llvm-6502/lib/ExecutionEngine/Interpreter/Execution.cpp
Chris Lattner e93cdce4c9 Use the correct style casts
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@546 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-10 20:12:04 +00:00

853 lines
28 KiB
C++

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/iMemory.h"
#include "llvm/Type.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/CodeGen/TargetData.h"
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = ((CLASS*)CPV)->getValue(); break
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstPoolVal *CPV = V->castConstant()) {
GenericValue Result;
switch (CPV->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstPoolBool);
GET_CONST_VAL(UByte , ConstPoolUInt);
GET_CONST_VAL(SByte , ConstPoolSInt);
GET_CONST_VAL(UShort , ConstPoolUInt);
GET_CONST_VAL(Short , ConstPoolSInt);
GET_CONST_VAL(UInt , ConstPoolUInt);
GET_CONST_VAL(Int , ConstPoolSInt);
GET_CONST_VAL(Float , ConstPoolFP);
GET_CONST_VAL(Double , ConstPoolFP);
default:
cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl;
}
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void printOperandInfo(Value *V, ExecutionContext &SF) {
if (!V->isConstant()) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
unsigned Slot = getOperandSlot(V);
cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot
<< " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF << endl;
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
//cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << endl;
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
#define IMPLEMENT_BINARY_PTR_OPERATOR(OP) \
case Type::PointerTyID: Dest.PointerVal = \
(GenericValue*)((unsigned long)Src1.PointerVal OP (unsigned long)Src2.PointerVal); break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
IMPLEMENT_BINARY_PTR_OPERATOR(+);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Add instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
IMPLEMENT_BINARY_PTR_OPERATOR(-);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Sub instruction: " << Ty << endl;
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
IMPLEMENT_SETCC(==, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetEQ instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
IMPLEMENT_SETCC(!=, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetNE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
IMPLEMENT_SETCC(<=, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
IMPLEMENT_SETCC(>=, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
IMPLEMENT_SETCC(<, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLT instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
IMPLEMENT_SETCC(>, Pointer);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGT instruction: " << Ty << endl;
}
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
case Instruction::Add: R = executeAddInst(Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst(Src1, Src2, Ty, SF); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break;
default:
cout << "Don't know how to handle this binary operator!\n-->" << I;
}
SetValue(I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
}
// Save previously executing meth
const Method *M = ECStack.back().CurMethod;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
cout << endl;
if (RetTy->isIntegral())
ExitCode = Result.SByteVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
} else {
// This must be a function that is executing because of a user 'call'
// instruction.
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
cout << endl;
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
if (getOperandValue(I->getCondition(), SF).BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
// Create a TargetData structure to handle memory addressing and size/alignment
// computations
//
static TargetData TD("lli Interpreter");
void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType()->getValueType(); // Type to be allocated
unsigned NumElements = 1;
if (I->getNumOperands()) { // Allocating a unsized array type?
assert(Ty->isArrayType() && Ty->castArrayType()->isUnsized() &&
"Allocation inst with size operand for !unsized array type???");
Ty = ((const ArrayType*)Ty)->getElementType(); // Get the actual type...
// Get the number of elements being allocated by the array...
GenericValue NumEl = getOperandValue(I->getOperand(0), SF);
NumElements = NumEl.UIntVal;
}
// Allocate enough memory to hold the type...
GenericValue Result;
Result.PointerVal = (GenericValue*)malloc(NumElements * TD.getTypeSize(Ty));
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(I, Result, SF);
if (I->getOpcode() == Instruction::Alloca) {
// Keep track to free it later...
