llvm-6502/lib/Target/Mips/MipsSEISelLowering.cpp
Daniel Sanders 36b0fd51de [mips][mips64r6] [ls][dw][lr] are not available in MIPS32r6/MIPS64r6
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.

MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.

mips64-load-store-left-right.ll has been merged into load-store-left-right.ll

The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.

Reviewers: zoran.jovanovic, jkolek, vmedic

Reviewed By: vmedic

Differential Revision: http://reviews.llvm.org/D3872

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209512 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-23 13:18:02 +00:00

3154 lines
113 KiB
C++

//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips32/64.
//
//===----------------------------------------------------------------------===//
#include "MipsSEISelLowering.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "mips-isel"
static cl::opt<bool>
EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
cl::desc("MIPS: Enable tail calls."), cl::init(false));
static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
cl::desc("Expand double precision loads and "
"stores to their single precision "
"counterparts"));
MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
: MipsTargetLowering(TM) {
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
if (isGP64bit())
addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
// Expand all truncating stores and extending loads.
unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
setTruncStoreAction((MVT::SimpleValueType)VT0,
(MVT::SimpleValueType)VT1, Expand);
setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
}
}
if (Subtarget->hasDSP()) {
MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
// Expand all builtin opcodes.
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, VecTys[i], Expand);
setOperationAction(ISD::ADD, VecTys[i], Legal);
setOperationAction(ISD::SUB, VecTys[i], Legal);
setOperationAction(ISD::LOAD, VecTys[i], Legal);
setOperationAction(ISD::STORE, VecTys[i], Legal);
setOperationAction(ISD::BITCAST, VecTys[i], Legal);
}
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::VSELECT);
}
if (Subtarget->hasDSPR2())
setOperationAction(ISD::MUL, MVT::v2i16, Legal);
if (Subtarget->hasMSA()) {
addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::XOR);
}
if (!Subtarget->mipsSEUsesSoftFloat()) {
addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
// When dealing with single precision only, use libcalls
if (!Subtarget->isSingleFloat()) {
if (Subtarget->isFP64bit())
addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
else
addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
}
}
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Custom);
setOperationAction(ISD::MULHU, MVT::i32, Custom);
if (Subtarget->hasCnMips())
setOperationAction(ISD::MUL, MVT::i64, Legal);
else if (isGP64bit())
setOperationAction(ISD::MUL, MVT::i64, Custom);
if (isGP64bit()) {
setOperationAction(ISD::MULHS, MVT::i64, Custom);
setOperationAction(ISD::MULHU, MVT::i64, Custom);
}
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setTargetDAGCombine(ISD::ADDE);
setTargetDAGCombine(ISD::SUBE);
setTargetDAGCombine(ISD::MUL);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
if (NoDPLoadStore) {
setOperationAction(ISD::LOAD, MVT::f64, Custom);
setOperationAction(ISD::STORE, MVT::f64, Custom);
}
computeRegisterProperties();
}
const MipsTargetLowering *
llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
return new MipsSETargetLowering(TM);
}
// Enable MSA support for the given integer type and Register class.
void MipsSETargetLowering::
addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
addRegisterClass(Ty, RC);
// Expand all builtin opcodes.
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, Ty, Expand);
setOperationAction(ISD::BITCAST, Ty, Legal);
setOperationAction(ISD::LOAD, Ty, Legal);
setOperationAction(ISD::STORE, Ty, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
setOperationAction(ISD::ADD, Ty, Legal);
setOperationAction(ISD::AND, Ty, Legal);
setOperationAction(ISD::CTLZ, Ty, Legal);
setOperationAction(ISD::CTPOP, Ty, Legal);
setOperationAction(ISD::MUL, Ty, Legal);
setOperationAction(ISD::OR, Ty, Legal);
setOperationAction(ISD::SDIV, Ty, Legal);
setOperationAction(ISD::SREM, Ty, Legal);
setOperationAction(ISD::SHL, Ty, Legal);
setOperationAction(ISD::SRA, Ty, Legal);
setOperationAction(ISD::SRL, Ty, Legal);
setOperationAction(ISD::SUB, Ty, Legal);
setOperationAction(ISD::UDIV, Ty, Legal);
setOperationAction(ISD::UREM, Ty, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
setOperationAction(ISD::VSELECT, Ty, Legal);
setOperationAction(ISD::XOR, Ty, Legal);
if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
}
setOperationAction(ISD::SETCC, Ty, Legal);
setCondCodeAction(ISD::SETNE, Ty, Expand);
setCondCodeAction(ISD::SETGE, Ty, Expand);
setCondCodeAction(ISD::SETGT, Ty, Expand);
setCondCodeAction(ISD::SETUGE, Ty, Expand);
setCondCodeAction(ISD::SETUGT, Ty, Expand);
}
// Enable MSA support for the given floating-point type and Register class.
void MipsSETargetLowering::
addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
addRegisterClass(Ty, RC);
// Expand all builtin opcodes.
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, Ty, Expand);
setOperationAction(ISD::LOAD, Ty, Legal);
setOperationAction(ISD::STORE, Ty, Legal);
setOperationAction(ISD::BITCAST, Ty, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
if (Ty != MVT::v8f16) {
setOperationAction(ISD::FABS, Ty, Legal);
setOperationAction(ISD::FADD, Ty, Legal);
setOperationAction(ISD::FDIV, Ty, Legal);
setOperationAction(ISD::FEXP2, Ty, Legal);
setOperationAction(ISD::FLOG2, Ty, Legal);
setOperationAction(ISD::FMA, Ty, Legal);
setOperationAction(ISD::FMUL, Ty, Legal);
setOperationAction(ISD::FRINT, Ty, Legal);
setOperationAction(ISD::FSQRT, Ty, Legal);
setOperationAction(ISD::FSUB, Ty, Legal);
setOperationAction(ISD::VSELECT, Ty, Legal);
setOperationAction(ISD::SETCC, Ty, Legal);
setCondCodeAction(ISD::SETOGE, Ty, Expand);
setCondCodeAction(ISD::SETOGT, Ty, Expand);
setCondCodeAction(ISD::SETUGE, Ty, Expand);
setCondCodeAction(ISD::SETUGT, Ty, Expand);
setCondCodeAction(ISD::SETGE, Ty, Expand);
setCondCodeAction(ISD::SETGT, Ty, Expand);
}
}
bool
MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
unsigned,
bool *Fast) const {
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
if (Subtarget->systemSupportsUnalignedAccess()) {
// MIPS32r6/MIPS64r6 is required to support unaligned access. It's
// implementation defined whether this is handled by hardware, software, or
// a hybrid of the two but it's expected that most implementations will
// handle the majority of cases in hardware.
if (Fast)
*Fast = true;
return true;
}
switch (SVT) {
case MVT::i64:
case MVT::i32:
if (Fast)
*Fast = true;
return true;
default:
return false;
}
}
SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch(Op.getOpcode()) {
case ISD::LOAD: return lowerLOAD(Op, DAG);
case ISD::STORE: return lowerSTORE(Op, DAG);
case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
DAG);
case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
}
return MipsTargetLowering::LowerOperation(Op, DAG);
}
// selectMADD -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc multLo, Lo0), (adde multHi, Hi0),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
// ADDENode's second operand must be a flag output of an ADDC node in order
// for the matching to be successful.
SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
if (ADDCNode->getOpcode() != ISD::ADDC)
return false;
SDValue MultHi = ADDENode->getOperand(0);
SDValue MultLo = ADDCNode->getOperand(0);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than ADDENode or ADDCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MADD instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDLoc DL(ADDENode);
// Initialize accumulator.
SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
ADDCNode->getOperand(1),
ADDENode->getOperand(1));
// create MipsMAdd(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ACCIn);
// replace uses of adde and addc here
if (!SDValue(ADDCNode, 0).use_empty()) {
SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
}
if (!SDValue(ADDENode, 0).use_empty()) {
SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
}
return true;
}
// selectMSUB -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc Lo0, multLo), (sube Hi0, multHi),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
// SUBENode's second operand must be a flag output of an SUBC node in order
// for the matching to be successful.
SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
if (SUBCNode->getOpcode() != ISD::SUBC)
return false;
SDValue MultHi = SUBENode->getOperand(1);
SDValue MultLo = SUBCNode->getOperand(1);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than SUBENode or SUBCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MSUB instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDLoc DL(SUBENode);
// Initialize accumulator.
SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
SUBCNode->getOperand(0),
SUBENode->getOperand(0));
// create MipsSub(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ACCIn);
// replace uses of sube and subc here
if (!SDValue(SUBCNode, 0).use_empty()) {
SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
}
if (!SDValue(SUBENode, 0).use_empty()) {
SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
}
return true;
}
static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
selectMADD(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
//
// Performs the following transformations:
// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
// sign/zero-extension is completely overwritten by the new one performed by
// the ISD::AND.
