llvm-6502/lib/CodeGen/RegAlloc/PhyRegAlloc.cpp
2001-10-23 21:38:00 +00:00

938 lines
28 KiB
C++

#include "llvm/CodeGen/PhyRegAlloc.h"
cl::Enum<RegAllocDebugLevel_t> DEBUG_RA("dregalloc", cl::NoFlags,
"enable register allocation debugging information",
clEnumValN(RA_DEBUG_None , "n", "disable debug output"),
clEnumValN(RA_DEBUG_Normal , "y", "enable debug output"),
clEnumValN(RA_DEBUG_Verbose, "v", "enable extra debug output"), 0);
//----------------------------------------------------------------------------
// Constructor: Init local composite objects and create register classes.
//----------------------------------------------------------------------------
PhyRegAlloc::PhyRegAlloc(const Method *const M,
const TargetMachine& tm,
MethodLiveVarInfo *const Lvi)
: RegClassList(),
Meth(M), TM(tm), LVI(Lvi), LRI(M, tm, RegClassList),
MRI( tm.getRegInfo() ),
NumOfRegClasses(MRI.getNumOfRegClasses()),
AddedInstrMap()
{
// **TODO: use an actual reserved color list
ReservedColorListType *RCL = new ReservedColorListType();
// create each RegisterClass and put in RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses; rc++)
RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), RCL) );
}
//----------------------------------------------------------------------------
// This method initally creates interference graphs (one in each reg class)
// and IGNodeList (one in each IG). The actual nodes will be pushed later.
//----------------------------------------------------------------------------
void PhyRegAlloc::createIGNodeListsAndIGs()
{
if(DEBUG_RA ) cout << "Creating LR lists ..." << endl;
// hash map iterator
LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin();
// hash map end
LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();
for( ; HMI != HMIEnd ; ++HMI ) {
if( (*HMI).first ) {
LiveRange *L = (*HMI).second; // get the LiveRange
if( !L) {
if( DEBUG_RA) {
cout << "\n*?!?Warning: Null liver range found for: ";
printValue( (*HMI).first) ; cout << endl;
}
continue;
}
// if the Value * is not null, and LR
// is not yet written to the IGNodeList
if( !(L->getUserIGNode()) ) {
RegClass *const RC = // RegClass of first value in the LR
//RegClassList [MRI.getRegClassIDOfValue(*(L->begin()))];
RegClassList[ L->getRegClass()->getID() ];
RC-> addLRToIG( L ); // add this LR to an IG
}
}
}
// init RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->createInterferenceGraph();
if( DEBUG_RA)
cout << "LRLists Created!" << endl;
}
//----------------------------------------------------------------------------
// This method will add all interferences at for a given instruction.
// Interence occurs only if the LR of Def (Inst or Arg) is of the same reg
// class as that of live var. The live var passed to this function is the
// LVset AFTER the instruction
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterference(const Value *const Def,
const LiveVarSet *const LVSet,
const bool isCallInst) {
LiveVarSet::const_iterator LIt = LVSet->begin();
// get the live range of instruction
const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def );
IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
assert( IGNodeOfDef );
RegClass *const RCOfDef = LROfDef->getRegClass();
// for each live var in live variable set
for( ; LIt != LVSet->end(); ++LIt) {
if( DEBUG_RA > 1) {
cout << "< Def="; printValue(Def);
cout << ", Lvar="; printValue( *LIt); cout << "> ";
}
// get the live range corresponding to live var
LiveRange *const LROfVar = LRI.getLiveRangeForValue(*LIt );
// LROfVar can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LROfVar) {
if(LROfDef == LROfVar) // do not set interf for same LR
continue;
// if 2 reg classes are the same set interference
if( RCOfDef == LROfVar->getRegClass() ){
RCOfDef->setInterference( LROfDef, LROfVar);
}
else if(DEBUG_RA > 1) {
// we will not have LRs for values not explicitly allocated in the
// instruction stream (e.g., constants)
cout << " warning: no live range for " ;
printValue( *LIt); cout << endl; }
}
}
}
//----------------------------------------------------------------------------
// For a call instruction, this method sets the CallInterference flag in
// the LR of each variable live int the Live Variable Set live after the
// call instruction (except the return value of the call instruction - since
// the return value does not interfere with that call itself).
