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sym.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
*reinterpret_cast<support::aligned_ulittle32_t*>(
Sym.Header.Name + 4) = Index;
}
Sym.Header.Value = YamlSymbol.Value;
Sym.Header.Type |= YamlSymbol.SimpleType;
Sym.Header.Type |= YamlSymbol.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
Sym.Header.StorageClass = YamlSymbol.StorageClass;
Sym.Header.SectionNumber = YamlSymbol.SectionNumber;
StringRef Data = YamlSymbol.AuxillaryData;
if (!hexStringToByteArray(Data, Sym.AuxSymbols)) {
errs() << "AuxillaryData must be a collection of pairs of hex bytes";
return false;
}
Symbols.push_back(Sym);
}
return true;
}
bool parse() {
parseHeader();
if (!parseSections())
return false;
if (!parseSymbols())
return false;
return true;
}
unsigned getStringIndex(StringRef Str) {
StringMap<unsigned>::iterator i = StringTableMap.find(Str);
if (i == StringTableMap.end()) {
unsigned Index = StringTable.size();
StringTable.append(Str.begin(), Str.end());
StringTable.push_back(0);
StringTableMap[Str] = Index;
return Index;
}
return i->second;
}
COFFYAML::Object &Obj;
COFF::header Header;
struct Section {
COFF::section Header;
std::vector<uint8_t> Data;
std::vector<COFF::relocation> Relocations;
};
struct Symbol {
COFF::symbol Header;
std::vector<uint8_t> AuxSymbols;
};
std::vector<Section> Sections;
std::vector<Symbol> Symbols;
StringMap<unsigned> StringTableMap;
std::string StringTable;
};
// Take a CP and assign addresses and sizes to everything. Returns false if the
// layout is not valid to do.
static bool layoutCOFF(COFFParser &CP) {
uint32_t SectionTableStart = 0;
uint32_t SectionTableSize = 0;
// The section table starts immediately after the header, including the
// optional header.
SectionTableStart = sizeof(COFF::header) + CP.Header.SizeOfOptionalHeader;
SectionTableSize = sizeof(COFF::section) * CP.Sections.size();
uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
// Assign each section data address consecutively.
for (std::vector<COFFParser::Section>::iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
if (!i->Data.empty()) {
i->Header.SizeOfRawData = i->Data.size();
i->Header.PointerToRawData = CurrentSectionDataOffset;
CurrentSectionDataOffset += i->Header.SizeOfRawData;
// TODO: Handle alignment.
} else {
i->Header.SizeOfRawData = 0;
i->Header.PointerToRawData = 0;
}
}
uint32_t SymbolTableStart = CurrentSectionDataOffset;
// Calculate number of symbols.
uint32_t NumberOfSymbols = 0;
for (std::vector<COFFParser::Symbol>::iterator i = CP.Symbols.begin(),
e = CP.Symbols.end();
i != e; ++i) {
if (i->AuxSymbols.size() % COFF::SymbolSize != 0) {
errs() << "AuxillaryData size not a multiple of symbol size!\n";
return false;
}
i->Header.NumberOfAuxSymbols = i->AuxSymbols.size() / COFF::SymbolSize;
NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
}
// Store all the allocated start addresses in the header.
CP.Header.NumberOfSections = CP.Sections.size();
CP.Header.NumberOfSymbols = NumberOfSymbols;
CP.Header.PointerToSymbolTable = SymbolTableStart;
*reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
= CP.StringTable.size();
return true;
}
template <typename value_type>
struct binary_le_impl {
value_type Value;
binary_le_impl(value_type V) : Value(V) {}
};
template <typename value_type>
raw_ostream &operator <<( raw_ostream &OS
, const binary_le_impl<value_type> &BLE) {
char Buffer[sizeof(BLE.Value)];
support::endian::write<value_type, support::little, support::unaligned>(
Buffer, BLE.Value);
OS.write(Buffer, sizeof(BLE.Value));
return OS;
}
template <typename value_type>
binary_le_impl<value_type> binary_le(value_type V) {
return binary_le_impl<value_type>(V);
}
void writeCOFF(COFFParser &CP, raw_ostream &OS) {
OS << binary_le(CP.Header.Machine)
<< binary_le(CP.Header.NumberOfSections)
<< binary_le(CP.Header.TimeDateStamp)
<< binary_le(CP.Header.PointerToSymbolTable)
<< binary_le(CP.Header.NumberOfSymbols)
<< binary_le(CP.Header.SizeOfOptionalHeader)
<< binary_le(CP.Header.Characteristics);
// Output section table.
