llvm-6502/lib/Transforms/Scalar/SampleProfile.cpp
Diego Novillo d0d8d6462a Refactor some code in SampleProfile.cpp
I'm adding new functionality in the sample profiler. This will
require more data to be kept around for each function, so I moved
the structure SampleProfile that we keep for each function into
a separate class.

There are no functional changes in this patch. It simply provides
a new home where to place all the new data that I need to propagate
weights through edges.

There are some other name and minor edits throughout.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195780 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-26 20:37:33 +00:00

493 lines
17 KiB
C++

//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileLoader transformation. This pass
// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
// profile information in the given profile.
//
// This pass generates branch weight annotations on the IR:
//
// - prof: Represents branch weights. This annotation is added to branches
// to indicate the weights of each edge coming out of the branch.
// The weight of each edge is the weight of the target block for
// that edge. The weight of a block B is computed as the maximum
// number of samples found in B.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sample-profile"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
// Command line option to specify the file to read samples from. This is
// mainly used for debugging.
static cl::opt<std::string> SampleProfileFile(
"sample-profile-file", cl::init(""), cl::value_desc("filename"),
cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
namespace {
typedef DenseMap<uint32_t, uint32_t> BodySampleMap;
typedef DenseMap<BasicBlock *, uint32_t> BlockWeightMap;
/// \brief Representation of the runtime profile for a function.
///
/// This data structure contains the runtime profile for a given
/// function. It contains the total number of samples collected
/// in the function and a map of samples collected in every statement.
class SampleFunctionProfile {
public:
SampleFunctionProfile() : TotalSamples(0), TotalHeadSamples(0) {}
bool emitAnnotations(Function &F);
uint32_t getInstWeight(Instruction &I, unsigned FirstLineno,
BodySampleMap &BodySamples);
uint32_t computeBlockWeight(BasicBlock *B, unsigned FirstLineno,
BodySampleMap &BodySamples);
void addTotalSamples(unsigned Num) { TotalSamples += Num; }
void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
void addBodySamples(unsigned LineOffset, unsigned Num) {
BodySamples[LineOffset] += Num;
}
void print(raw_ostream &OS);
protected:
/// \brief Total number of samples collected inside this function.
///
/// Samples are cumulative, they include all the samples collected
/// inside this function and all its inlined callees.
unsigned TotalSamples;
// \brief Total number of samples collected at the head of the function.
unsigned TotalHeadSamples;
/// \brief Map line offsets to collected samples.
///
/// Each entry in this map contains the number of samples
/// collected at the corresponding line offset. All line locations
/// are an offset from the start of the function.
BodySampleMap BodySamples;
/// \brief Map basic blocks to their computed weights.
///
/// The weight of a basic block is defined to be the maximum
/// of all the instruction weights in that block.
BlockWeightMap BlockWeights;
};
/// \brief Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
/// 1. The total number of samples collected in F.
///
/// 2. The samples collected at each line in F. To provide some
/// protection against source code shuffling, line numbers should
/// be relative to the start of the function.
class SampleModuleProfile {
public:
SampleModuleProfile(StringRef F) : Profiles(0), Filename(F) {}
void dump();
void loadText();
void loadNative() { llvm_unreachable("not implemented"); }
void printFunctionProfile(raw_ostream &OS, StringRef FName);
void dumpFunctionProfile(StringRef FName);
SampleFunctionProfile &getProfile(const Function &F) {
return Profiles[F.getName()];
}
protected:
/// \brief Map every function to its associated profile.
///
/// The profile of every function executed at runtime is collected
/// in the structure SampleFunctionProfile. This maps function objects
/// to their corresponding profiles.
StringMap<SampleFunctionProfile> Profiles;
/// \brief Path name to the file holding the profile data.
///
/// The format of this file is defined by each profiler
/// independently. If possible, the profiler should have a text
/// version of the profile format to be used in constructing test
/// cases and debugging.
StringRef Filename;
};
/// \brief Loader class for text-based profiles.
///
/// This class defines a simple interface to read text files containing
/// profiles. It keeps track of line number information and location of
/// the file pointer. Users of this class are responsible for actually
/// parsing the lines returned by the readLine function.
///
/// TODO - This does not really belong here. It is a generic text file
/// reader. It should be moved to the Support library and made more general.
class ExternalProfileTextLoader {
public:
ExternalProfileTextLoader(StringRef F) : Filename(F) {
error_code EC;
EC = MemoryBuffer::getFile(Filename, Buffer);
if (EC)
report_fatal_error("Could not open profile file " + Filename + ": " +
EC.message());
FP = Buffer->getBufferStart();
Lineno = 0;
}
/// \brief Read a line from the mapped file.