// - Removes redundant zero extensions performed by an ISD::AND.
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (!Subtarget->hasMSA())
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
unsigned Op0Opcode = Op0->getOpcode();
// (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
// where $d + 1 == 2^n and n == 32
// or $d + 1 == 2^n and n <= 32 and ZExt
// -> (MipsVExtractZExt $a, $b, $c)
if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
if (!Mask)
return SDValue();
int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
if (Log2IfPositive <= 0)
return SDValue(); // Mask+1 is not a power of 2
SDValue Op0Op2 = Op0->getOperand(2);
EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
unsigned ExtendTySize = ExtendTy.getSizeInBits();
unsigned Log2 = Log2IfPositive;
if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
Log2 == ExtendTySize) {
SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
Op0->getVTList(),
makeArrayRef(Ops, Op0->getNumOperands()));
return Op0;
}
}
return SDValue();
}
// Determine if the specified node is a constant vector splat.
//
// Returns true and sets Imm if:
// * N is a ISD::BUILD_VECTOR representing a constant splat
//
// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
// differences are that it assumes the MSA has already been checked and the
// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
// must not be in order for binsri.d to be selectable).
static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
if (!Node)
return false;
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
8, !IsLittleEndian))
return false;
Imm = SplatValue;
return true;
}
// Test whether the given node is an all-ones build_vector.
static bool isVectorAllOnes(SDValue N) {
// Look through bitcasts. Endianness doesn't matter because we are looking
// for an all-ones value.
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
if (!BVN)
return false;
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
// Endianness doesn't matter in this context because we are looking for
// an all-ones value.
if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
return SplatValue.isAllOnesValue();
return false;
}
// Test whether N is the bitwise inverse of OfNode.
static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
if (N->getOpcode() != ISD::XOR)
return false;
if (isVectorAllOnes(N->getOperand(0)))
return N->getOperand(1) == OfNode;
if (isVectorAllOnes(N->getOperand(1)))
return N->getOperand(0) == OfNode;
return false;
}
// Perform combines where ISD::OR is the root node.
//
// Performs the following transformations:
// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
// where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
// vector type.
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (!Subtarget->hasMSA())
return SDValue();
EVT Ty = N->getValueType(0);
if (!Ty.is128BitVector())
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
SDValue Op0Op0 = Op0->getOperand(0);
SDValue Op0Op1 = Op0->getOperand(1);
SDValue Op1Op0 = Op1->getOperand(0);
SDValue Op1Op1 = Op1->getOperand(1);
bool IsLittleEndian = !Subtarget->isLittle();
SDValue IfSet, IfClr, Cond;
bool IsConstantMask = false;
APInt Mask, InvMask;
// If Op0Op0 is an appropriate mask, try to find it's inverse in either
// Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
// looking.
// IfClr will be set if we find a valid match.
if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
Cond = Op0Op0;
IfSet = Op0Op1;
if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
IfClr = Op1Op1;
else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
IfClr = Op1Op0;
IsConstantMask = true;
}
// If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
// thing again using this mask.
// IfClr will be set if we find a valid match.
if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
Cond = Op0Op1;
IfSet = Op0Op0;
if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
IfClr = Op1Op1;
else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
IfClr = Op1Op0;
IsConstantMask = true;
}
// If IfClr is not yet set, try looking for a non-constant match.
// IfClr will be set if we find a valid match amongst the eight
// possibilities.
if (!IfClr.getNode()) {
if (isBitwiseInverse(Op0Op0, Op1Op0)) {
Cond = Op1Op0;
IfSet = Op1Op1;
IfClr = Op0Op1;
} else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
Cond = Op1Op0;
IfSet = Op1Op1;
IfClr = Op0Op0;
} else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
Cond = Op1Op1;
IfSet = Op1Op0;
IfClr = Op0Op1;
} else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
Cond = Op1Op1;
IfSet = Op1Op0;
IfClr = Op0Op0;
} else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
Cond = Op0Op0;
IfSet = Op0Op1;
IfClr = Op1Op1;
} else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
Cond = Op0Op0;
IfSet = Op0Op1;
IfClr = Op1Op0;
} else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
Cond = Op0Op1;
IfSet = Op0Op0;
IfClr = Op1Op1;
} else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
Cond = Op0Op1;
IfSet = Op0Op0;
IfClr = Op1Op0;
}
}
// At this point, IfClr will be set if we have a valid match.
if (!IfClr.getNode())
return SDValue();
assert(Cond.getNode() && IfSet.getNode());
// Fold degenerate cases.
if (IsConstantMask) {
if (Mask.isAllOnesValue())
return IfSet;
else if (Mask == 0)
return IfClr;
}
// Transform the DAG into an equivalent VSELECT.
return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
}
return SDValue();
}
static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
selectMSUB(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
EVT ShiftTy, SelectionDAG &DAG) {
// Clear the upper (64 - VT.sizeInBits) bits.
C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
// Return 0.
if (C == 0)
return DAG.getConstant(0, VT);
// Return x.
if (C == 1)
return X;
// If c is power of 2, return (shl x, log2(c)).
if (isPowerOf2_64(C))
return DAG.getNode(ISD::SHL, DL, VT, X,
DAG.getConstant(Log2_64(C), ShiftTy));
unsigned Log2Ceil = Log2_64_Ceil(C);
uint64_t Floor = 1LL << Log2_64(C);
uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
// If |c - floor_c| <= |c - ceil_c|,
// where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
// return (add constMult(x, floor_c), constMult(x, c - floor_c)).
if (C - Floor <= Ceil - C) {
SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
}
// If |c - floor_c| > |c - ceil_c|,
// return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
}
static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
const TargetLowering::DAGCombinerInfo &DCI,
const MipsSETargetLowering *TL) {
EVT VT = N->getValueType(0);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (!VT.isVector())
return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
VT, TL->getScalarShiftAmountTy(VT), DAG);
return SDValue(N, 0);
}
static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
SelectionDAG &DAG,
const MipsSubtarget *Subtarget) {
// See if this is a vector splat immediate node.
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
if (!Subtarget->hasDSP())
return SDValue();
if (!BV ||
!BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
EltSize, !Subtarget->isLittle()) ||
(SplatBitSize != EltSize) ||
(SplatValue.getZExtValue() >= EltSize))
return SDValue();
return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
}
static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
EVT Ty = N->getValueType(0);
if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
return SDValue();
return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
}
// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
// constant splats into MipsISD::SHRA_DSP for DSPr2.
//
// Performs the following transformations:
// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
// sign/zero-extension is completely overwritten by the new one performed by
// the ISD::SRA and ISD::SHL nodes.
// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
// sequence.
//
// See performDSPShiftCombine for more information about the transformation
// used for DSPr2.
static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
EVT Ty = N->getValueType(0);
if (Subtarget->hasMSA()) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
// where $d + sizeof($c) == 32
// or $d + sizeof($c) <= 32 and SExt
// -> (MipsVExtractSExt $a, $b, $c)
if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
SDValue Op0Op0 = Op0->getOperand(0);
ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
if (!ShAmount)
return SDValue();
if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
return SDValue();
EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
if (TotalBits == 32 ||
(Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
TotalBits <= 32)) {
SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
Op0Op0->getOperand(2) };
DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
Op0Op0->getVTList(),
makeArrayRef(Ops, Op0Op0->getNumOperands()));
return Op0Op0;
}
}
}
if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
return SDValue();
return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
}
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
EVT Ty = N->getValueType(0);
if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
return SDValue();
return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
}
static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
bool IsV216 = (Ty == MVT::v2i16);
switch (CC) {
case ISD::SETEQ:
case ISD::SETNE: return true;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return IsV216;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return !IsV216;
default: return false;
}
}
static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
EVT Ty = N->getValueType(0);
if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
return SDValue();
if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
return SDValue();
return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
N->getOperand(1), N->getOperand(2));
}
static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
EVT Ty = N->getValueType(0);
if (Ty.is128BitVector() && Ty.isInteger()) {
// Try the following combines:
// (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
// (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
// (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
// (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
// (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
// (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
// (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
// (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
// SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
// will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
// legalizer.