for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.VirtualSize)
<< binary_le(i->Header.VirtualAddress)
<< binary_le(i->Header.SizeOfRawData)
<< binary_le(i->Header.PointerToRawData)
<< binary_le(i->Header.PointerToRelocations)
<< binary_le(i->Header.PointerToLineNumbers)
<< binary_le(i->Header.NumberOfRelocations)
<< binary_le(i->Header.NumberOfLineNumbers)
<< binary_le(i->Header.Characteristics);
}
// Output section data.
for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
e = CP.Sections.end();
i != e; ++i) {
if (!i->Data.empty())
OS.write(reinterpret_cast<const char*>(&i->Data[0]), i->Data.size());
}
// Output symbol table.
for (std::vector<COFFParser::Symbol>::const_iterator i = CP.Symbols.begin(),
e = CP.Symbols.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.Value)
<< binary_le(i->Header.SectionNumber)
<< binary_le(i->Header.Type)
<< binary_le(i->Header.StorageClass)
<< binary_le(i->Header.NumberOfAuxSymbols);
if (!i->AuxSymbols.empty())
OS.write( reinterpret_cast<const char*>(&i->AuxSymbols[0])
, i->AuxSymbols.size());
}
// Output string table.
OS.write(&CP.StringTable[0], CP.StringTable.size());
}
LLVM_YAML_IS_SEQUENCE_VECTOR(COFF::relocation)
LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Section)
LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Symbol)
namespace llvm {
namespace COFF {
Characteristics operator|(Characteristics a, Characteristics b) {
uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
return static_cast<Characteristics>(Ret);
}
SectionCharacteristics
operator|(SectionCharacteristics a, SectionCharacteristics b) {
uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
return static_cast<SectionCharacteristics>(Ret);
}
}
namespace yaml {
#define BCase(X) IO.bitSetCase(Value, #X, COFF::X);
template <>
struct ScalarBitSetTraits<COFF::SectionCharacteristics> {
static void bitset(IO &IO, COFF::SectionCharacteristics &Value) {
BCase(IMAGE_SCN_TYPE_NO_PAD);
BCase(IMAGE_SCN_CNT_CODE);
BCase(IMAGE_SCN_CNT_INITIALIZED_DATA);
BCase(IMAGE_SCN_CNT_UNINITIALIZED_DATA);
BCase(IMAGE_SCN_LNK_OTHER);
BCase(IMAGE_SCN_LNK_INFO);
BCase(IMAGE_SCN_LNK_REMOVE);
BCase(IMAGE_SCN_LNK_COMDAT);
BCase(IMAGE_SCN_GPREL);
BCase(IMAGE_SCN_MEM_PURGEABLE);
BCase(IMAGE_SCN_MEM_16BIT);
BCase(IMAGE_SCN_MEM_LOCKED);
BCase(IMAGE_SCN_MEM_PRELOAD);
BCase(IMAGE_SCN_ALIGN_1BYTES);
BCase(IMAGE_SCN_ALIGN_2BYTES);
BCase(IMAGE_SCN_ALIGN_4BYTES);
BCase(IMAGE_SCN_ALIGN_8BYTES);
BCase(IMAGE_SCN_ALIGN_16BYTES);
BCase(IMAGE_SCN_ALIGN_32BYTES);
BCase(IMAGE_SCN_ALIGN_64BYTES);
BCase(IMAGE_SCN_ALIGN_128BYTES);
BCase(IMAGE_SCN_ALIGN_256BYTES);
BCase(IMAGE_SCN_ALIGN_512BYTES);
