llvm-6502/lib/Transforms/Scalar/IndVarSimplify.cpp
Chris Lattner 4a7553e2da Move the scev expansion code into this pass, where it belongs. There is
still room for cleanup, but at least the code modification is out of the
analysis now.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13135 91177308-0d34-0410-b5e6-96231b3b80d8
2004-04-23 21:29:48 +00:00

726 lines
29 KiB
C++

//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation make the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed. Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
using namespace llvm;
namespace {
/// SCEVExpander - This class uses information about analyze scalars to
/// rewrite expressions in canonical form.
///
/// Clients should create an instance of this class when rewriting is needed,
/// and destroying it when finished to allow the release of the associated
/// memory.
struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
LoopInfo &LI;
std::map<SCEVHandle, Value*> InsertedExpressions;
std::set<Instruction*> InsertedInstructions;
Instruction *InsertPt;
friend class SCEVVisitor<SCEVExpander, Value*>;
public:
SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
/// isInsertedInstruction - Return true if the specified instruction was
/// inserted by the code rewriter. If so, the client should not modify the
/// instruction.
bool isInsertedInstruction(Instruction *I) const {
return InsertedInstructions.count(I);
}
/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
"Can only insert integer or floating point induction variables!");
SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
SCEVUnknown::getIntegerSCEV(1, Ty), L);
return expand(H);
}
/// addInsertedValue - Remember the specified instruction as being the
/// canonical form for the specified SCEV.
void addInsertedValue(Instruction *I, SCEV *S) {
InsertedExpressions[S] = (Value*)I;
InsertedInstructions.insert(I);
}
/// expandCodeFor - Insert code to directly compute the specified SCEV
/// expression into the program. The inserted code is inserted into the
/// specified block.
///
/// If a particular value sign is required, a type may be specified for the
/// result.
Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
// Expand the code for this SCEV.
this->InsertPt = IP;
return expandInTy(SH, Ty);
}
protected:
Value *expand(SCEV *S) {
// Check to see if we already expanded this.
std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
if (I != InsertedExpressions.end())
return I->second;
Value *V = visit(S);
InsertedExpressions[S] = V;
return V;
}
Value *expandInTy(SCEV *S, const Type *Ty) {
Value *V = expand(S);
if (Ty && V->getType() != Ty) {
// FIXME: keep track of the cast instruction.
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(C, Ty);
else if (Instruction *I = dyn_cast<Instruction>(V)) {
// Check to see if there is already a cast. If there is, use it.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
if ((*UI)->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
BasicBlock::iterator It = I; ++It;
while (isa<PHINode>(It)) ++It;
if (It != BasicBlock::iterator(CI)) {
// Splice the cast immediately after the operand in question.
I->getParent()->getInstList().splice(It,
CI->getParent()->getInstList(),
CI);
}
return CI;
}
}
BasicBlock::iterator IP = I; ++IP;
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
return new CastInst(V, Ty, V->getName(), IP);
} else {
// FIXME: check to see if there is already a cast!
return new CastInst(V, Ty, V->getName(), InsertPt);
}
}
return V;
}
Value *visitConstant(SCEVConstant *S) {
return S->getValue();
}
Value *visitTruncateExpr(SCEVTruncateExpr *S) {
Value *V = expand(S->getOperand());
return new CastInst(V, S->getType(), "tmp.", InsertPt);
}
Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
Value *V = expandInTy(S->getOperand(),V->getType()->getUnsignedVersion());
return new CastInst(V, S->getType(), "tmp.", InsertPt);
}
Value *visitAddExpr(SCEVAddExpr *S) {
const Type *Ty = S->getType();
Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
// Emit a bunch of add instructions
for (int i = S->getNumOperands()-2; i >= 0; --i)
V = BinaryOperator::create(Instruction::Add, V,
expandInTy(S->getOperand(i), Ty),
"tmp.", InsertPt);
return V;
}
Value *visitMulExpr(SCEVMulExpr *S);
Value *visitUDivExpr(SCEVUDivExpr *S) {
const Type *Ty = S->getType();
Value *LHS = expandInTy(S->getLHS(), Ty);
Value *RHS = expandInTy(S->getRHS(), Ty);
return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.",
InsertPt);
}
Value *visitAddRecExpr(SCEVAddRecExpr *S);
Value *visitUnknown(SCEVUnknown *S) {
return S->getValue();
}
};
}
Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
const Type *Ty = S->getType();
int FirstOp = 0; // Set if we should emit a subtract.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
if (SC->getValue()->isAllOnesValue())
FirstOp = 1;
int i = S->getNumOperands()-2;
Value *V = expandInTy(S->getOperand(i+1), Ty);
// Emit a bunch of multiply instructions
for (; i >= FirstOp; --i)
V = BinaryOperator::create(Instruction::Mul, V,
expandInTy(S->getOperand(i), Ty),
"tmp.", InsertPt);
// -1 * ... ---> 0 - ...