//----------------------------------------------------------------------------
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
const LiveVarSet *const LVSetAft )
{
// Now find the LR of the return value of the call
// We do this because, we look at the LV set *after* the instruction
// to determine, which LRs must be saved across calls. The return value
// of the call is live in this set - but it does not interfere with call
// (i.e., we can allocate a volatile register to the return value)
LiveRange *RetValLR = NULL;
const Value *RetVal = MRI.getCallInstRetVal( MInst );
if( RetVal ) {
RetValLR = LRI.getLiveRangeForValue( RetVal );
assert( RetValLR && "No LR for RetValue of call");
}
if( DEBUG_RA)
cout << "\n For call inst: " << *MInst;
LiveVarSet::const_iterator LIt = LVSetAft->begin();
// for each live var in live variable set after machine inst
for( ; LIt != LVSetAft->end(); ++LIt) {
// get the live range corresponding to live var
LiveRange *const LR = LRI.getLiveRangeForValue(*LIt );
if( LR && DEBUG_RA) {
cout << "\n\tLR Aft Call: ";
LR->printSet();
}
// LR can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LR && (LR != RetValLR) ) {
LR->setCallInterference();
if( DEBUG_RA) {
cout << "\n ++Added call interf for LR: " ;
LR->printSet();
}
}
}
}
//----------------------------------------------------------------------------
// This method will walk thru code and create interferences in the IG of
// each RegClass.
//----------------------------------------------------------------------------
void PhyRegAlloc::buildInterferenceGraphs()
{
if(DEBUG_RA) cout << "Creating interference graphs ..." << endl;
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
// get the iterator for machine instructions
const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::const_iterator
MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
const MachineInstr *const MInst = *MInstIterator;
// get the LV set after the instruction
const LiveVarSet *const LVSetAI =
LVI->getLiveVarSetAfterMInst(MInst, *BBI);
const bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());
if( isCallInst ) {
//cout << "\nFor call inst: " << *MInst;
// set the isCallInterference flag of each live range wich extends
// accross this call instruction. This information is used by graph
// coloring algo to avoid allocating volatile colors to live ranges
// that span across calls (since they have to be saved/restored)
setCallInterferences( MInst, LVSetAI);
}
// iterate over MI operands to find defs
for( MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done(); ++OpI) {
if( OpI.isDef() ) {
// create a new LR iff this operand is a def
addInterference(*OpI, LVSetAI, isCallInst );
} //if this is a def
} // for all operands
// Also add interference for any implicit definitions in a machine
// instr (currently, only calls have this).
unsigned NumOfImpRefs = MInst->getNumImplicitRefs();
if( NumOfImpRefs > 0 ) {
for(unsigned z=0; z < NumOfImpRefs; z++)
if( MInst->implicitRefIsDefined(z) )
addInterference( MInst->getImplicitRef(z), LVSetAI, isCallInst );
}
} // for all machine instructions in BB
#if 0
// go thru LLVM instructions in the basic block and record all CALL
// instructions and Return instructions in the CallInstrList
// This is done because since there are no reverse pointers in machine
// instructions to find the llvm instruction, when we encounter a call
// or a return whose args must be specailly colored (e.g., %o's for args)
BasicBlock::const_iterator InstIt = (*BBI)->begin();
for( ; InstIt != (*BBI)->end() ; ++ InstIt) {
unsigned OpCode = (*InstIt)->getOpcode();
if( OpCode == Instruction::Call )
CallInstrList.push_back( *InstIt );
else if( OpCode == Instruction::Ret )
RetInstrList.push_back( *InstIt );
}
#endif
} // for all BBs in method
// add interferences for method arguments. Since there are no explict
// defs in method for args, we have to add them manually
addInterferencesForArgs(); // add interference for method args
if( DEBUG_RA)
cout << "Interference graphs calculted!" << endl;
}
//----------------------------------------------------------------------------
// This method will add interferences for incoming arguments to a method.