StringRef readLine() {
size_t Length = 0;
const char *start = FP;
while (FP != Buffer->getBufferEnd() && *FP != '\n') {
Length++;
FP++;
}
if (FP != Buffer->getBufferEnd())
FP++;
Lineno++;
return StringRef(start, Length);
}
/// \brief Return true, if we've reached EOF.
bool atEOF() const { return FP == Buffer->getBufferEnd(); }
/// \brief Report a parse error message and stop compilation.
void reportParseError(Twine Msg) const {
report_fatal_error(Filename + ":" + Twine(Lineno) + ": " + Msg + "\n");
}
private:
/// \brief Memory buffer holding the text file.
OwningPtr<MemoryBuffer> Buffer;
/// \brief Current position into the memory buffer.
const char *FP;
/// \brief Current line number.
int64_t Lineno;
/// \brief Path name where to the profile file.
StringRef Filename;
};
/// \brief Sample profile pass.
///
/// This pass reads profile data from the file specified by
/// -sample-profile-file and annotates every affected function with the
/// profile information found in that file.
class SampleProfileLoader : public FunctionPass {
public:
// Class identification, replacement for typeinfo
static char ID;
SampleProfileLoader(StringRef Name = SampleProfileFile)
: FunctionPass(ID), Profiler(0), Filename(Name) {
initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
}
virtual bool doInitialization(Module &M);
void dump() { Profiler->dump(); }
virtual const char *getPassName() const { return "Sample profile pass"; }
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
protected:
/// \brief Profile reader object.
OwningPtr<SampleModuleProfile> Profiler;
/// \brief Name of the profile file to load.
StringRef Filename;
};
}
/// \brief Print this function profile on stream \p OS.
///
/// \param OS Stream to emit the output to.
void SampleFunctionProfile::print(raw_ostream &OS) {
OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
<< " sampled lines\n";
for (BodySampleMap::const_iterator SI = BodySamples.begin(),
SE = BodySamples.end();
SI != SE; ++SI)
OS << "\tline offset: " << SI->first
<< ", number of samples: " << SI->second << "\n";
OS << "\n";
}
/// \brief Print the function profile for \p FName on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param FName Name of the function to print.
void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
StringRef FName) {
OS << "Function: " << FName << ":\n";
Profiles[FName].print(OS);
}
/// \brief Dump the function profile for \p FName.
///
/// \param FName Name of the function to print.
void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
printFunctionProfile(dbgs(), FName);
}
/// \brief Dump all the function profiles found.
void SampleModuleProfile::dump() {
for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
E = Profiles.end();
I != E; ++I)
dumpFunctionProfile(I->getKey());
}
/// \brief Load samples from a text file.
///
/// The file is divided in two segments:
///
/// Symbol table (represented with the string "symbol table")
/// Number of symbols in the table
/// symbol 1
/// symbol 2
/// ...
/// symbol N
///
/// Function body profiles
/// function1:total_samples:total_head_samples:number_of_locations
/// location_offset_1: number_of_samples
/// location_offset_2: number_of_samples
/// ...
/// location_offset_N: number_of_samples
///
/// Function names must be mangled in order for the profile loader to
/// match them in the current translation unit.
///
/// Since this is a flat profile, a function that shows up more than
/// once gets all its samples aggregated across all its instances.
/// TODO - flat profiles are too imprecise to provide good optimization
/// opportunities. Convert them to context-sensitive profile.
///
/// This textual representation is useful to generate unit tests and
/// for debugging purposes, but it should not be used to generate
/// profiles for large programs, as the representation is extremely
/// inefficient.
void SampleModuleProfile::loadText() {
ExternalProfileTextLoader Loader(Filename);
// Read the symbol table.
StringRef Line = Loader.readLine();
if (Line != "symbol table")
Loader.reportParseError("Expected 'symbol table', found " + Line);
int NumSymbols;
Line = Loader.readLine();
if (Line.getAsInteger(10, NumSymbols))
Loader.reportParseError("Expected a number, found " + Line);
for (int I = 0; I < NumSymbols; I++)
Profiles[Loader.readLine()] = SampleFunctionProfile();
// Read the profile of each function. Since each function may be
// mentioned more than once, and we are collecting flat profiles,
// accumulate samples as we parse them.