BCase(IMAGE_SCN_ALIGN_1024BYTES);
BCase(IMAGE_SCN_ALIGN_2048BYTES);
BCase(IMAGE_SCN_ALIGN_4096BYTES);
BCase(IMAGE_SCN_ALIGN_8192BYTES);
BCase(IMAGE_SCN_LNK_NRELOC_OVFL);
BCase(IMAGE_SCN_MEM_DISCARDABLE);
BCase(IMAGE_SCN_MEM_NOT_CACHED);
BCase(IMAGE_SCN_MEM_NOT_PAGED);
BCase(IMAGE_SCN_MEM_SHARED);
BCase(IMAGE_SCN_MEM_EXECUTE);
BCase(IMAGE_SCN_MEM_READ);
BCase(IMAGE_SCN_MEM_WRITE);
}
};
template <>
struct ScalarBitSetTraits<COFF::Characteristics> {
static void bitset(IO &IO, COFF::Characteristics &Value) {
BCase(IMAGE_FILE_RELOCS_STRIPPED);
BCase(IMAGE_FILE_EXECUTABLE_IMAGE);
BCase(IMAGE_FILE_LINE_NUMS_STRIPPED);
BCase(IMAGE_FILE_LOCAL_SYMS_STRIPPED);
BCase(IMAGE_FILE_AGGRESSIVE_WS_TRIM);
BCase(IMAGE_FILE_LARGE_ADDRESS_AWARE);
BCase(IMAGE_FILE_BYTES_REVERSED_LO);
BCase(IMAGE_FILE_32BIT_MACHINE);
BCase(IMAGE_FILE_DEBUG_STRIPPED);
BCase(IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP);
BCase(IMAGE_FILE_NET_RUN_FROM_SWAP);
BCase(IMAGE_FILE_SYSTEM);
BCase(IMAGE_FILE_DLL);
BCase(IMAGE_FILE_UP_SYSTEM_ONLY);
BCase(IMAGE_FILE_BYTES_REVERSED_HI);
}
};
#undef BCase
#define ECase(X) IO.enumCase(Value, #X, COFF::X);
template <>
struct ScalarEnumerationTraits<COFF::SymbolComplexType> {
static void enumeration(IO &IO, COFF::SymbolComplexType &Value) {
ECase(IMAGE_SYM_DTYPE_NULL);
ECase(IMAGE_SYM_DTYPE_POINTER);
ECase(IMAGE_SYM_DTYPE_FUNCTION);
ECase(IMAGE_SYM_DTYPE_ARRAY);
}
};
template <>
struct ScalarEnumerationTraits<COFF::SymbolStorageClass> {
static void enumeration(IO &IO, COFF::SymbolStorageClass &Value) {
ECase(IMAGE_SYM_CLASS_END_OF_FUNCTION);
ECase(IMAGE_SYM_CLASS_NULL);
ECase(IMAGE_SYM_CLASS_AUTOMATIC);
ECase(IMAGE_SYM_CLASS_EXTERNAL);
ECase(IMAGE_SYM_CLASS_STATIC);
ECase(IMAGE_SYM_CLASS_REGISTER);
ECase(IMAGE_SYM_CLASS_EXTERNAL_DEF);
ECase(IMAGE_SYM_CLASS_LABEL);
ECase(IMAGE_SYM_CLASS_UNDEFINED_LABEL);
ECase(IMAGE_SYM_CLASS_MEMBER_OF_STRUCT);
ECase(IMAGE_SYM_CLASS_ARGUMENT);
ECase(IMAGE_SYM_CLASS_STRUCT_TAG);
ECase(IMAGE_SYM_CLASS_MEMBER_OF_UNION);
ECase(IMAGE_SYM_CLASS_UNION_TAG);
ECase(IMAGE_SYM_CLASS_TYPE_DEFINITION);
ECase(IMAGE_SYM_CLASS_UNDEFINED_STATIC);
ECase(IMAGE_SYM_CLASS_ENUM_TAG);
ECase(IMAGE_SYM_CLASS_MEMBER_OF_ENUM);
ECase(IMAGE_SYM_CLASS_REGISTER_PARAM);
ECase(IMAGE_SYM_CLASS_BIT_FIELD);
ECase(IMAGE_SYM_CLASS_BLOCK);
ECase(IMAGE_SYM_CLASS_FUNCTION);
ECase(IMAGE_SYM_CLASS_END_OF_STRUCT);
ECase(IMAGE_SYM_CLASS_FILE);
ECase(IMAGE_SYM_CLASS_SECTION);
ECase(IMAGE_SYM_CLASS_WEAK_EXTERNAL);
ECase(IMAGE_SYM_CLASS_CLR_TOKEN);
}
};
template <>
struct ScalarEnumerationTraits<COFF::SymbolBaseType> {
static void enumeration(IO &IO, COFF::SymbolBaseType &Value) {