SDValue Op0 = N->getOperand(0);
if (Op0->getOpcode() != ISD::SETCC)
return SDValue();
ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
bool Signed;
if (CondCode == ISD::SETLT || CondCode == ISD::SETLE)
Signed = true;
else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
Signed = false;
else
return SDValue();
SDValue Op1 = N->getOperand(1);
SDValue Op2 = N->getOperand(2);
SDValue Op0Op0 = Op0->getOperand(0);
SDValue Op0Op1 = Op0->getOperand(1);
if (Op1 == Op0Op0 && Op2 == Op0Op1)
return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
Ty, Op1, Op2);
else if (Op1 == Op0Op1 && Op2 == Op0Op0)
return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
Ty, Op1, Op2);
} else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
SDValue SetCC = N->getOperand(0);
if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
return SDValue();
return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
SetCC.getOperand(0), SetCC.getOperand(1),
N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
}
return SDValue();
}
static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
const MipsSubtarget *Subtarget) {
EVT Ty = N->getValueType(0);
if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
// Try the following combines:
// (xor (or $a, $b), (build_vector allones))
// (xor (or $a, $b), (bitcast (build_vector allones)))
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue NotOp;
if (ISD::isBuildVectorAllOnes(Op0.getNode()))
NotOp = Op1;
else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
NotOp = Op0;
else
return SDValue();
if (NotOp->getOpcode() == ISD::OR)
return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
NotOp->getOperand(1));
}
return SDValue();
}
SDValue
MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Val;
switch (N->getOpcode()) {
case ISD::ADDE:
return performADDECombine(N, DAG, DCI, Subtarget);
case ISD::AND:
Val = performANDCombine(N, DAG, DCI, Subtarget);
break;
case ISD::OR:
Val = performORCombine(N, DAG, DCI, Subtarget);
break;
case ISD::SUBE:
return performSUBECombine(N, DAG, DCI, Subtarget);
case ISD::MUL:
return performMULCombine(N, DAG, DCI, this);
case ISD::SHL:
return performSHLCombine(N, DAG, DCI, Subtarget);
case ISD::SRA:
return performSRACombine(N, DAG, DCI, Subtarget);
case ISD::SRL:
return performSRLCombine(N, DAG, DCI, Subtarget);
case ISD::VSELECT:
return performVSELECTCombine(N, DAG);
case ISD::XOR:
Val = performXORCombine(N, DAG, Subtarget);
break;
case ISD::SETCC:
Val = performSETCCCombine(N, DAG);
break;
}
if (Val.getNode()) {
DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
N->printrWithDepth(dbgs(), &DAG);
dbgs() << "\n=> \n";
Val.getNode()->printrWithDepth(dbgs(), &DAG);
dbgs() << "\n");
return Val;
}
return MipsTargetLowering::PerformDAGCombine(N, DCI);
}
MachineBasicBlock *
MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case Mips::BPOSGE32_PSEUDO:
return emitBPOSGE32(MI, BB);
case Mips::SNZ_B_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
case Mips::SNZ_H_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
case Mips::SNZ_W_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
case Mips::SNZ_D_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
case Mips::SNZ_V_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
case Mips::SZ_B_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
case Mips::SZ_H_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
case Mips::SZ_W_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
case Mips::SZ_D_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
case Mips::SZ_V_PSEUDO:
return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
case Mips::COPY_FW_PSEUDO:
return emitCOPY_FW(MI, BB);
case Mips::COPY_FD_PSEUDO:
return emitCOPY_FD(MI, BB);
case Mips::INSERT_FW_PSEUDO:
return emitINSERT_FW(MI, BB);
case Mips::INSERT_FD_PSEUDO:
return emitINSERT_FD(MI, BB);
case Mips::INSERT_B_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 1, false);
case Mips::INSERT_H_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 2, false);
case Mips::INSERT_W_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 4, false);
case Mips::INSERT_D_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 8, false);
case Mips::INSERT_FW_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 4, true);
case Mips::INSERT_FD_VIDX_PSEUDO:
return emitINSERT_DF_VIDX(MI, BB, 8, true);
case Mips::FILL_FW_PSEUDO:
return emitFILL_FW(MI, BB);
case Mips::FILL_FD_PSEUDO:
return emitFILL_FD(MI, BB);
case Mips::FEXP2_W_1_PSEUDO:
return emitFEXP2_W_1(MI, BB);
case Mips::FEXP2_D_1_PSEUDO:
return emitFEXP2_D_1(MI, BB);
}
}
bool MipsSETargetLowering::
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const {
if (!EnableMipsTailCalls)
return false;
// Return false if either the callee or caller has a byval argument.
if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
return false;
// Return true if the callee's argument area is no larger than the
// caller's.
return NextStackOffset <= FI.getIncomingArgSize();
}
void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
Ops.push_back(Callee);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
InternalLinkage, CLI, Callee, Chain);
}
SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
LoadSDNode &Nd = *cast<LoadSDNode>(Op);
if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
return MipsTargetLowering::lowerLOAD(Op, DAG);
// Replace a double precision load with two i32 loads and a buildpair64.
SDLoc DL(Op);
SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
EVT PtrVT = Ptr.getValueType();
// i32 load from lower address.
SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
MachinePointerInfo(), Nd.isVolatile(),
Nd.isNonTemporal(), Nd.isInvariant(),
Nd.getAlignment());
// i32 load from higher address.
Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
MachinePointerInfo(), Nd.isVolatile(),
Nd.isNonTemporal(), Nd.isInvariant(),
std::min(Nd.getAlignment(), 4U));
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
SDValue Ops[2] = {BP, Hi.getValue(1)};
return DAG.getMergeValues(Ops, DL);
}
SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode &Nd = *cast<StoreSDNode>(Op);
if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
return MipsTargetLowering::lowerSTORE(Op, DAG);
// Replace a double precision store with two extractelement64s and i32 stores.
SDLoc DL(Op);
SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
EVT PtrVT = Ptr.getValueType();
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Val, DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Val, DAG.getConstant(1, MVT::i32));
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
// i32 store to lower address.
Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
Nd.getTBAAInfo());
// i32 store to higher address.
Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
Nd.isVolatile(), Nd.isNonTemporal(),
std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
}
SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
bool HasLo, bool HasHi,
SelectionDAG &DAG) const {
EVT Ty = Op.getOperand(0).getValueType();
SDLoc DL(Op);
SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
Op.getOperand(0), Op.getOperand(1));
SDValue Lo, Hi;
if (HasLo)
Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
if (HasHi)
Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
if (!HasLo || !HasHi)
return HasLo ? Lo : Hi;
SDValue Vals[] = { Lo, Hi };
return DAG.getMergeValues(Vals, DL);
}
static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
DAG.getConstant(0, MVT::i32));
SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
DAG.getConstant(1, MVT::i32));
return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
}
static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
}
// This function expands mips intrinsic nodes which have 64-bit input operands
// or output values.
//
// out64 = intrinsic-node in64
// =>
// lo = copy (extract-element (in64, 0))
// hi = copy (extract-element (in64, 1))
// mips-specific-node
// v0 = copy lo
// v1 = copy hi
// out64 = merge-values (v0, v1)
//
static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
SDLoc DL(Op);
bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
SmallVector<SDValue, 3> Ops;
unsigned OpNo = 0;
// See if Op has a chain input.
if (HasChainIn)
Ops.push_back(Op->getOperand(OpNo++));
// The next operand is the intrinsic opcode.
assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
// See if the next operand has type i64.
SDValue Opnd = Op->getOperand(++OpNo), In64;
if (Opnd.getValueType() == MVT::i64)
In64 = initAccumulator(Opnd, DL, DAG);
else
Ops.push_back(Opnd);
// Push the remaining operands.
for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
Ops.push_back(Op->getOperand(OpNo));
// Add In64 to the end of the list.
if (In64.getNode())
Ops.push_back(In64);
// Scan output.
SmallVector<EVT, 2> ResTys;
for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
I != E; ++I)
ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
// Create node.
SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
if (!HasChainIn)
return Out;
assert(Val->getValueType(1) == MVT::Other);
SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
return DAG.getMergeValues(Vals, DL);
}
// Lower an MSA copy intrinsic into the specified SelectionDAG node
static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
SDLoc DL(Op);
SDValue Vec = Op->getOperand(1);
SDValue Idx = Op->getOperand(2);
EVT ResTy = Op->getValueType(0);
EVT EltTy = Vec->getValueType(0).getVectorElementType();
SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
DAG.getValueType(EltTy));
return Result;
}
static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
EVT ResVecTy = Op->getValueType(0);
EVT ViaVecTy = ResVecTy;
SDLoc DL(Op);
// When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
// LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
// lanes.