if (FirstOp == 1)
V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty),
V, "tmp.", InsertPt);
return V;
}
Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
const Type *Ty = S->getType();
const Loop *L = S->getLoop();
// We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
// {X,+,F} --> X + {0,+,F}
if (!isa<SCEVConstant>(S->getStart()) ||
!cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
Value *Start = expandInTy(S->getStart(), Ty);
std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
// FIXME: look for an existing add to use.
return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
InsertPt);
}
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->getNumOperands() == 2 &&
S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
if (!L->contains(*HPI)) ++HPI;
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
"No backedge in loop?");
// Insert a unit add instruction right before the terminator corresponding
// to the back-edge.
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
: ConstantInt::get(Ty, 1);
Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
"indvar.next",
(*HPI)->getTerminator());
pred_iterator PI = pred_begin(Header);
if (*PI == L->getLoopPreheader())
++PI;
PN->addIncoming(Add, *PI);
return PN;
}
// Get the canonical induction variable I for this loop.
Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
Value *F = expandInTy(S->getOperand(1), Ty);
return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
}
// If this is a chain of recurrences, turn it into a closed form, using the
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
SCEVHandle V = S->evaluateAtIteration(IH);
//std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
return expandInTy(V, Ty);
}
namespace {
Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
Statistic<> NumInserted("indvars", "Number of canonical indvars added");
Statistic<> NumReplaced("indvars", "Number of exit values replaced");
Statistic<> NumLFTR ("indvars", "Number of loop exit tests replaced");
class IndVarSimplify : public FunctionPass {
LoopInfo *LI;
ScalarEvolution *SE;
bool Changed;
public:
virtual bool runOnFunction(Function &) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
Changed = false;
// Induction Variables live in the header nodes of loops
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
runOnLoop(*I);
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<ScalarEvolution>();
AU.addRequired<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.setPreservesCFG();
}
private:
void runOnLoop(Loop *L);
void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
std::set<Instruction*> &DeadInsts);
void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
SCEVExpander &RW);
void RewriteLoopExitValues(Loop *L);
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
};
RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
}
Pass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplify();
}
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
while (!Insts.empty()) {
Instruction *I = *Insts.begin();
Insts.erase(Insts.begin());
if (isInstructionTriviallyDead(I)) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
Insts.insert(U);
SE->deleteInstructionFromRecords(I);
I->getParent()->getInstList().erase(I);
Changed = true;
}
}
}
/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence. If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
BasicBlock *Preheader,
std::set<Instruction*> &DeadInsts) {
assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
unsigned BackedgeIdx = PreheaderIdx^1;
if (GetElementPtrInst *GEPI =
dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
if (GEPI->getOperand(0) == PN) {
assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
// Okay, we found a pointer recurrence. Transform this pointer
// recurrence into an integer recurrence. Compute the value that gets
// added to the pointer at every iteration.
Value *AddedVal = GEPI->getOperand(1);
// Insert a new integer PHI node into the top of the block.
PHINode *NewPhi = new PHINode(AddedVal->getType(),
PN->getName()+".rec", PN);
NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
Preheader);
// Create the new add instruction.
Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
AddedVal,
GEPI->getName()+".rec", GEPI);
NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
// Update the existing GEP to use the recurrence.
GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
// Update the GEP to use the new recurrence we just inserted.