Regex HeadRE("^([^:]+):([0-9]+):([0-9]+):([0-9]+)$");
Regex LineSample("^([0-9]+): ([0-9]+)$");
while (!Loader.atEOF()) {
SmallVector<StringRef, 4> Matches;
Line = Loader.readLine();
if (!HeadRE.match(Line, &Matches))
Loader.reportParseError("Expected 'mangled_name:NUM:NUM:NUM', found " +
Line);
assert(Matches.size() == 5);
StringRef FName = Matches[1];
unsigned NumSamples, NumHeadSamples, NumSampledLines;
Matches[2].getAsInteger(10, NumSamples);
Matches[3].getAsInteger(10, NumHeadSamples);
Matches[4].getAsInteger(10, NumSampledLines);
SampleFunctionProfile &FProfile = Profiles[FName];
FProfile.addTotalSamples(NumSamples);
FProfile.addHeadSamples(NumHeadSamples);
unsigned I;
for (I = 0; I < NumSampledLines && !Loader.atEOF(); I++) {
Line = Loader.readLine();
if (!LineSample.match(Line, &Matches))
Loader.reportParseError("Expected 'NUM: NUM', found " + Line);
assert(Matches.size() == 3);
unsigned LineOffset, NumSamples;
Matches[1].getAsInteger(10, LineOffset);
Matches[2].getAsInteger(10, NumSamples);
FProfile.addBodySamples(LineOffset, NumSamples);
}
if (I < NumSampledLines)
Loader.reportParseError("Unexpected end of file");
}
}
char SampleProfileLoader::ID = 0;
INITIALIZE_PASS(SampleProfileLoader, "sample-profile", "Sample Profile loader",
false, false)
bool SampleProfileLoader::doInitialization(Module &M) {
Profiler.reset(new SampleModuleProfile(Filename));
Profiler->loadText();
return true;
}
FunctionPass *llvm::createSampleProfileLoaderPass() {
return new SampleProfileLoader(SampleProfileFile);
}
FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
return new SampleProfileLoader(Name);
}
/// \brief Get the weight for an instruction.
///
/// The "weight" of an instruction \p Inst is the number of samples
/// collected on that instruction at runtime. To retrieve it, we
/// need to compute the line number of \p Inst relative to the start of its
/// function. We use \p FirstLineno to compute the offset. We then
/// look up the samples collected for \p Inst using \p BodySamples.
///
/// \param Inst Instruction to query.
/// \param FirstLineno Line number of the first instruction in the function.
/// \param BodySamples Map of relative source line locations to samples.
///
/// \returns The profiled weight of I.
uint32_t SampleFunctionProfile::getInstWeight(Instruction &Inst,
unsigned FirstLineno,
BodySampleMap &BodySamples) {
unsigned LOffset = Inst.getDebugLoc().getLine() - FirstLineno + 1;
return BodySamples.lookup(LOffset);
}
/// \brief Compute the weight of a basic block.
///
/// The weight of basic block \p B is the maximum weight of all the
/// instructions in B.
///
/// \param B The basic block to query.
/// \param FirstLineno The line number for the first line in the
/// function holding B.
/// \param BodySamples The map containing all the samples collected in that
/// function.
///
/// \returns The computed weight of B.
uint32_t SampleFunctionProfile::computeBlockWeight(BasicBlock *B,
unsigned FirstLineno,
BodySampleMap &BodySamples) {
// If we've computed B's weight before, return it.
std::pair<BlockWeightMap::iterator, bool> Entry =
BlockWeights.insert(std::make_pair(B, 0));
if (!Entry.second)
return Entry.first->second;
// Otherwise, compute and cache B's weight.
uint32_t Weight = 0;
for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
uint32_t InstWeight = getInstWeight(*I, FirstLineno, BodySamples);
if (InstWeight > Weight)
Weight = InstWeight;
}
Entry.first->second = Weight;
return Weight;
}
/// \brief Generate branch weight metadata for all branches in \p F.
///
/// For every branch instruction B in \p F, we compute the weight of the
/// target block for each of the edges out of B. This is the weight
/// that we associate with that branch.
///
/// TODO - This weight assignment will most likely be wrong if the
/// target branch has more than two predecessors. This needs to be done
/// using some form of flow propagation.
///
/// Once all the branch weights are computed, we emit the MD_prof
/// metadata on B using the computed values.
///
/// \param F The function to query.
bool SampleFunctionProfile::emitAnnotations(Function &F) {
bool Changed = false;
unsigned FirstLineno = inst_begin(F)->getDebugLoc().getLine();
MDBuilder MDB(F.getContext());
// Clear the block weights cache.
BlockWeights.clear();
// When we find a branch instruction: For each edge E out of the branch,
// the weight of E is the weight of the target block.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
BasicBlock *B = I;
TerminatorInst *TI = B->getTerminator();
if (TI->getNumSuccessors() == 1)
continue;
if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
continue;
SmallVector<uint32_t, 4> Weights;
unsigned NSuccs = TI->getNumSuccessors();
for (unsigned I = 0; I < NSuccs; ++I) {
BasicBlock *Succ = TI->getSuccessor(I);
uint32_t Weight = computeBlockWeight(Succ, FirstLineno, BodySamples);
Weights.push_back(Weight);
}
TI->setMetadata(llvm::LLVMContext::MD_prof,
MDB.createBranchWeights(Weights));
Changed = true;
}
return Changed;
}
bool SampleProfileLoader::runOnFunction(Function &F) {
return Profiler->getProfile(F).emitAnnotations(F);
}