SDValue LaneA;
SDValue LaneB = Op->getOperand(2);
if (ResVecTy == MVT::v2i64) {
LaneA = DAG.getConstant(0, MVT::i32);
ViaVecTy = MVT::v4i32;
} else
LaneA = LaneB;
SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
if (ViaVecTy != ResVecTy)
Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
return Result;
}
static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
}
static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
bool BigEndian, SelectionDAG &DAG) {
EVT ViaVecTy = VecTy;
SDValue SplatValueA = SplatValue;
SDValue SplatValueB = SplatValue;
SDLoc DL(SplatValue);
if (VecTy == MVT::v2i64) {
// v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
ViaVecTy = MVT::v4i32;
SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
DAG.getConstant(32, MVT::i32));
SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
}
// We currently hold the parts in little endian order. Swap them if
// necessary.
if (BigEndian)
std::swap(SplatValueA, SplatValueB);
SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
SplatValueA, SplatValueB, SplatValueA, SplatValueB,
SplatValueA, SplatValueB, SplatValueA, SplatValueB,
SplatValueA, SplatValueB, SplatValueA, SplatValueB };
SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
if (VecTy != ViaVecTy)
Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
return Result;
}
static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
unsigned Opc, SDValue Imm,
bool BigEndian) {
EVT VecTy = Op->getValueType(0);
SDValue Exp2Imm;
SDLoc DL(Op);
// The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
// here for now.
if (VecTy == MVT::v2i64) {
if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
if (BigEndian)
std::swap(BitImmLoOp, BitImmHiOp);
Exp2Imm =
DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
BitImmHiOp, BitImmLoOp, BitImmHiOp));
}
}
if (!Exp2Imm.getNode()) {
// We couldnt constant fold, do a vector shift instead
// Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
// only values 0-63 are valid.
if (VecTy == MVT::v2i64)
Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
Exp2Imm =
DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
}
return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
}
static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
EVT ResTy = Op->getValueType(0);
SDLoc DL(Op);
SDValue One = DAG.getConstant(1, ResTy);
SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
DAG.getNOT(DL, Bit, ResTy));
}
static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT ResTy = Op->getValueType(0);
APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
<< cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
}
SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
default:
return SDValue();
case Intrinsic::mips_shilo:
return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
case Intrinsic::mips_dpau_h_qbl:
return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
case Intrinsic::mips_dpau_h_qbr:
return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
case Intrinsic::mips_dpsu_h_qbl:
return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
case Intrinsic::mips_dpsu_h_qbr:
return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
case Intrinsic::mips_dpa_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
case Intrinsic::mips_dps_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
case Intrinsic::mips_dpax_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
case Intrinsic::mips_dpsx_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
case Intrinsic::mips_mulsa_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
case Intrinsic::mips_mult:
return lowerDSPIntr(Op, DAG, MipsISD::Mult);
case Intrinsic::mips_multu:
return lowerDSPIntr(Op, DAG, MipsISD::Multu);
case Intrinsic::mips_madd:
return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
case Intrinsic::mips_maddu:
return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
case Intrinsic::mips_msub:
return lowerDSPIntr(Op, DAG, MipsISD::MSub);
case Intrinsic::mips_msubu:
return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
case Intrinsic::mips_addv_b:
case Intrinsic::mips_addv_h:
case Intrinsic::mips_addv_w:
case Intrinsic::mips_addv_d:
return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_addvi_b:
case Intrinsic::mips_addvi_h:
case Intrinsic::mips_addvi_w:
case Intrinsic::mips_addvi_d:
return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_and_v:
return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_andi_b:
return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_bclr_b:
case Intrinsic::mips_bclr_h:
case Intrinsic::mips_bclr_w:
case Intrinsic::mips_bclr_d:
return lowerMSABitClear(Op, DAG);
case Intrinsic::mips_bclri_b:
case Intrinsic::mips_bclri_h:
case Intrinsic::mips_bclri_w:
case Intrinsic::mips_bclri_d:
return lowerMSABitClearImm(Op, DAG);
case Intrinsic::mips_binsli_b:
case Intrinsic::mips_binsli_h:
case Intrinsic::mips_binsli_w:
case Intrinsic::mips_binsli_d: {
// binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
EVT VecTy = Op->getValueType(0);
EVT EltTy = VecTy.getVectorElementType();
APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
Op->getConstantOperandVal(3));
return DAG.getNode(ISD::VSELECT, DL, VecTy,
DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
Op->getOperand(1));
}
case Intrinsic::mips_binsri_b:
case Intrinsic::mips_binsri_h:
case Intrinsic::mips_binsri_w:
case Intrinsic::mips_binsri_d: {
// binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
EVT VecTy = Op->getValueType(0);
EVT EltTy = VecTy.getVectorElementType();
APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
Op->getConstantOperandVal(3));
return DAG.getNode(ISD::VSELECT, DL, VecTy,
DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
Op->getOperand(1));
}
case Intrinsic::mips_bmnz_v:
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
Op->getOperand(2), Op->getOperand(1));
case Intrinsic::mips_bmnzi_b:
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
Op->getOperand(1));
case Intrinsic::mips_bmz_v:
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_bmzi_b:
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_bneg_b:
case Intrinsic::mips_bneg_h:
case Intrinsic::mips_bneg_w:
case Intrinsic::mips_bneg_d: {
EVT VecTy = Op->getValueType(0);
SDValue One = DAG.getConstant(1, VecTy);
return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
DAG.getNode(ISD::SHL, DL, VecTy, One,
Op->getOperand(2)));
}
case Intrinsic::mips_bnegi_b:
case Intrinsic::mips_bnegi_h:
case Intrinsic::mips_bnegi_w:
case Intrinsic::mips_bnegi_d:
return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
!Subtarget->isLittle());
case Intrinsic::mips_bnz_b:
case Intrinsic::mips_bnz_h:
case Intrinsic::mips_bnz_w:
case Intrinsic::mips_bnz_d:
return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_bnz_v:
return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_bsel_v:
// bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(3),
Op->getOperand(2));
case Intrinsic::mips_bseli_b:
// bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
Op->getOperand(2));
case Intrinsic::mips_bset_b:
case Intrinsic::mips_bset_h:
case Intrinsic::mips_bset_w:
case Intrinsic::mips_bset_d: {
EVT VecTy = Op->getValueType(0);
SDValue One = DAG.getConstant(1, VecTy);
return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
DAG.getNode(ISD::SHL, DL, VecTy, One,
Op->getOperand(2)));
}
case Intrinsic::mips_bseti_b:
case Intrinsic::mips_bseti_h:
case Intrinsic::mips_bseti_w:
case Intrinsic::mips_bseti_d:
return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
!Subtarget->isLittle());
case Intrinsic::mips_bz_b:
case Intrinsic::mips_bz_h:
case Intrinsic::mips_bz_w:
case Intrinsic::mips_bz_d:
return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_bz_v:
return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_ceq_b:
case Intrinsic::mips_ceq_h:
case Intrinsic::mips_ceq_w:
case Intrinsic::mips_ceq_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETEQ);
case Intrinsic::mips_ceqi_b:
case Intrinsic::mips_ceqi_h:
case Intrinsic::mips_ceqi_w:
case Intrinsic::mips_ceqi_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
case Intrinsic::mips_cle_s_b:
case Intrinsic::mips_cle_s_h:
case Intrinsic::mips_cle_s_w:
case Intrinsic::mips_cle_s_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETLE);
case Intrinsic::mips_clei_s_b:
case Intrinsic::mips_clei_s_h:
case Intrinsic::mips_clei_s_w:
case Intrinsic::mips_clei_s_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
case Intrinsic::mips_cle_u_b:
case Intrinsic::mips_cle_u_h:
case Intrinsic::mips_cle_u_w:
case Intrinsic::mips_cle_u_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETULE);
case Intrinsic::mips_clei_u_b:
case Intrinsic::mips_clei_u_h:
case Intrinsic::mips_clei_u_w:
case Intrinsic::mips_clei_u_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
case Intrinsic::mips_clt_s_b:
case Intrinsic::mips_clt_s_h:
case Intrinsic::mips_clt_s_w:
case Intrinsic::mips_clt_s_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETLT);
case Intrinsic::mips_clti_s_b:
case Intrinsic::mips_clti_s_h:
case Intrinsic::mips_clti_s_w:
case Intrinsic::mips_clti_s_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
case Intrinsic::mips_clt_u_b:
case Intrinsic::mips_clt_u_h:
case Intrinsic::mips_clt_u_w:
case Intrinsic::mips_clt_u_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETULT);
case Intrinsic::mips_clti_u_b:
case Intrinsic::mips_clti_u_h:
case Intrinsic::mips_clti_u_w:
case Intrinsic::mips_clti_u_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
case Intrinsic::mips_copy_s_b:
case Intrinsic::mips_copy_s_h:
case Intrinsic::mips_copy_s_w:
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
case Intrinsic::mips_copy_s_d:
if (hasMips64())
// Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
else {
// Lower into the generic EXTRACT_VECTOR_ELT node and let the type
// legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
}
case Intrinsic::mips_copy_u_b:
case Intrinsic::mips_copy_u_h:
case Intrinsic::mips_copy_u_w:
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
case Intrinsic::mips_copy_u_d:
if (hasMips64())
// Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
else {
// Lower into the generic EXTRACT_VECTOR_ELT node and let the type
// legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
// Note: When i64 is illegal, this results in copy_s.w instructions
// instead of copy_u.w instructions. This makes no difference to the
// behaviour since i64 is only illegal when the register file is 32-bit.
