llvm-6502/include/llvm/Support/MathExtras.h
Chris Lattner 49e6a9bc94 Doxgenate comments.
Add GreatestCommonDivisor64


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32661 91177308-0d34-0410-b5e6-96231b3b80d8
2006-12-19 01:11:32 +00:00

321 lines
9.8 KiB
C++

//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline unsigned Hi_32(uint64_t Value) {
return static_cast<unsigned>(Value >> 32);
}
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline unsigned Lo_32(uint64_t Value) {
return static_cast<unsigned>(Value);
}
/// is?Type - these functions produce optimal testing for integer data types.
inline bool isInt8 (int64_t Value) {
return static_cast<signed char>(Value) == Value;
}
inline bool isUInt8 (int64_t Value) {
return static_cast<unsigned char>(Value) == Value;
}
inline bool isInt16 (int64_t Value) {
return static_cast<signed short>(Value) == Value;
}
inline bool isUInt16(int64_t Value) {
return static_cast<unsigned short>(Value) == Value;
}
inline bool isInt32 (int64_t Value) {
return static_cast<signed int>(Value) == Value;
}
inline bool isUInt32(int64_t Value) {
return static_cast<unsigned int>(Value) == Value;
}
/// isMask_32 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (32 bit
/// version). Ex. isMask_32(0x0000FFFFU) == true.
inline const bool isMask_32(unsigned Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isMask_64 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (64 bit
/// version).
inline const bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// isShiftedMask_32 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline const bool isShiftedMask_32(unsigned Value) {
return isMask_32((Value - 1) | Value);
}
/// isShiftedMask_64 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (64 bit version.)
inline const bool isShiftedMask_64(uint64_t Value) {
return isMask_64((Value - 1) | Value);
}
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(unsigned Value) {
return Value && !(Value & (Value - 1));
}
/// isPowerOf2_64 - This function returns true if the argument is a power of two
/// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - int64_t(1L)));
}
/// ByteSwap_16 - This function returns a byte-swapped representation of the
/// 16-bit argument, Value.
inline unsigned short ByteSwap_16(unsigned short Value) {
unsigned short Hi = Value << 8;
unsigned short Lo = Value >> 8;
return Hi | Lo;
}
/// ByteSwap_32 - This function returns a byte-swapped representation of the
/// 32-bit argument, Value.
inline unsigned ByteSwap_32(unsigned Value) {
unsigned Byte0 = Value & 0x000000FF;
unsigned Byte1 = Value & 0x0000FF00;
unsigned Byte2 = Value & 0x00FF0000;
unsigned Byte3 = Value & 0xFF000000;
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
}
/// ByteSwap_64 - This function returns a byte-swapped representation of the
/// 64-bit argument, Value.
inline uint64_t ByteSwap_64(uint64_t Value) {
uint64_t Hi = ByteSwap_32(unsigned(Value));
uint64_t Lo = ByteSwap_32(unsigned(Value >> 32));
return (Hi << 32) | Lo;
}
/// CountLeadingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the most significant bit to the first one
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountLeadingZeros_32(unsigned Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clz(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 32;
#endif
Count = __builtin_clz(Value);
#else
if (!Value) return 32;
Count = 0;
// bisecton method for count leading zeros
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
unsigned Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
#endif
return Count;
}
/// CountLeadingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the most significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountLeadingZeros_64(uint64_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clzll(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 64;
#endif
Count = __builtin_clzll(Value);
#else
if (sizeof(long) == sizeof(int64_t)) {
if (!Value) return 64;
Count = 0;
// bisecton method for count leading zeros
for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) {
uint64_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
} else {
// get hi portion
unsigned Hi = Hi_32(Value);
// if some bits in hi portion
if (Hi) {
// leading zeros in hi portion plus all bits in lo portion
Count = CountLeadingZeros_32(Hi);
} else {
// get lo portion
unsigned Lo = Lo_32(Value);
// same as 32 bit value
Count = CountLeadingZeros_32(Lo)+32;
}
}
#endif
return Count;
}
/// CountTrailingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountTrailingZeros_32(unsigned Value) {
return 32 - CountLeadingZeros_32(~Value & (Value - 1));
}
/// CountTrailingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the least significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned CountTrailingZeros_64(uint64_t Value) {
return 64 - CountLeadingZeros_64(~Value & (Value - 1));
}
/// CountPopulation_32 - this function counts the number of set bits in a value.
/// Ex. CountPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
inline unsigned CountPopulation_32(unsigned Value) {
unsigned x, t;
x = Value - ((Value >> 1) & 0x55555555);
t = ((x >> 2) & 0x33333333);
x = (x & 0x33333333) + t;
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
/// CountPopulation_64 - this function counts the number of set bits in a value,
/// (64 bit edition.)
inline unsigned CountPopulation_64(uint64_t Value) {
return CountPopulation_32(unsigned(Value >> 32)) +
CountPopulation_32(unsigned(Value));
}
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(unsigned Value) {
return 31 - CountLeadingZeros_32(Value);
}
/// Log2_64 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return 63 - CountLeadingZeros_64(Value);
}
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(unsigned Value) {
return 32-CountLeadingZeros_32(Value-1);
}
/// Log2_64 - This function returns the ceil log base 2 of the specified value,
/// 64 if the value is zero. (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) {
return 64-CountLeadingZeros_64(Value-1);
}
/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
/// values using Euclid's algorithm.
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
while (B) {
uint64_t T = B;
B = A % B;
A = T;
}
return A;
}
/// BitsToDouble - This function takes a 64-bit integer and returns the bit
/// equivalent double.
inline double BitsToDouble(uint64_t Bits) {
union {
uint64_t L;
double D;
} T;
T.L = Bits;
return T.D;
}
/// BitsToFloat - This function takes a 32-bit integer and returns the bit
/// equivalent float.
inline float BitsToFloat(uint32_t Bits) {
union {
uint32_t I;
float F;
} T;
T.I = Bits;
return T.F;
}
/// DoubleToBits - This function takes a double and returns the bit
/// equivalent 64-bit integer.
inline uint64_t DoubleToBits(double Double) {
union {
uint64_t L;
double D;
} T;
T.D = Double;
return T.L;
}
/// FloatToBits - This function takes a float and returns the bit
/// equivalent 32-bit integer.
inline uint32_t FloatToBits(float Float) {
union {
uint32_t I;
float F;
} T;
T.F = Float;
return T.I;
}
/// Platform-independent wrappers for the C99 isnan() function.
int IsNAN(float f);
int IsNAN(double d);
/// Platform-independent wrappers for the C99 isinf() function.
int IsInf(float f);
int IsInf(double d);
} // End llvm namespace
#endif