//----------------------------------------------------------------------------
void PhyRegAlloc::addInterferencesForArgs()
{
// get the InSet of root BB
const LiveVarSet *const InSet = LVI->getInSetOfBB( Meth->front() );
// get the argument list
const Method::ArgumentListType& ArgList = Meth->getArgumentList();
// get an iterator to arg list
Method::ArgumentListType::const_iterator ArgIt = ArgList.begin();
for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument
addInterference( *ArgIt, InSet, false ); // add interferences between
// args and LVars at start
if( DEBUG_RA > 1) {
cout << " - %% adding interference for argument ";
printValue( (const Value *) *ArgIt); cout << endl;
}
}
}
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructons before/after
// a call machine instruction.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB )
{
// assert( (TM.getInstrInfo()).isCall( MInst->getOpCode() ) );
int StackOff = -8; // ****TODO : Change
hash_set<unsigned> PushedRegSet;
// Now find the LR of the return value of the call
// The last *implicit operand* is the return value of a call
// Insert it to to he PushedRegSet since we must not save that register
// and restore it after the call.
// We do this because, we look at the LV set *after* the instruction
// to determine, which LRs must be saved across calls. The return value
// of the call is live in this set - but we must not save/restore it.
const Value *RetVal = MRI.getCallInstRetVal( MInst );
if( RetVal ) {
LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
assert( RetValLR && "No LR for RetValue of call");
PushedRegSet.insert(
MRI.getUnifiedRegNum((RetValLR->getRegClass())->getID(),
RetValLR->getColor() ) );
}
const LiveVarSet *LVSetAft = LVI->getLiveVarSetAfterMInst(MInst, BB);
LiveVarSet::const_iterator LIt = LVSetAft->begin();
// for each live var in live variable set after machine inst
for( ; LIt != LVSetAft->end(); ++LIt) {
// get the live range corresponding to live var
LiveRange *const LR = LRI.getLiveRangeForValue(*LIt );
// LR can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LR ) {
if( LR->hasColor() ) {
unsigned RCID = (LR->getRegClass())->getID();
unsigned Color = LR->getColor();
if ( MRI.isRegVolatile(RCID, Color) ) {
// if the value is in both LV sets (i.e., live before and after
// the call machine instruction)
unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
// if we haven't already pushed that register
unsigned RegType = MRI.getRegType( LR );
// Now get two instructions - to push on stack and pop from stack
// and add them to InstrnsBefore and InstrnsAfter of the
// call instruction
MachineInstr *AdIBef =
MRI.cpReg2MemMI(Reg, MRI.getFramePointer(), StackOff, RegType );
MachineInstr *AdIAft =
MRI.cpMem2RegMI(MRI.getFramePointer(), StackOff, Reg, RegType );
((AddedInstrMap[MInst])->InstrnsBefore).push_front(AdIBef);
((AddedInstrMap[MInst])->InstrnsAfter).push_back(AdIAft);
PushedRegSet.insert( Reg );
StackOff -= 8; // ****TODO: Correct ??????
if(DEBUG_RA) {
cerr << "\nFor callee save call inst:" << *MInst;
cerr << "\n -inserted caller saving instrs:\n\t ";
cerr << *AdIBef << "\n\t" << *AdIAft ;
}
} // if not already pushed
} // if LR has a volatile color
} // if LR has color
} // if there is a LR for Var
} // for each value in the LV set after instruction
}
//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated reisters in the machine code. This code will add register numbers
// to MachineOperands that contain a Value.