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
}
case Intrinsic::mips_div_s_b:
case Intrinsic::mips_div_s_h:
case Intrinsic::mips_div_s_w:
case Intrinsic::mips_div_s_d:
return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_div_u_b:
case Intrinsic::mips_div_u_h:
case Intrinsic::mips_div_u_w:
case Intrinsic::mips_div_u_d:
return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_fadd_w:
case Intrinsic::mips_fadd_d:
return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
// Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
case Intrinsic::mips_fceq_w:
case Intrinsic::mips_fceq_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETOEQ);
case Intrinsic::mips_fcle_w:
case Intrinsic::mips_fcle_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETOLE);
case Intrinsic::mips_fclt_w:
case Intrinsic::mips_fclt_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETOLT);
case Intrinsic::mips_fcne_w:
case Intrinsic::mips_fcne_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETONE);
case Intrinsic::mips_fcor_w:
case Intrinsic::mips_fcor_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETO);
case Intrinsic::mips_fcueq_w:
case Intrinsic::mips_fcueq_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETUEQ);
case Intrinsic::mips_fcule_w:
case Intrinsic::mips_fcule_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETULE);
case Intrinsic::mips_fcult_w:
case Intrinsic::mips_fcult_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETULT);
case Intrinsic::mips_fcun_w:
case Intrinsic::mips_fcun_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETUO);
case Intrinsic::mips_fcune_w:
case Intrinsic::mips_fcune_d:
return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2), ISD::SETUNE);
case Intrinsic::mips_fdiv_w:
case Intrinsic::mips_fdiv_d:
return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_ffint_u_w:
case Intrinsic::mips_ffint_u_d:
return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_ffint_s_w:
case Intrinsic::mips_ffint_s_d:
return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_fill_b:
case Intrinsic::mips_fill_h:
case Intrinsic::mips_fill_w:
case Intrinsic::mips_fill_d: {
SmallVector<SDValue, 16> Ops;
EVT ResTy = Op->getValueType(0);
for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
Ops.push_back(Op->getOperand(1));
// If ResTy is v2i64 then the type legalizer will break this node down into
// an equivalent v4i32.
return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
}
case Intrinsic::mips_fexp2_w:
case Intrinsic::mips_fexp2_d: {
EVT ResTy = Op->getValueType(0);
return DAG.getNode(
ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
}
case Intrinsic::mips_flog2_w:
case Intrinsic::mips_flog2_d:
return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
case Intrinsic::mips_fmadd_w:
case Intrinsic::mips_fmadd_d:
return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
case Intrinsic::mips_fmul_w:
case Intrinsic::mips_fmul_d:
return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_fmsub_w:
case Intrinsic::mips_fmsub_d: {
EVT ResTy = Op->getValueType(0);
return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
Op->getOperand(2), Op->getOperand(3)));
}
case Intrinsic::mips_frint_w:
case Intrinsic::mips_frint_d:
return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
case Intrinsic::mips_fsqrt_w:
case Intrinsic::mips_fsqrt_d:
return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
case Intrinsic::mips_fsub_w:
case Intrinsic::mips_fsub_d:
return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_ftrunc_u_w:
case Intrinsic::mips_ftrunc_u_d:
return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_ftrunc_s_w:
case Intrinsic::mips_ftrunc_s_d:
return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
Op->getOperand(1));
case Intrinsic::mips_ilvev_b:
case Intrinsic::mips_ilvev_h:
case Intrinsic::mips_ilvev_w:
case Intrinsic::mips_ilvev_d:
return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_ilvl_b:
case Intrinsic::mips_ilvl_h:
case Intrinsic::mips_ilvl_w:
case Intrinsic::mips_ilvl_d:
return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_ilvod_b:
case Intrinsic::mips_ilvod_h:
case Intrinsic::mips_ilvod_w:
case Intrinsic::mips_ilvod_d:
return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_ilvr_b:
case Intrinsic::mips_ilvr_h:
case Intrinsic::mips_ilvr_w:
case Intrinsic::mips_ilvr_d:
return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_insert_b:
case Intrinsic::mips_insert_h:
case Intrinsic::mips_insert_w:
case Intrinsic::mips_insert_d:
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
case Intrinsic::mips_insve_b:
case Intrinsic::mips_insve_h:
case Intrinsic::mips_insve_w:
case Intrinsic::mips_insve_d:
return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
DAG.getConstant(0, MVT::i32));
case Intrinsic::mips_ldi_b:
case Intrinsic::mips_ldi_h:
case Intrinsic::mips_ldi_w:
case Intrinsic::mips_ldi_d:
return lowerMSASplatImm(Op, 1, DAG);
case Intrinsic::mips_lsa:
case Intrinsic::mips_dlsa: {
EVT ResTy = Op->getValueType(0);
return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
Op->getOperand(2), Op->getOperand(3)));
}
case Intrinsic::mips_maddv_b:
case Intrinsic::mips_maddv_h:
case Intrinsic::mips_maddv_w:
case Intrinsic::mips_maddv_d: {
EVT ResTy = Op->getValueType(0);
return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
Op->getOperand(2), Op->getOperand(3)));
}
case Intrinsic::mips_max_s_b:
case Intrinsic::mips_max_s_h:
case Intrinsic::mips_max_s_w:
case Intrinsic::mips_max_s_d:
return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_max_u_b:
case Intrinsic::mips_max_u_h:
case Intrinsic::mips_max_u_w:
case Intrinsic::mips_max_u_d:
return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_maxi_s_b:
case Intrinsic::mips_maxi_s_h:
case Intrinsic::mips_maxi_s_w:
case Intrinsic::mips_maxi_s_d:
return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_maxi_u_b:
case Intrinsic::mips_maxi_u_h:
case Intrinsic::mips_maxi_u_w:
case Intrinsic::mips_maxi_u_d:
return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_min_s_b:
case Intrinsic::mips_min_s_h:
case Intrinsic::mips_min_s_w:
case Intrinsic::mips_min_s_d:
return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_min_u_b:
case Intrinsic::mips_min_u_h:
case Intrinsic::mips_min_u_w:
case Intrinsic::mips_min_u_d:
return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_mini_s_b:
case Intrinsic::mips_mini_s_h:
case Intrinsic::mips_mini_s_w:
case Intrinsic::mips_mini_s_d:
return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_mini_u_b:
case Intrinsic::mips_mini_u_h:
case Intrinsic::mips_mini_u_w:
case Intrinsic::mips_mini_u_d:
return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_mod_s_b:
case Intrinsic::mips_mod_s_h:
case Intrinsic::mips_mod_s_w:
case Intrinsic::mips_mod_s_d:
return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_mod_u_b:
case Intrinsic::mips_mod_u_h:
case Intrinsic::mips_mod_u_w:
case Intrinsic::mips_mod_u_d:
return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_mulv_b:
case Intrinsic::mips_mulv_h:
case Intrinsic::mips_mulv_w:
case Intrinsic::mips_mulv_d:
return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_msubv_b:
case Intrinsic::mips_msubv_h:
case Intrinsic::mips_msubv_w:
case Intrinsic::mips_msubv_d: {
EVT ResTy = Op->getValueType(0);
return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
Op->getOperand(2), Op->getOperand(3)));
}
case Intrinsic::mips_nlzc_b:
case Intrinsic::mips_nlzc_h:
case Intrinsic::mips_nlzc_w:
case Intrinsic::mips_nlzc_d:
return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
case Intrinsic::mips_nor_v: {
SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
return DAG.getNOT(DL, Res, Res->getValueType(0));
}
case Intrinsic::mips_nori_b: {
SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
Op->getOperand(1),
lowerMSASplatImm(Op, 2, DAG));
return DAG.getNOT(DL, Res, Res->getValueType(0));
}
case Intrinsic::mips_or_v:
return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_ori_b:
return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_pckev_b:
case Intrinsic::mips_pckev_h:
case Intrinsic::mips_pckev_w:
case Intrinsic::mips_pckev_d:
return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_pckod_b:
case Intrinsic::mips_pckod_h:
case Intrinsic::mips_pckod_w:
case Intrinsic::mips_pckod_d:
return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2));
case Intrinsic::mips_pcnt_b:
case Intrinsic::mips_pcnt_h:
case Intrinsic::mips_pcnt_w:
case Intrinsic::mips_pcnt_d:
return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
case Intrinsic::mips_shf_b:
case Intrinsic::mips_shf_h:
case Intrinsic::mips_shf_w:
return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
Op->getOperand(2), Op->getOperand(1));
case Intrinsic::mips_sll_b:
case Intrinsic::mips_sll_h:
case Intrinsic::mips_sll_w:
case Intrinsic::mips_sll_d:
return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_slli_b:
case Intrinsic::mips_slli_h:
case Intrinsic::mips_slli_w:
case Intrinsic::mips_slli_d:
return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_splat_b:
case Intrinsic::mips_splat_h:
case Intrinsic::mips_splat_w:
case Intrinsic::mips_splat_d:
// We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
// masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
// EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
// Instead we lower to MipsISD::VSHF and match from there.