}
}
static void executeFreeInst(FreeInst *I, ExecutionContext &SF) {
assert(I->getOperand(0)->getType()->isPointerType() && "Freeing nonptr?");
GenericValue Value = getOperandValue(I->getOperand(0), SF);
// TODO: Check to make sure memory is allocated
free(Value.PointerVal); // Free memory
}
static void executeLoadInst(LoadInst *I, ExecutionContext &SF) {
assert(I->getNumOperands() == 1 && "NI!");
GenericValue *Ptr = getOperandValue(I->getPtrOperand(), SF).PointerVal;
GenericValue Result;
switch (I->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break;
case Type::UIntTyID:
case Type::IntTyID: Result.IntVal = Ptr->IntVal; break;
//case Type::ULongTyID:
//case Type::LongTyID: Result.LongVal = Ptr->LongVal; break;
case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break;
case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break;
case Type::PointerTyID: Result.PointerVal = Ptr->PointerVal; break;
default:
cout << "Cannot load value of type " << I->getType() << "!\n";
}
SetValue(I, Result, SF);
}
static void executeStoreInst(StoreInst *I, ExecutionContext &SF) {
GenericValue *Ptr = getOperandValue(I->getPtrOperand(), SF).PointerVal;
GenericValue Val = getOperandValue(I->getOperand(0), SF);
assert(I->getNumOperands() == 2 && "NI!");
switch (I->getOperand(0)->getType()->getPrimitiveID()) {
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break;
case Type::UShortTyID:
case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break;
case Type::UIntTyID:
case Type::IntTyID: Ptr->IntVal = Val.IntVal; break;
//case Type::ULongTyID:
//case Type::LongTyID: Ptr->LongVal = Val.LongVal; break;
case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break;
case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break;
case Type::PointerTyID: Ptr->PointerVal = Val.PointerVal; break;
default:
cout << "Cannot store value of type " << I->getType() << "!\n";
}
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
vector<GenericValue> ArgVals;
ArgVals.reserve(I->getNumOperands()-1);
for (unsigned i = 1; i < I->getNumOperands(); ++i)
ArgVals.push_back(getOperandValue(I->getOperand(i), SF));
callMethod(I->getCalledMethod(), ArgVals);
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
}
#define IMPLEMENT_SHIFT(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
static void executeShlInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(<<, UByte);
IMPLEMENT_SHIFT(<<, SByte);
IMPLEMENT_SHIFT(<<, UShort);
IMPLEMENT_SHIFT(<<, Short);
IMPLEMENT_SHIFT(<<, UInt);
IMPLEMENT_SHIFT(<<, Int);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Shl instruction: " << Ty << endl;
}
SetValue(I, Dest, SF);
}
static void executeShrInst(ShiftInst *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SHIFT(>>, UByte);
IMPLEMENT_SHIFT(>>, SByte);
IMPLEMENT_SHIFT(>>, UShort);
IMPLEMENT_SHIFT(>>, Short);
IMPLEMENT_SHIFT(>>, UInt);
IMPLEMENT_SHIFT(>>, Int);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Shr instruction: " << Ty << endl;
}
SetValue(I, Dest, SF);
}
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
case Type::STY##TyID: Dest.DTY##Val = (DCTY)Src.STY##Val; break;
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
case Type::DESTTY##TyID: \
switch (SrcTy->getPrimitiveID()) { \
IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Int);
#define IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY) \
IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer)
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
#define IMPLEMENT_CAST_CASE_END() \
default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << endl; \
break; \
} \
break
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
#define IMPLEMENT_CAST_CASE_FP(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
#define IMPLEMENT_CAST_CASE_PTR(DESTTY, DESTCTY) \
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_PTR_IMP(DESTTY, DESTCTY); \
IMPLEMENT_CAST_CASE_END()
static void executeCastInst(CastInst *I, ExecutionContext &SF) {
const Type *Ty = I->getType();
const Type *SrcTy = I->getOperand(0)->getType();
GenericValue Src = getOperandValue(I->getOperand(0), SF);
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_CAST_CASE(UByte , unsigned char);
IMPLEMENT_CAST_CASE(SByte , signed char);
IMPLEMENT_CAST_CASE(UShort, unsigned short);
IMPLEMENT_CAST_CASE(Short , signed char);
IMPLEMENT_CAST_CASE(UInt , unsigned int );
IMPLEMENT_CAST_CASE(Int , signed int );
IMPLEMENT_CAST_CASE_FP(Float , float);
IMPLEMENT_CAST_CASE_FP(Double, double);
IMPLEMENT_CAST_CASE_PTR(Pointer, GenericValue *);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled dest type for cast instruction: " << Ty << endl;
}
SetValue(I, Dest, SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) {
// Assign slot numbers to the method arguments...