//----------------------------------------------------------------------------
void PhyRegAlloc::updateMachineCode()
{
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
// get the iterator for machine instructions
MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
MachineInstr *MInst = *MInstIterator;
// if this machine instr is call, insert caller saving code
if( (TM.getInstrInfo()).isCall( MInst->getOpCode()) )
insertCallerSavingCode(MInst, *BBI );
// If there are instructions to be added, *before* this machine
// instruction, add them now.
if( AddedInstrMap[ MInst ] ) {
deque<MachineInstr *> &IBef = (AddedInstrMap[MInst])->InstrnsBefore;
if( ! IBef.empty() ) {
deque<MachineInstr *>::iterator AdIt;
for( AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt ) {
if( DEBUG_RA)
cerr << " *$* PREPENDed instr " << *AdIt << endl;
MInstIterator = MIVec.insert( MInstIterator, *AdIt );
++MInstIterator;
}
}
}
//for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) {
for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if( Op.getOperandType() == MachineOperand::MO_VirtualRegister ||
Op.getOperandType() == MachineOperand::MO_CCRegister) {
const Value *const Val = Op.getVRegValue();
// delete this condition checking later (must assert if Val is null)
if( !Val) {
if (DEBUG_RA)
cout << "Warning: NULL Value found for operand" << endl;
continue;
}
assert( Val && "Value is NULL");
const LiveRange *const LR = LRI.getLiveRangeForValue(Val);
if ( !LR ) {
// nothing to worry if it's a const or a label
if (DEBUG_RA) {
cout << "*NO LR for operand : " << Op ;
cout << " [reg:" << Op.getAllocatedRegNum() << "]";
cout << " in inst:\t" << *MInst << endl;
}
// if register is not allocated, mark register as invalid
if( Op.getAllocatedRegNum() == -1)
Op.setRegForValue( MRI.getInvalidRegNum());
#if 0
if( ((Val->getType())->isLabelType()) ||
(Val->getValueType() == Value::ConstantVal) )
; // do nothing
// The return address is not explicitly defined within a
// method. So, it is not colored by usual algorithm. In that case
// color it here.
//else if (TM.getInstrInfo().isCall(MInst->getOpCode()))
//Op.setRegForValue( MRI.getCallAddressReg() );
//TM.getInstrInfo().isReturn(MInst->getOpCode())
else if(TM.getInstrInfo().isReturn(MInst->getOpCode()) ) {
if (DEBUG_RA) cout << endl << "RETURN found" << endl;
Op.setRegForValue( MRI.getReturnAddressReg() );
}
if (Val->getValueType() == Value::InstructionVal)
{
if( DEBUG_RA ) {
cout << "!Warning: No LiveRange for: ";
printValue( Val); cout << " Type: " << Val->getValueType();
cout << " RegVal=" << Op.getAllocatedRegNum() << endl;
}
}
#endif
continue;
}
unsigned RCID = (LR->getRegClass())->getID();
Op.setRegForValue( MRI.getUnifiedRegNum(RCID, LR->getColor()) );
int RegNum = MRI.getUnifiedRegNum(RCID, LR->getColor());
}
} // for each operand
// If there are instructions to be added *after* this machine
// instruction, add them now
if( AddedInstrMap[ MInst ] &&
! (AddedInstrMap[ MInst ]->InstrnsAfter).empty() ) {
// if there are delay slots for this instruction, the instructions
// added after it must really go after the delayed instruction(s)
// So, we move the InstrAfter of the current instruction to the
// corresponding delayed instruction
unsigned delay;
if((delay=TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) >0){
move2DelayedInstr(MInst, *(MInstIterator+delay) );
if(DEBUG_RA) cout<< "\nMoved an added instr after the delay slot";
}
else {
// Here we can add the "instructions after" to the current
// instruction since there are no delay slots for this instruction
deque<MachineInstr *> &IAft = (AddedInstrMap[MInst])->InstrnsAfter;
if( ! IAft.empty() ) {
deque<MachineInstr *>::iterator AdIt;
++MInstIterator; // advance to the next instruction
for( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
if(DEBUG_RA)
cerr << " *#* APPENDed instr opcode: " << *AdIt << endl;
MInstIterator = MIVec.insert( MInstIterator, *AdIt );
++MInstIterator;
}
// MInsterator already points to the next instr. Since the
// for loop also increments it, decrement it to point to the
// instruction added last
--MInstIterator;
}
} // if not delay
}
} // for each machine instruction
}
}
//----------------------------------------------------------------------------
//
// If there are delay slots for an instruction, the instructions
// added after it must really go after the delayed instruction(s).