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
Op->getOperand(1));
case Intrinsic::mips_splati_b:
case Intrinsic::mips_splati_h:
case Intrinsic::mips_splati_w:
case Intrinsic::mips_splati_d:
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
Op->getOperand(1));
case Intrinsic::mips_sra_b:
case Intrinsic::mips_sra_h:
case Intrinsic::mips_sra_w:
case Intrinsic::mips_sra_d:
return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_srai_b:
case Intrinsic::mips_srai_h:
case Intrinsic::mips_srai_w:
case Intrinsic::mips_srai_d:
return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_srl_b:
case Intrinsic::mips_srl_h:
case Intrinsic::mips_srl_w:
case Intrinsic::mips_srl_d:
return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_srli_b:
case Intrinsic::mips_srli_h:
case Intrinsic::mips_srli_w:
case Intrinsic::mips_srli_d:
return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_subv_b:
case Intrinsic::mips_subv_h:
case Intrinsic::mips_subv_w:
case Intrinsic::mips_subv_d:
return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_subvi_b:
case Intrinsic::mips_subvi_h:
case Intrinsic::mips_subvi_w:
case Intrinsic::mips_subvi_d:
return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
case Intrinsic::mips_vshf_b:
case Intrinsic::mips_vshf_h:
case Intrinsic::mips_vshf_w:
case Intrinsic::mips_vshf_d:
return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
case Intrinsic::mips_xor_v:
return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
Op->getOperand(2));
case Intrinsic::mips_xori_b:
return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
}
}
static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
SDLoc DL(Op);
SDValue ChainIn = Op->getOperand(0);
SDValue Address = Op->getOperand(2);
SDValue Offset = Op->getOperand(3);
EVT ResTy = Op->getValueType(0);
EVT PtrTy = Address->getValueType(0);
Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
false, false, 16);
}
SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
switch (Intr) {
default:
return SDValue();
case Intrinsic::mips_extp:
return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
case Intrinsic::mips_extpdp:
return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
case Intrinsic::mips_extr_w:
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
case Intrinsic::mips_extr_r_w:
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
case Intrinsic::mips_extr_rs_w:
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
case Intrinsic::mips_extr_s_h:
return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
case Intrinsic::mips_mthlip:
return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
case Intrinsic::mips_mulsaq_s_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
case Intrinsic::mips_maq_s_w_phl:
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
case Intrinsic::mips_maq_s_w_phr:
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
case Intrinsic::mips_maq_sa_w_phl:
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
case Intrinsic::mips_maq_sa_w_phr:
return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
case Intrinsic::mips_dpaq_s_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
case Intrinsic::mips_dpsq_s_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
case Intrinsic::mips_dpaq_sa_l_w:
return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
case Intrinsic::mips_dpsq_sa_l_w:
return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
case Intrinsic::mips_dpaqx_s_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
case Intrinsic::mips_dpaqx_sa_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
case Intrinsic::mips_dpsqx_s_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
case Intrinsic::mips_dpsqx_sa_w_ph:
return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
case Intrinsic::mips_ld_b:
case Intrinsic::mips_ld_h:
case Intrinsic::mips_ld_w:
case Intrinsic::mips_ld_d:
return lowerMSALoadIntr(Op, DAG, Intr);
}
}
static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
SDLoc DL(Op);
SDValue ChainIn = Op->getOperand(0);
SDValue Value = Op->getOperand(2);
SDValue Address = Op->getOperand(3);
SDValue Offset = Op->getOperand(4);
EVT PtrTy = Address->getValueType(0);
Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
false, 16);
}
SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
switch (Intr) {
default:
return SDValue();
case Intrinsic::mips_st_b:
case Intrinsic::mips_st_h:
case Intrinsic::mips_st_w:
case Intrinsic::mips_st_d:
return lowerMSAStoreIntr(Op, DAG, Intr);
}
}
/// \brief Check if the given BuildVectorSDNode is a splat.
/// This method currently relies on DAG nodes being reused when equivalent,
/// so it's possible for this to return false even when isConstantSplat returns
/// true.
static bool isSplatVector(const BuildVectorSDNode *N) {
unsigned int nOps = N->getNumOperands();
assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
SDValue Operand0 = N->getOperand(0);
for (unsigned int i = 1; i < nOps; ++i) {
if (N->getOperand(i) != Operand0)
return false;
}
return true;
}
// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
//
// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
// choose to sign-extend but we could have equally chosen zero-extend. The
// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
// result into this node later (possibly changing it to a zero-extend in the
// process).
SDValue MipsSETargetLowering::
lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT ResTy = Op->getValueType(0);
SDValue Op0 = Op->getOperand(0);
EVT VecTy = Op0->getValueType(0);
if (!VecTy.is128BitVector())
return SDValue();
if (ResTy.isInteger()) {
SDValue Op1 = Op->getOperand(1);
EVT EltTy = VecTy.getVectorElementType();
return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
DAG.getValueType(EltTy));
}
return Op;
}
static bool isConstantOrUndef(const SDValue Op) {
if (Op->getOpcode() == ISD::UNDEF)
return true;
if (dyn_cast<ConstantSDNode>(Op))
return true;
if (dyn_cast<ConstantFPSDNode>(Op))
return true;
return false;
}
static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
for (unsigned i = 0; i < Op->getNumOperands(); ++i)
if (isConstantOrUndef(Op->getOperand(i)))
return true;
return false;
}
// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
// backend.
//
// Lowers according to the following rules:
// - Constant splats are legal as-is as long as the SplatBitSize is a power of
// 2 less than or equal to 64 and the value fits into a signed 10-bit
// immediate
// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
// is a power of 2 less than or equal to 64 and the value does not fit into a
// signed 10-bit immediate
// - Non-constant splats are legal as-is.
// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
// - All others are illegal and must be expanded.
SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
EVT ResTy = Op->getValueType(0);
SDLoc DL(Op);
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
return SDValue();
if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs, 8,
!Subtarget->isLittle()) && SplatBitSize <= 64) {
// We can only cope with 8, 16, 32, or 64-bit elements
if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
SplatBitSize != 64)
return SDValue();
// If the value fits into a simm10 then we can use ldi.[bhwd]
// However, if it isn't an integer type we will have to bitcast from an
// integer type first. Also, if there are any undefs, we must lower them
// to defined values first.
if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
return Op;
EVT ViaVecTy;
switch (SplatBitSize) {
default:
return SDValue();
case 8:
ViaVecTy = MVT::v16i8;
break;
case 16:
ViaVecTy = MVT::v8i16;
break;
case 32:
ViaVecTy = MVT::v4i32;
break;
case 64:
// There's no fill.d to fall back on for 64-bit values
return SDValue();
}
// SelectionDAG::getConstant will promote SplatValue appropriately.
SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
// Bitcast to the type we originally wanted
if (ViaVecTy != ResTy)
Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
return Result;
} else if (isSplatVector(Node))
return Op;
else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
// Use INSERT_VECTOR_ELT operations rather than expand to stores.
// The resulting code is the same length as the expansion, but it doesn't
// use memory operations
EVT ResTy = Node->getValueType(0);
assert(ResTy.isVector());
unsigned NumElts = ResTy.getVectorNumElements();
SDValue Vector = DAG.getUNDEF(ResTy);
for (unsigned i = 0; i < NumElts; ++i) {
Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
Node->getOperand(i),
DAG.getConstant(i, MVT::i32));
}
return Vector;
}
return SDValue();
}
// Lower VECTOR_SHUFFLE into SHF (if possible).
//
// SHF splits the vector into blocks of four elements, then shuffles these
// elements according to a <4 x i2> constant (encoded as an integer immediate).
//
// It is therefore possible to lower into SHF when the mask takes the form:
// <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
// When undef's appear they are treated as if they were whatever value is
// necessary in order to fit the above form.
