mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
f73400a864
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219401 91177308-0d34-0410-b5e6-96231b3b80d8
557 lines
19 KiB
C++
557 lines
19 KiB
C++
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// AArch64 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64tti"
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't have a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeAArch64TTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
|
|
const AArch64TargetMachine *TM;
|
|
const AArch64Subtarget *ST;
|
|
const AArch64TargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
AArch64TTI(const AArch64TargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getSubtargetImpl()->getTargetLowering()) {
|
|
initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void initializePass() override { pushTTIStack(this); }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
void *getAdjustedAnalysisPointer(const void *ID) override {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo *)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
unsigned getIntImmCost(int64_t Val) const;
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
|
|
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) const override;
|
|
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) const override;
|
|
PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const override {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 32;
|
|
return 0;
|
|
}
|
|
return 31;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const override {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 128;
|
|
return 0;
|
|
}
|
|
return 64;
|
|
}
|
|
|
|
unsigned getMaxInterleaveFactor() const override;
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
|
|
override;
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
|
|
override;
|
|
|
|
unsigned getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
|
|
OperandValueKind Opd2Info = OK_AnyValue,
|
|
OperandValueProperties Opd1PropInfo = OP_None,
|
|
OperandValueProperties Opd2PropInfo = OP_None) const override;
|
|
|
|
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
|
|
override;
|
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) const override;
|
|
|
|
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
|
|
|
|
void getUnrollingPreferences(const Function *F, Loop *L,
|
|
UnrollingPreferences &UP) const override;
|
|
|
|
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
|
|
"AArch64 Target Transform Info", true, true, false)
|
|
char AArch64TTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
|
|
return new AArch64TTI(TM);
|
|
}
|
|
|
|
/// \brief Calculate the cost of materializing a 64-bit value. This helper
|
|
/// method might only calculate a fraction of a larger immediate. Therefore it
|
|
/// is valid to return a cost of ZERO.
|
|
unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
|
|
// Check if the immediate can be encoded within an instruction.
|
|
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
|
|
return 0;
|
|
|
|
if (Val < 0)
|
|
Val = ~Val;
|
|
|
|
// Calculate how many moves we will need to materialize this constant.
|
|
unsigned LZ = countLeadingZeros((uint64_t)Val);
|
|
return (64 - LZ + 15) / 16;
|
|
}
|
|
|
|
/// \brief Calculate the cost of materializing the given constant.
|
|
unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
// Sign-extend all constants to a multiple of 64-bit.
|
|
APInt ImmVal = Imm;
|
|
if (BitSize & 0x3f)
|
|
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
|
|
|
|
// Split the constant into 64-bit chunks and calculate the cost for each
|
|
// chunk.
|
|
unsigned Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
|
|
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
|
|
int64_t Val = Tmp.getSExtValue();
|
|
Cost += getIntImmCost(Val);
|
|
}
|
|
// We need at least one instruction to materialze the constant.
|
|
return std::max(1U, Cost);
|
|
}
|
|
|
|
unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TCC_Free;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
switch (Opcode) {
|
|
default:
|
|
return TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr.
|
|
if (Idx == 0)
|
|
return 2 * TCC_Basic;
|
|
return TCC_Free;
|
|
case Instruction::Store:
|
|
ImmIdx = 0;
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
ImmIdx = 1;
|
|
break;
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
if (Idx == 1)
|
|
return TCC_Free;
|
|
break;
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Select:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
break;
|
|
}
|
|
|
|
if (Idx == ImmIdx) {
|
|
unsigned NumConstants = (BitSize + 63) / 64;
|
|
unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
|
|
return (Cost <= NumConstants * TCC_Basic)
|
|
? static_cast<unsigned>(TCC_Free) : Cost;
|
|
}
|
|
return AArch64TTI::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TCC_Free;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
if (Idx == 1) {
|
|
unsigned NumConstants = (BitSize + 63) / 64;
|
|
unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
|
|
return (Cost <= NumConstants * TCC_Basic)
|
|
? static_cast<unsigned>(TCC_Free) : Cost;
|
|
}
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TCC_Free;
|
|
break;
|
|
}
|
|
return AArch64TTI::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
AArch64TTI::PopcntSupportKind
|
|
AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
if (TyWidth == 32 || TyWidth == 64)
|
|
return PSK_FastHardware;
|
|
// TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
|
|
return PSK_Software;
|
|
}
|
|
|
|
unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
|
|
// LowerVectorINT_TO_FP:
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
|
|
// Complex: to v2f32
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
|
|
|
|
// Complex: to v4f32
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
|
|
// Complex: to v2f64
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
|
|
// LowerVectorFP_TO_INT
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
|
|
// Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
|
|
|
|
// Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
|
|
|
|
// Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
|
|
};
|
|
|
|
int Idx = ConvertCostTableLookup<MVT>(
|
|
ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return ConversionTbl[Idx].Cost;
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) const {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
|
|
// The element at index zero is already inside the vector.