// So, we move the InstrAfter of that instruction to the
// corresponding delayed instruction using the following method.
//----------------------------------------------------------------------------
void PhyRegAlloc:: move2DelayedInstr(const MachineInstr *OrigMI,
const MachineInstr *DelayedMI) {
// "added after" instructions of the original instr
deque<MachineInstr *> &OrigAft = (AddedInstrMap[OrigMI])->InstrnsAfter;
// "added instructions" of the delayed instr
AddedInstrns *DelayAdI = AddedInstrMap[DelayedMI];
if(! DelayAdI ) { // create a new "added after" if necessary
DelayAdI = new AddedInstrns();
AddedInstrMap[DelayedMI] = DelayAdI;
}
// "added after" instructions of the delayed instr
deque<MachineInstr *> &DelayedAft = DelayAdI->InstrnsAfter;
// go thru all the "added after instructions" of the original instruction
// and append them to the "addded after instructions" of the delayed
// instructions
deque<MachineInstr *>::iterator OrigAdIt;
for( OrigAdIt = OrigAft.begin(); OrigAdIt != OrigAft.end() ; ++OrigAdIt ) {
DelayedAft.push_back( *OrigAdIt );
}
// empty the "added after instructions" of the original instruction
OrigAft.clear();
}
//----------------------------------------------------------------------------
// This method prints the code with registers after register allocation is
// complete.
//----------------------------------------------------------------------------
void PhyRegAlloc::printMachineCode()
{
cout << endl << ";************** Method ";
cout << Meth->getName() << " *****************" << endl;
Method::const_iterator BBI = Meth->begin(); // random iterator for BBs
for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order
cout << endl ; printLabel( *BBI); cout << ": ";
// get the iterator for machine instructions
MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec();
MachineCodeForBasicBlock::iterator MInstIterator = MIVec.begin();
// iterate over all the machine instructions in BB
for( ; MInstIterator != MIVec.end(); ++MInstIterator) {
MachineInstr *const MInst = *MInstIterator;
cout << endl << "\t";
cout << TargetInstrDescriptors[MInst->getOpCode()].opCodeString;
//for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) {
for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
if( Op.getOperandType() == MachineOperand::MO_VirtualRegister ||
Op.getOperandType() == MachineOperand::MO_CCRegister /*||
Op.getOperandType() == MachineOperand::MO_PCRelativeDisp*/ ) {
const Value *const Val = Op.getVRegValue () ;
// ****this code is temporary till NULL Values are fixed
if( ! Val ) {
cout << "\t<*NULL*>";
continue;
}
// if a label or a constant
if( (Val->getValueType() == Value::BasicBlockVal) ) {
cout << "\t"; printLabel( Op.getVRegValue () );
}
else {
// else it must be a register value
const int RegNum = Op.getAllocatedRegNum();
cout << "\t" << "%" << MRI.getUnifiedRegName( RegNum );
}
}
else if(Op.getOperandType() == MachineOperand::MO_MachineRegister) {
cout << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum());
}
else
cout << "\t" << Op; // use dump field
}
unsigned NumOfImpRefs = MInst->getNumImplicitRefs();
if( NumOfImpRefs > 0 ) {
cout << "\tImplicit:";
for(unsigned z=0; z < NumOfImpRefs; z++) {
printValue( MInst->getImplicitRef(z) );
cout << "\t";
}
}
} // for all machine instructions
cout << endl;
} // for all BBs
cout << endl;
}
//----------------------------------------------------------------------------
//
//----------------------------------------------------------------------------
void PhyRegAlloc::colorCallRetArgs()
{
CallRetInstrListType &CallRetInstList = LRI.getCallRetInstrList();
CallRetInstrListType::const_iterator It = CallRetInstList.begin();
for( ; It != CallRetInstList.end(); ++It ) {
const MachineInstr *const CRMI = *It;
unsigned OpCode = CRMI->getOpCode();
// get the added instructions for this Call/Ret instruciton