//
// For example:
// %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
// <8 x i32> <i32 3, i32 2, i32 1, i32 0,
// i32 7, i32 6, i32 5, i32 4>
// is lowered to:
// (SHF_H $w0, $w1, 27)
// where the 27 comes from:
// 3 + (2 << 2) + (1 << 4) + (0 << 6)
static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
int SHFIndices[4] = { -1, -1, -1, -1 };
if (Indices.size() < 4)
return SDValue();
for (unsigned i = 0; i < 4; ++i) {
for (unsigned j = i; j < Indices.size(); j += 4) {
int Idx = Indices[j];
// Convert from vector index to 4-element subvector index
// If an index refers to an element outside of the subvector then give up
if (Idx != -1) {
Idx -= 4 * (j / 4);
if (Idx < 0 || Idx >= 4)
return SDValue();
}
// If the mask has an undef, replace it with the current index.
// Note that it might still be undef if the current index is also undef
if (SHFIndices[i] == -1)
SHFIndices[i] = Idx;
// Check that non-undef values are the same as in the mask. If they
// aren't then give up
if (!(Idx == -1 || Idx == SHFIndices[i]))
return SDValue();
}
}
// Calculate the immediate. Replace any remaining undefs with zero
APInt Imm(32, 0);
for (int i = 3; i >= 0; --i) {
int Idx = SHFIndices[i];
if (Idx == -1)
Idx = 0;
Imm <<= 2;
Imm |= Idx & 0x3;
}
return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
}
// Lower VECTOR_SHUFFLE into ILVEV (if possible).
//
// ILVEV interleaves the even elements from each vector.
//
// It is possible to lower into ILVEV when the mask takes the form:
// <0, n, 2, n+2, 4, n+4, ...>
// where n is the number of elements in the vector.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
int WsIdx = 0;
int WtIdx = ResTy.getVectorNumElements();
for (unsigned i = 0; i < Indices.size(); i += 2) {
if (Indices[i] != -1 && Indices[i] != WsIdx)
return SDValue();
if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
return SDValue();
WsIdx += 2;
WtIdx += 2;
}
return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into ILVOD (if possible).
//
// ILVOD interleaves the odd elements from each vector.
//
// It is possible to lower into ILVOD when the mask takes the form:
// <1, n+1, 3, n+3, 5, n+5, ...>
// where n is the number of elements in the vector.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
int WsIdx = 1;
int WtIdx = ResTy.getVectorNumElements() + 1;
for (unsigned i = 0; i < Indices.size(); i += 2) {
if (Indices[i] != -1 && Indices[i] != WsIdx)
return SDValue();
if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
return SDValue();
WsIdx += 2;
WtIdx += 2;
}
return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into ILVL (if possible).
//
// ILVL interleaves consecutive elements from the left half of each vector.
//
// It is possible to lower into ILVL when the mask takes the form:
// <0, n, 1, n+1, 2, n+2, ...>
// where n is the number of elements in the vector.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
int WsIdx = 0;
int WtIdx = ResTy.getVectorNumElements();
for (unsigned i = 0; i < Indices.size(); i += 2) {
if (Indices[i] != -1 && Indices[i] != WsIdx)
return SDValue();
if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
return SDValue();
WsIdx ++;
WtIdx ++;
}
return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into ILVR (if possible).
//
// ILVR interleaves consecutive elements from the right half of each vector.
//
// It is possible to lower into ILVR when the mask takes the form:
// <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
// where n is the number of elements in the vector and x is half n.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
unsigned NumElts = ResTy.getVectorNumElements();
int WsIdx = NumElts / 2;
int WtIdx = NumElts + NumElts / 2;
for (unsigned i = 0; i < Indices.size(); i += 2) {
if (Indices[i] != -1 && Indices[i] != WsIdx)
return SDValue();
if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
return SDValue();
WsIdx ++;
WtIdx ++;
}
return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into PCKEV (if possible).
//
// PCKEV copies the even elements of each vector into the result vector.
//
// It is possible to lower into PCKEV when the mask takes the form:
// <0, 2, 4, ..., n, n+2, n+4, ...>
// where n is the number of elements in the vector.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
int Idx = 0;
for (unsigned i = 0; i < Indices.size(); ++i) {
if (Indices[i] != -1 && Indices[i] != Idx)
return SDValue();
Idx += 2;
}
return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into PCKOD (if possible).
//
// PCKOD copies the odd elements of each vector into the result vector.
//
// It is possible to lower into PCKOD when the mask takes the form:
// <1, 3, 5, ..., n+1, n+3, n+5, ...>
// where n is the number of elements in the vector.
//
// When undef's appear in the mask they are treated as if they were whatever
// value is necessary in order to fit the above form.
static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
assert ((Indices.size() % 2) == 0);
int Idx = 1;
for (unsigned i = 0; i < Indices.size(); ++i) {
if (Indices[i] != -1 && Indices[i] != Idx)
return SDValue();
Idx += 2;
}
return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
Op->getOperand(1));
}
// Lower VECTOR_SHUFFLE into VSHF.
//
// This mostly consists of converting the shuffle indices in Indices into a
// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
// if the type is v8i16 and all the indices are less than 8 then the second
// operand is unused and can be replaced with anything. We choose to replace it
// with the used operand since this reduces the number of instructions overall.
static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
SmallVector<int, 16> Indices,
SelectionDAG &DAG) {
SmallVector<SDValue, 16> Ops;
SDValue Op0;
SDValue Op1;
EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
EVT MaskEltTy = MaskVecTy.getVectorElementType();
bool Using1stVec = false;
bool Using2ndVec = false;
SDLoc DL(Op);
int ResTyNumElts = ResTy.getVectorNumElements();
for (int i = 0; i < ResTyNumElts; ++i) {
// Idx == -1 means UNDEF
int Idx = Indices[i];
if (0 <= Idx && Idx < ResTyNumElts)
Using1stVec = true;
if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
Using2ndVec = true;
}
for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
++I)
Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
if (Using1stVec && Using2ndVec) {
Op0 = Op->getOperand(0);
Op1 = Op->getOperand(1);
} else if (Using1stVec)
Op0 = Op1 = Op->getOperand(0);
else if (Using2ndVec)
Op0 = Op1 = Op->getOperand(1);
else
llvm_unreachable("shuffle vector mask references neither vector operand?");
// VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
// <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
// VSHF concatenates the vectors in a bitwise fashion:
// <0b00, 0b01> + <0b10, 0b11> ->
// 0b0100 + 0b1110 -> 0b01001110
// <0b10, 0b11, 0b00, 0b01>
// We must therefore swap the operands to get the correct result.
return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
}
// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
// indices in the shuffle.
SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
EVT ResTy = Op->getValueType(0);
if (!ResTy.is128BitVector())
return SDValue();
int ResTyNumElts = ResTy.getVectorNumElements();
SmallVector<int, 16> Indices;
for (int i = 0; i < ResTyNumElts; ++i)
Indices.push_back(Node->getMaskElt(i));
SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
if (Result.getNode())
return Result;
return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
}
MachineBasicBlock * MipsSETargetLowering::
emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
// $bb:
// bposge32_pseudo $vr0
// =>
// $bb:
// bposge32 $tbb
// $fbb:
// li $vr2, 0
// b $sink
// $tbb:
// li $vr1, 1
// $sink:
// $vr0 = phi($vr2, $fbb, $vr1, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
MachineFunction *F = BB->getParent();
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, FBB);
F->insert(It, TBB);
F->insert(It, Sink);
// Transfer the remainder of BB and its successor edges to Sink.
Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
BB->end());
Sink->transferSuccessorsAndUpdatePHIs(BB);
// Add successors.
BB->addSuccessor(FBB);
BB->addSuccessor(TBB);
FBB->addSuccessor(Sink);
TBB->addSuccessor(Sink);
// Insert the real bposge32 instruction to $BB.
BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
// Fill $FBB.
unsigned VR2 = RegInfo.createVirtualRegister(RC);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
.addReg(Mips::ZERO).addImm(0);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
// Fill $TBB.
unsigned VR1 = RegInfo.createVirtualRegister(RC);
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
.addReg(Mips::ZERO).addImm(1);
// Insert phi function to $Sink.
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
MI->getOperand(0).getReg())
.addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return Sink;
}
MachineBasicBlock * MipsSETargetLowering::
emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
unsigned BranchOp) const{
// $bb:
// vany_nonzero $rd, $ws
// =>
// $bb:
// bnz.b $ws, $tbb
// b $fbb
// $fbb:
// li $rd1, 0
// b $sink
// $tbb:
// li $rd2, 1
// $sink:
// $rd = phi($rd1, $fbb, $rd2, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
MachineFunction *F = BB->getParent();
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, FBB);
F->insert(It, TBB);
F->insert(It, Sink);
// Transfer the remainder of BB and its successor edges to Sink.
Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
BB->end());
Sink->transferSuccessorsAndUpdatePHIs(BB);
// Add successors.
BB->addSuccessor(FBB);
BB->addSuccessor(TBB);
FBB->addSuccessor(Sink);
TBB->addSuccessor(Sink);
// Insert the real bnz.b instruction to $BB.
BuildMI(BB, DL, TII->get(BranchOp))
.addReg(MI->getOperand(1).getReg())
.addMBB(TBB);
// Fill $FBB.
unsigned RD1 = RegInfo.createVirtualRegister(RC);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
.addReg(Mips::ZERO).addImm(0);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
// Fill $TBB.
unsigned RD2 = RegInfo.createVirtualRegister(RC);
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
.addReg(Mips::ZERO).addImm(1);
// Insert phi function to $Sink.
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
MI->getOperand(0).getReg())
.addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return Sink;
}
// Emit the COPY_FW pseudo instruction.
//
// copy_fw_pseudo $fd, $ws, n
// =>
// copy_u_w $rt, $ws, $n
// mtc1 $rt, $fd
//
// When n is zero, the equivalent operation can be performed with (potentially)
// zero instructions due to register overlaps. This optimization is never valid
// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
MachineBasicBlock * MipsSETargetLowering::
emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Fd = MI->getOperand(0).getReg();
unsigned Ws = MI->getOperand(1).getReg();
unsigned Lane = MI->getOperand(2).getImm();
if (Lane == 0)
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
else {
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the COPY_FD pseudo instruction.
//
// copy_fd_pseudo $fd, $ws, n
// =>
// splati.d $wt, $ws, $n
// copy $fd, $wt:sub_64
//
// When n is zero, the equivalent operation can be performed with (potentially)
// zero instructions due to register overlaps. This optimization is always
// valid because FR=1 mode which is the only supported mode in MSA.
MachineBasicBlock * MipsSETargetLowering::
emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
assert(Subtarget->isFP64bit());
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
unsigned Fd = MI->getOperand(0).getReg();
unsigned Ws = MI->getOperand(1).getReg();
unsigned Lane = MI->getOperand(2).getImm() * 2;
DebugLoc DL = MI->getDebugLoc();
if (Lane == 0)
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
else {
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the INSERT_FW pseudo instruction.
//
// insert_fw_pseudo $wd, $wd_in, $n, $fs
// =>
// subreg_to_reg $wt:sub_lo, $fs
// insve_w $wd[$n], $wd_in, $wt[0]
MachineBasicBlock *
MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
unsigned Wd_in = MI->getOperand(1).getReg();
unsigned Lane = MI->getOperand(2).getImm();
unsigned Fs = MI->getOperand(3).getReg();
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
.addImm(0)
.addReg(Fs)
.addImm(Mips::sub_lo);
BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
.addReg(Wd_in)
.addImm(Lane)
.addReg(Wt)
.addImm(0);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the INSERT_FD pseudo instruction.
//
// insert_fd_pseudo $wd, $fs, n
// =>
// subreg_to_reg $wt:sub_64, $fs
// insve_d $wd[$n], $wd_in, $wt[0]
MachineBasicBlock *
MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
MachineBasicBlock *BB) const {
assert(Subtarget->isFP64bit());
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
unsigned Wd_in = MI->getOperand(1).getReg();
unsigned Lane = MI->getOperand(2).getImm();
unsigned Fs = MI->getOperand(3).getReg();
unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
.addImm(0)
.addReg(Fs)
.addImm(Mips::sub_64);
BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
.addReg(Wd_in)
.addImm(Lane)
.addReg(Wt)
.addImm(0);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
//
// For integer:
// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
// =>
// (SLL $lanetmp1, $lane, <log2size)
// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
// (NEG $lanetmp2, $lanetmp1)
// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
//
// For floating point:
// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
// =>
// (SUBREG_TO_REG $wt, $fs, <subreg>)
// (SLL $lanetmp1, $lane, <log2size)
// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
// (NEG $lanetmp2, $lanetmp1)
// (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
MachineBasicBlock *
MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned EltSizeInBytes,
bool IsFP) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
unsigned SrcVecReg = MI->getOperand(1).getReg();
unsigned LaneReg = MI->getOperand(2).getReg();
unsigned SrcValReg = MI->getOperand(3).getReg();
const TargetRegisterClass *VecRC = nullptr;
const TargetRegisterClass *GPRRC = isGP64bit() ? &Mips::GPR64RegClass
: &Mips::GPR32RegClass;
unsigned EltLog2Size;
unsigned InsertOp = 0;
unsigned InsveOp = 0;
switch (EltSizeInBytes) {
default:
llvm_unreachable("Unexpected size");
case 1:
EltLog2Size = 0;
InsertOp = Mips::INSERT_B;
InsveOp = Mips::INSVE_B;
VecRC = &Mips::MSA128BRegClass;
break;
case 2:
EltLog2Size = 1;
InsertOp = Mips::INSERT_H;
InsveOp = Mips::INSVE_H;
VecRC = &Mips::MSA128HRegClass;
break;
case 4:
EltLog2Size = 2;
InsertOp = Mips::INSERT_W;
InsveOp = Mips::INSVE_W;
VecRC = &Mips::MSA128WRegClass;
break;
case 8:
EltLog2Size = 3;
InsertOp = Mips::INSERT_D;
InsveOp = Mips::INSVE_D;
VecRC = &Mips::MSA128DRegClass;
break;
}
if (IsFP) {
unsigned Wt = RegInfo.createVirtualRegister(VecRC);
BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
.addImm(0)
.addReg(SrcValReg)
.addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
SrcValReg = Wt;
}
// Convert the lane index into a byte index
if (EltSizeInBytes != 1) {
unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
.addReg(LaneReg)
.addImm(EltLog2Size);
LaneReg = LaneTmp1;
}
// Rotate bytes around so that the desired lane is element zero
unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
.addReg(SrcVecReg)
.addReg(SrcVecReg)
.addReg(LaneReg);
unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
if (IsFP) {
// Use insve.df to insert to element zero
BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
.addReg(WdTmp1)
.addImm(0)
.addReg(SrcValReg)
.addImm(0);
} else {
// Use insert.df to insert to element zero
BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
.addReg(WdTmp1)
.addReg(SrcValReg)
.addImm(0);
}
// Rotate elements the rest of the way for a full rotation.
// sld.df inteprets $rt modulo the number of columns so we only need to negate
// the lane index to do this.
unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
.addReg(Mips::ZERO)
.addReg(LaneReg);
BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
.addReg(WdTmp2)
.addReg(WdTmp2)
.addReg(LaneTmp2);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the FILL_FW pseudo instruction.
//
// fill_fw_pseudo $wd, $fs
// =>
// implicit_def $wt1
// insert_subreg $wt2:subreg_lo, $wt1, $fs
// splati.w $wd, $wt2[0]
MachineBasicBlock *
MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
unsigned Fs = MI->getOperand(1).getReg();
unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
.addReg(Wt1)
.addReg(Fs)
.addImm(Mips::sub_lo);
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the FILL_FD pseudo instruction.
//
// fill_fd_pseudo $wd, $fs
// =>
// implicit_def $wt1
// insert_subreg $wt2:subreg_64, $wt1, $fs
// splati.d $wd, $wt2[0]
MachineBasicBlock *
MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
MachineBasicBlock *BB) const {
assert(Subtarget->isFP64bit());
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Wd = MI->getOperand(0).getReg();
unsigned Fs = MI->getOperand(1).getReg();
unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
.addReg(Wt1)
.addReg(Fs)
.addImm(Mips::sub_64);
BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the FEXP2_W_1 pseudo instructions.
//
// fexp2_w_1_pseudo $wd, $wt
// =>
// ldi.w $ws, 1
// fexp2.w $wd, $ws, $wt
MachineBasicBlock *
MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
unsigned Ws2 = RegInfo.createVirtualRegister(RC);
DebugLoc DL = MI->getDebugLoc();
// Splat 1.0 into a vector
BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
// Emit 1.0 * fexp2(Wt)
BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
.addReg(Ws2)
.addReg(MI->getOperand(1).getReg());
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// Emit the FEXP2_D_1 pseudo instructions.
//
// fexp2_d_1_pseudo $wd, $wt
// =>
// ldi.d $ws, 1
// fexp2.d $wd, $ws, $wt
MachineBasicBlock *
MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
unsigned Ws1 = RegInfo.createVirtualRegister(RC);
unsigned Ws2 = RegInfo.createVirtualRegister(RC);
DebugLoc DL = MI->getDebugLoc();
// Splat 1.0 into a vector
BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
// Emit 1.0 * fexp2(Wt)
BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
.addReg(Ws2)
.addReg(MI->getOperand(1).getReg());
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}