const Method::ArgumentListType &ArgList = M->getArgumentList();
for (Method::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI) {
MethodArgument *MA = *AI;
MA->addAnnotation(new SlotNumber(getValueSlot(MA)));
}
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end();
MI != ME; ++MI) {
Instruction *I = *MI; // For each instruction...
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote
}
}
unsigned MethodInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID, CreateMethodInfo);
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified method...
//
void Interpreter::callMethod(Method *M, const vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller == 0 ||
ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
if (M->isExternal()) {
callExternalMethod(M, ArgVals);
return;
}
// Process the method, assigning instruction numbers to the instructions in
// the method. Also calculate the number of values for each type slot active.
//
MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(MethInfo->NumPlaneElements.size());
for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i)
StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]);
StackFrame.PrevBB = 0; // No previous BB for PHI nodes...
// Run through the method arguments and initialize their values...
unsigned i = 0;
for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(),
ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) {
SetValue(*MI, ArgVals[i], StackFrame);
}
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
if (I->isBinaryOp()) {
executeBinaryInst((BinaryOperator*)I, SF);
} else {
switch (I->getOpcode()) {
// Terminators
case Instruction::Ret: executeRetInst ((ReturnInst*)I, SF); break;
case Instruction::Br: executeBrInst ((BranchInst*)I, SF); break;
// Memory Instructions
case Instruction::Alloca:
case Instruction::Malloc: executeAllocInst ((AllocationInst*)I, SF); break;
case Instruction::Free: executeFreeInst ((FreeInst*) I, SF); break;
case Instruction::Load: executeLoadInst ((LoadInst*) I, SF); break;
case Instruction::Store: executeStoreInst ((StoreInst*) I, SF); break;
// Miscellaneous Instructions
case Instruction::Call: executeCallInst ((CallInst*) I, SF); break;
case Instruction::PHINode: executePHINode ((PHINode*) I, SF); break;
case Instruction::Shl: executeShlInst ((ShiftInst*) I, SF); break;
case Instruction::Shr: executeShrInst ((ShiftInst*) I, SF); break;
case Instruction::Cast: executeCastInst ((CastInst*) I, SF); break;
default:
cout << "Don't know how to execute this instruction!\n-->" << I;
}
}
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// Finish executing the function...
finish();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
cout << Ty << " ";
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID: cout << V.SByteVal; break;
case Type::UByteTyID: cout << V.UByteVal; break;
case Type::ShortTyID: cout << V.ShortVal; break;
case Type::UShortTyID: cout << V.UShortVal; break;
case Type::IntTyID: cout << V.IntVal; break;
case Type::UIntTyID: cout << V.UIntVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
case Type::PointerTyID:cout << V.PointerVal; break;
default:
cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::printValue(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Method *M = PickedVal->castMethod()) {
cout << M; // Print the method
} else { // Otherwise there should be an annotation for the slot#
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
}
}
void Interpreter::infoValue(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
cout << "Value: ";
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
printOperandInfo(PickedVal, ECStack[CurFrame]);
}
void Interpreter::list() {
if (ECStack.empty())
cout << "Error: No program executing!\n";
else
cout << ECStack[CurFrame].CurMethod; // Just print the method out...
}
void Interpreter::printStackTrace() {
if (ECStack.empty()) cout << "No program executing!\n";
for (unsigned i = 0; i < ECStack.size(); ++i) {
cout << (((int)i == CurFrame) ? '>' : '-');
cout << "#" << i << ". " << ECStack[i].CurMethod->getType() << " \""
<< ECStack[i].CurMethod->getName() << "\"(";
// TODO: Print Args
cout << ")" << endl;
cout << *ECStack[i].CurInst;
}
}