AddedInstrns *AI = AddedInstrMap[ CRMI ];
if ( !AI ) {
AI = new AddedInstrns();
AddedInstrMap[ CRMI ] = AI;
}
if( (TM.getInstrInfo()).isCall( OpCode ) )
MRI.colorCallArgs( CRMI, LRI, AI );
else if ( (TM.getInstrInfo()).isReturn(OpCode) )
MRI.colorRetValue( CRMI, LRI, AI );
else assert( 0 && "Non Call/Ret instrn in CallRetInstrList\n" );
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
void PhyRegAlloc::colorIncomingArgs()
{
const BasicBlock *const FirstBB = Meth->front();
const MachineInstr *FirstMI = *((FirstBB->getMachineInstrVec()).begin());
assert( FirstMI && "No machine instruction in entry BB");
AddedInstrns *AI = AddedInstrMap[ FirstMI ];
if ( !AI ) {
AI = new AddedInstrns();
AddedInstrMap[ FirstMI ] = AI;
}
MRI.colorMethodArgs(Meth, LRI, AI );
}
//----------------------------------------------------------------------------
// Used to generate a label for a basic block
//----------------------------------------------------------------------------
void PhyRegAlloc::printLabel(const Value *const Val)
{
if( Val->hasName() )
cout << Val->getName();
else
cout << "Label" << Val;
}
//----------------------------------------------------------------------------
// This method calls setSugColorUsable method of each live range. This
// will determine whether the suggested color of LR is really usable.
// A suggested color is not usable when the suggested color is volatile
// AND when there are call interferences
//----------------------------------------------------------------------------
void PhyRegAlloc::markUnusableSugColors()
{
if(DEBUG_RA ) cout << "Creating LR lists ..." << endl;
// hash map iterator
LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin();
LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();
for( ; HMI != HMIEnd ; ++HMI ) {
if( (*HMI).first ) {
LiveRange *L = (*HMI).second; // get the LiveRange
if(L) {
if( L->hasSuggestedColor() ) {
int RCID = (L->getRegClass())->getID();
if( MRI.isRegVolatile( RCID, L->getSuggestedColor()) &&
L->isCallInterference() )
L->setSuggestedColorUsable( false );
else
L->setSuggestedColorUsable( true );
}
} // if L->hasSuggestedColor()
}
} // for all LR's in hash map
}
//----------------------------------------------------------------------------
// The entry pont to Register Allocation
//----------------------------------------------------------------------------
void PhyRegAlloc::allocateRegisters()
{
// make sure that we put all register classes into the RegClassList
// before we call constructLiveRanges (now done in the constructor of
// PhyRegAlloc class).
constructLiveRanges(); // create LR info
if( DEBUG_RA )
LRI.printLiveRanges();
createIGNodeListsAndIGs(); // create IGNode list and IGs
buildInterferenceGraphs(); // build IGs in all reg classes
if( DEBUG_RA ) {
// print all LRs in all reg classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIGNodeList();
// print IGs in all register classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIG();
}
LRI.coalesceLRs(); // coalesce all live ranges
if( DEBUG_RA) {
// print all LRs in all reg classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIGNodeList();
// print IGs in all register classes
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->printIG();
}
// mark un-usable suggested color before graph coloring algorithm.
// When this is done, the graph coloring algo will not reserve
// suggested color unnecessarily - they can be used by another LR
markUnusableSugColors();
// color all register classes using the graph coloring algo
for( unsigned int rc=0; rc < NumOfRegClasses ; rc++)
RegClassList[ rc ]->colorAllRegs();
// color incoming args and call args
colorIncomingArgs();
colorCallRetArgs();
updateMachineCode();
if (DEBUG_RA) {
Meth->getMachineCode().dump();
printMachineCode(); // only for DEBUGGING
}
}