ECase(IMAGE_SYM_TYPE_NULL);
ECase(IMAGE_SYM_TYPE_VOID);
ECase(IMAGE_SYM_TYPE_CHAR);
ECase(IMAGE_SYM_TYPE_SHORT);
ECase(IMAGE_SYM_TYPE_INT);
ECase(IMAGE_SYM_TYPE_LONG);
ECase(IMAGE_SYM_TYPE_FLOAT);
ECase(IMAGE_SYM_TYPE_DOUBLE);
ECase(IMAGE_SYM_TYPE_STRUCT);
ECase(IMAGE_SYM_TYPE_UNION);
ECase(IMAGE_SYM_TYPE_ENUM);
ECase(IMAGE_SYM_TYPE_MOE);
ECase(IMAGE_SYM_TYPE_BYTE);
ECase(IMAGE_SYM_TYPE_WORD);
ECase(IMAGE_SYM_TYPE_UINT);
ECase(IMAGE_SYM_TYPE_DWORD);
}
};
template <>
struct ScalarEnumerationTraits<COFF::MachineTypes> {
static void enumeration(IO &IO, COFF::MachineTypes &Value) {
ECase(IMAGE_FILE_MACHINE_UNKNOWN);
ECase(IMAGE_FILE_MACHINE_AM33);
ECase(IMAGE_FILE_MACHINE_AMD64);
ECase(IMAGE_FILE_MACHINE_ARM);
ECase(IMAGE_FILE_MACHINE_ARMV7);
ECase(IMAGE_FILE_MACHINE_EBC);
ECase(IMAGE_FILE_MACHINE_I386);
ECase(IMAGE_FILE_MACHINE_IA64);
ECase(IMAGE_FILE_MACHINE_M32R);
ECase(IMAGE_FILE_MACHINE_MIPS16);
ECase(IMAGE_FILE_MACHINE_MIPSFPU);
ECase(IMAGE_FILE_MACHINE_MIPSFPU16);
ECase(IMAGE_FILE_MACHINE_POWERPC);
ECase(IMAGE_FILE_MACHINE_POWERPCFP);
ECase(IMAGE_FILE_MACHINE_R4000);
ECase(IMAGE_FILE_MACHINE_SH3);
ECase(IMAGE_FILE_MACHINE_SH3DSP);
ECase(IMAGE_FILE_MACHINE_SH4);
ECase(IMAGE_FILE_MACHINE_SH5);
ECase(IMAGE_FILE_MACHINE_THUMB);
ECase(IMAGE_FILE_MACHINE_WCEMIPSV2);
}
};
template <>
struct ScalarEnumerationTraits<COFF::RelocationTypeX86> {
static void enumeration(IO &IO, COFF::RelocationTypeX86 &Value) {
ECase(IMAGE_REL_I386_ABSOLUTE);
ECase(IMAGE_REL_I386_DIR16);
ECase(IMAGE_REL_I386_REL16);
ECase(IMAGE_REL_I386_DIR32);
ECase(IMAGE_REL_I386_DIR32NB);
ECase(IMAGE_REL_I386_SEG12);
ECase(IMAGE_REL_I386_SECTION);
ECase(IMAGE_REL_I386_SECREL);
ECase(IMAGE_REL_I386_TOKEN);
ECase(IMAGE_REL_I386_SECREL7);
ECase(IMAGE_REL_I386_REL32);
ECase(IMAGE_REL_AMD64_ABSOLUTE);
ECase(IMAGE_REL_AMD64_ADDR64);
ECase(IMAGE_REL_AMD64_ADDR32);
ECase(IMAGE_REL_AMD64_ADDR32NB);
ECase(IMAGE_REL_AMD64_REL32);
ECase(IMAGE_REL_AMD64_REL32_1);
ECase(IMAGE_REL_AMD64_REL32_2);
ECase(IMAGE_REL_AMD64_REL32_3);
ECase(IMAGE_REL_AMD64_REL32_4);
ECase(IMAGE_REL_AMD64_REL32_5);
ECase(IMAGE_REL_AMD64_SECTION);
ECase(IMAGE_REL_AMD64_SECREL);
ECase(IMAGE_REL_AMD64_SECREL7);
ECase(IMAGE_REL_AMD64_TOKEN);
ECase(IMAGE_REL_AMD64_SREL32);
ECase(IMAGE_REL_AMD64_PAIR);
ECase(IMAGE_REL_AMD64_SSPAN32);
}
};
#undef ECase
template <>
struct MappingTraits<COFFYAML::Symbol> {
static void mapping(IO &IO, COFFYAML::Symbol &S) {
IO.mapRequired("SimpleType", S.SimpleType);
IO.mapOptional("NumberOfAuxSymbols", S.NumberOfAuxSymbols);
IO.mapRequired("Name", S.Name);
IO.mapRequired("StorageClass", S.StorageClass);
IO.mapOptional("AuxillaryData", S.AuxillaryData); // FIXME: typo