GEPI->setOperand(1, NewAdd);
// Finally, if there are any other users of the PHI node, we must
// insert a new GEP instruction that uses the pre-incremented version
// of the induction amount.
if (!PN->use_empty()) {
BasicBlock::iterator InsertPos = PN; ++InsertPos;
while (isa<PHINode>(InsertPos)) ++InsertPos;
std::string Name = PN->getName(); PN->setName("");
Value *PreInc =
new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
std::vector<Value*>(1, NewPhi), Name,
InsertPos);
PN->replaceAllUsesWith(PreInc);
}
// Delete the old PHI for sure, and the GEP if its otherwise unused.
DeadInsts.insert(PN);
++NumPointer;
Changed = true;
}
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
SCEVExpander &RW) {
// Find the exit block for the loop. We can currently only handle loops with
// a single exit.
std::vector<BasicBlock*> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() != 1) return;
BasicBlock *ExitBlock = ExitBlocks[0];
// Make sure there is only one predecessor block in the loop.
BasicBlock *ExitingBlock = 0;
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
PI != PE; ++PI)
if (L->contains(*PI)) {
if (ExitingBlock == 0)
ExitingBlock = *PI;
else
return; // Multiple exits from loop to this block.
}
assert(ExitingBlock && "Loop info is broken");
if (!isa<BranchInst>(ExitingBlock->getTerminator()))
return; // Can't rewrite non-branch yet
BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
assert(BI->isConditional() && "Must be conditional to be part of loop!");
std::set<Instruction*> InstructionsToDelete;
if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
InstructionsToDelete.insert(Cond);
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
BasicBlock *Header = L->getHeader();
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
if (!L->contains(*HPI)) ++HPI;
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
"No backedge in loop?");
SCEVHandle TripCount = IterationCount;
Value *IndVar;
if (*HPI == ExitingBlock) {
// The IterationCount expression contains the number of times that the
// backedge actually branches to the loop header. This is one less than the
// number of times the loop executes, so add one to it.
Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
IndVar = L->getCanonicalInductionVariableIncrement();
} else {
// We have to use the preincremented value...
IndVar = L->getCanonicalInductionVariable();
}
// Expand the code for the iteration count into the preheader of the loop.
BasicBlock *Preheader = L->getLoopPreheader();
Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
IndVar->getType());
// Insert a new setne or seteq instruction before the branch.
Instruction::BinaryOps Opcode;
if (L->contains(BI->getSuccessor(0)))
Opcode = Instruction::SetNE;
else
Opcode = Instruction::SetEQ;
Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
BI->setCondition(Cond);
++NumLFTR;
Changed = true;
DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
BasicBlock *Preheader = L->getLoopPreheader();
// Scan all of the instructions in the loop, looking at those that have
// extra-loop users and which are recurrences.
SCEVExpander Rewriter(*SE, *LI);
// We insert the code into the preheader of the loop if the loop contains
// multiple exit blocks, or in the exit block if there is exactly one.
BasicBlock *BlockToInsertInto;
std::vector<BasicBlock*> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() == 1)
BlockToInsertInto = ExitBlocks[0];
else
BlockToInsertInto = Preheader;
BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
std::set<Instruction*> InstructionsToDelete;
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
BasicBlock *BB = L->getBlocks()[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->getType()->isInteger()) { // Is an integer instruction
SCEVHandle SH = SE->getSCEV(I);
if (SH->hasComputableLoopEvolution(L) || // Varies predictably
HasConstantItCount) {
// Find out if this predictably varying value is actually used
// outside of the loop. "extra" as opposed to "intra".
std::vector<User*> ExtraLoopUsers;
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
if (!L->contains(cast<Instruction>(*UI)->getParent()))
ExtraLoopUsers.push_back(*UI);
if (!ExtraLoopUsers.empty()) {
// Okay, this instruction has a user outside of the current loop
// and varies predictably in this loop. Evaluate the value it
// contains when the loop exits, and insert code for it.
SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
if (!isa<SCEVCouldNotCompute>(ExitValue)) {
Changed = true;
++NumReplaced;
Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
I->getType());
// Rewrite any users of the computed value outside of the loop
// with the newly computed value.
for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
// If this instruction is dead now, schedule it to be removed.
if (I->use_empty())
InstructionsToDelete.insert(I);
}
}
}
}
}
DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
void IndVarSimplify::runOnLoop(Loop *L) {
// First step. Check to see if there are any trivial GEP pointer recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
//
BasicBlock *Header = L->getHeader();
BasicBlock *Preheader = L->getLoopPreheader();
std::set<Instruction*> DeadInsts;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
if (isa<PointerType>(PN->getType()))
EliminatePointerRecurrence(PN, Preheader, DeadInsts);
if (!DeadInsts.empty())
DeleteTriviallyDeadInstructions(DeadInsts);
// Next, transform all loops nesting inside of this loop.
for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
runOnLoop(*I);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values of
// the current expressions.
//
SCEVHandle IterationCount = SE->getIterationCount(L);
if (!isa<SCEVCouldNotCompute>(IterationCount))
RewriteLoopExitValues(L);
// Next, analyze all of the induction variables in the loop, canonicalizing
// auxillary induction variables.
std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
SCEVHandle SCEV = SE->getSCEV(PN);
if (SCEV->hasComputableLoopEvolution(L))
if (SE->shouldSubstituteIndVar(SCEV)) // HACK!
IndVars.push_back(std::make_pair(PN, SCEV));
}
// If there are no induction variables in the loop, there is nothing more to
// do.
if (IndVars.empty()) {
// Actually, if we know how many times the loop iterates, lets insert a
// canonical induction variable to help subsequent passes.
if (!isa<SCEVCouldNotCompute>(IterationCount)) {
SCEVExpander Rewriter(*SE, *LI);
Rewriter.getOrInsertCanonicalInductionVariable(L,
IterationCount->getType());
LinearFunctionTestReplace(L, IterationCount, Rewriter);
}
return;
}
// Compute the type of the largest recurrence expression.
//
const Type *LargestType = IndVars[0].first->getType();
bool DifferingSizes = false;
for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
const Type *Ty = IndVars[i].first->getType();
DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
LargestType = Ty;
}
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE, *LI);
// Now that we know the largest of of the induction variables in this loop,
// insert a canonical induction variable of the largest size.
LargestType = LargestType->getUnsignedVersion();
Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
++NumInserted;
Changed = true;
if (!isa<SCEVCouldNotCompute>(IterationCount))
LinearFunctionTestReplace(L, IterationCount, Rewriter);
// Now that we have a canonical induction variable, we can rewrite any
// recurrences in terms of the induction variable. Start with the auxillary
// induction variables, and recursively rewrite any of their uses.
BasicBlock::iterator InsertPt = Header->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
// If there were induction variables of other sizes, cast the primary
// induction variable to the right size for them, avoiding the need for the
// code evaluation methods to insert induction variables of different sizes.
if (DifferingSizes) {
bool InsertedSizes[17] = { false };
InsertedSizes[LargestType->getPrimitiveSize()] = true;
for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
PHINode *PN = IndVars[i].first;
InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
Instruction *New = new CastInst(IndVar,
PN->getType()->getUnsignedVersion(),
"indvar", InsertPt);
Rewriter.addInsertedValue(New, SE->getSCEV(New));
}
}
// If there were induction variables of other sizes, cast the primary
// induction variable to the right size for them, avoiding the need for the
// code evaluation methods to insert induction variables of different sizes.
std::map<unsigned, Value*> InsertedSizes;
while (!IndVars.empty()) {
PHINode *PN = IndVars.back().first;
Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
PN->getType());
std::string Name = PN->getName();
PN->setName("");
NewVal->setName(Name);
// Replace the old PHI Node with the inserted computation.
PN->replaceAllUsesWith(NewVal);
DeadInsts.insert(PN);
IndVars.pop_back();
++NumRemoved;
Changed = true;
}
#if 0
// Now replace all derived expressions in the loop body with simpler
// expressions.
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
BasicBlock *BB = L->getBlocks()[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->getType()->isInteger() && // Is an integer instruction
!I->use_empty() &&
!Rewriter.isInsertedInstruction(I)) {
SCEVHandle SH = SE->getSCEV(I);
Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
if (V != I) {
if (isa<Instruction>(V)) {
std::string Name = I->getName();
I->setName("");
V->setName(Name);
}
I->replaceAllUsesWith(V);
DeadInsts.insert(I);
++NumRemoved;
Changed = true;
}
}
}
#endif
DeleteTriviallyDeadInstructions(DeadInsts);
}