|
|
if (Index == 0)
|
|
return 0;
|
|
}
|
|
|
|
// All other insert/extracts cost this much.
|
|
return 2;
|
|
}
|
|
|
|
unsigned AArch64TTI::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
|
|
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
|
|
OperandValueProperties Opd2PropInfo) const {
|
|
// Legalize the type.
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
|
|
if (ISD == ISD::SDIV &&
|
|
Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
|
|
Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
|
|
// On AArch64, scalar signed division by constants power-of-two are
|
|
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
|
|
// The OperandValue properties many not be same as that of previous
|
|
// operation; conservatively assume OP_None.
|
|
unsigned Cost =
|
|
getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
return Cost;
|
|
}
|
|
|
|
switch (ISD) {
|
|
default:
|
|
return TargetTransformInfo::getArithmeticInstrCost(
|
|
Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::XOR:
|
|
case ISD::OR:
|
|
case ISD::AND:
|
|
// These nodes are marked as 'custom' for combining purposes only.
|
|
// We know that they are legal. See LowerAdd in ISelLowering.
|
|
return 1 * LT.first;
|
|
}
|
|
}
|
|
|
|
unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// We don't lower vector selects well that are wider than the register width.
|
|
if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// We would need this many instructions to hide the scalarization happening.
|
|
unsigned AmortizationCost = 20;
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
VectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(CondTy);
|
|
EVT SelValTy = TLI->getValueType(ValTy);
|
|
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
|
|
int Idx =
|
|
ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return VectorSelectTbl[Idx].Cost;
|
|
}
|
|
}
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) const {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
|
|
if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
|
|
Src->getVectorElementType()->isIntegerTy(64)) {
|
|
// Unaligned stores are extremely inefficient. We don't split
|
|
// unaligned v2i64 stores because the negative impact that has shown in
|
|
// practice on inlined memcpy code.
|
|
// We make v2i64 stores expensive so that we will only vectorize if there
|
|
// are 6 other instructions getting vectorized.
|
|
unsigned AmortizationCost = 6;
|
|
|
|
return LT.first * 2 * AmortizationCost;
|
|
}
|
|
|
|
if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
|
|
Src->getVectorNumElements() < 8) {
|
|
// We scalarize the loads/stores because there is not v.4b register and we
|
|
// have to promote the elements to v.4h.
|
|
unsigned NumVecElts = Src->getVectorNumElements();
|
|
unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
|
|
// We generate 2 instructions per vector element.
|
|
return NumVectorizableInstsToAmortize * NumVecElts * 2;
|
|
}
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
|
|
unsigned Cost = 0;
|
|
for (auto *I : Tys) {
|
|
if (!I->isVectorTy())
|
|
continue;
|
|
if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
|
|
Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
|
|
getMemoryOpCost(Instruction::Load, I, 128, 0);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
unsigned AArch64TTI::getMaxInterleaveFactor() const {
|
|
if (ST->isCortexA57())
|
|
return 4;
|
|
return 2;
|
|
}
|
|
|
|
void AArch64TTI::getUnrollingPreferences(const Function *F, Loop *L,
|
|
UnrollingPreferences &UP) const {
|
|
// Disable partial & runtime unrolling on -Os.
|
|
UP.PartialOptSizeThreshold = 0;
|
|
}
|