IO.mapRequired("ComplexType", S.ComplexType);
IO.mapRequired("Value", S.Value);
IO.mapRequired("SectionNumber", S.SectionNumber);
}
};
template <>
struct MappingTraits<COFF::header> {
struct NMachine {
NMachine(IO&) : Machine(COFF::MachineTypes(0)) {
}
NMachine(IO&, uint16_t M) : Machine(COFF::MachineTypes(M)) {
}
uint16_t denormalize(IO &) {
return Machine;
}
COFF::MachineTypes Machine;
};
struct NCharacteristics {
NCharacteristics(IO&) : Characteristics(COFF::Characteristics(0)) {
}
NCharacteristics(IO&, uint16_t C) :
Characteristics(COFF::Characteristics(C)) {
}
uint16_t denormalize(IO &) {
return Characteristics;
}
COFF::Characteristics Characteristics;
};
static void mapping(IO &IO, COFF::header &H) {
MappingNormalization<NMachine, uint16_t> NM(IO, H.Machine);
MappingNormalization<NCharacteristics, uint16_t> NC(IO, H.Characteristics);
IO.mapRequired("Machine", NM->Machine);
IO.mapOptional("Characteristics", NC->Characteristics);
}
};
template <>
struct MappingTraits<COFF::relocation> {
struct NType {
NType(IO &) : Type(COFF::RelocationTypeX86(0)) {
}
NType(IO &, uint16_t T) : Type(COFF::RelocationTypeX86(T)) {
}
uint16_t denormalize(IO &) {
return Type;
}
COFF::RelocationTypeX86 Type;
};
static void mapping(IO &IO, COFF::relocation &Rel) {
MappingNormalization<NType, uint16_t> NT(IO, Rel.Type);
IO.mapRequired("Type", NT->Type);
IO.mapRequired("VirtualAddress", Rel.VirtualAddress);
IO.mapRequired("SymbolTableIndex", Rel.SymbolTableIndex);
}
};
template <>
struct MappingTraits<COFFYAML::Section> {
static void mapping(IO &IO, COFFYAML::Section &Sec) {
IO.mapOptional("Relocations", Sec.Relocations);
IO.mapRequired("SectionData", Sec.SectionData);
IO.mapRequired("Characteristics", Sec.Characteristics);
IO.mapRequired("Name", Sec.Name);
}
};
template <>
struct MappingTraits<COFFYAML::Object> {
static void mapping(IO &IO, COFFYAML::Object &Obj) {
IO.mapRequired("sections", Obj.Sections);
IO.mapRequired("header", Obj.HeaderData);
IO.mapRequired("symbols", Obj.Symbols);
}
};
} // end namespace yaml
} // end namespace llvm
int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv);
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
OwningPtr<MemoryBuffer> Buf;
if (MemoryBuffer::getFileOrSTDIN(Input, Buf))
return 1;
yaml::Input YIn(Buf->getBuffer());
COFFYAML::Object Doc;
YIn >> Doc;
if (YIn.error()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
COFFParser CP(Doc);
if (!CP.parse()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
if (!layoutCOFF(CP)) {
errs() << "yaml2obj: Failed to layout COFF file!\n";
return 1;
}
writeCOFF(CP, outs());
}