llvm-6502/lib/Target/MSP430/MSP430InstrInfo.cpp
Eric Christopher 6035518e3b Have MachineFunction cache a pointer to the subtarget to make lookups
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.

Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-05 02:39:49 +00:00

330 lines
10 KiB
C++

//===-- MSP430InstrInfo.cpp - MSP430 Instruction Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the MSP430 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "MSP430InstrInfo.h"
#include "MSP430.h"
#include "MSP430MachineFunctionInfo.h"
#include "MSP430TargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "MSP430GenInstrInfo.inc"
// Pin the vtable to this file.
void MSP430InstrInfo::anchor() {}
MSP430InstrInfo::MSP430InstrInfo(MSP430Subtarget &STI)
: MSP430GenInstrInfo(MSP430::ADJCALLSTACKDOWN, MSP430::ADJCALLSTACKUP),
RI() {}
void MSP430InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
MachineMemOperand::MOStore,
MFI.getObjectSize(FrameIdx),
MFI.getObjectAlignment(FrameIdx));
if (RC == &MSP430::GR16RegClass)
BuildMI(MBB, MI, DL, get(MSP430::MOV16mr))
.addFrameIndex(FrameIdx).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
else if (RC == &MSP430::GR8RegClass)
BuildMI(MBB, MI, DL, get(MSP430::MOV8mr))
.addFrameIndex(FrameIdx).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
else
llvm_unreachable("Cannot store this register to stack slot!");
}
void MSP430InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const{
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
MachineMemOperand::MOLoad,
MFI.getObjectSize(FrameIdx),
MFI.getObjectAlignment(FrameIdx));
if (RC == &MSP430::GR16RegClass)
BuildMI(MBB, MI, DL, get(MSP430::MOV16rm))
.addReg(DestReg).addFrameIndex(FrameIdx).addImm(0).addMemOperand(MMO);
else if (RC == &MSP430::GR8RegClass)
BuildMI(MBB, MI, DL, get(MSP430::MOV8rm))
.addReg(DestReg).addFrameIndex(FrameIdx).addImm(0).addMemOperand(MMO);
else
llvm_unreachable("Cannot store this register to stack slot!");
}
void MSP430InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned Opc;
if (MSP430::GR16RegClass.contains(DestReg, SrcReg))
Opc = MSP430::MOV16rr;
else if (MSP430::GR8RegClass.contains(DestReg, SrcReg))
Opc = MSP430::MOV8rr;
else
llvm_unreachable("Impossible reg-to-reg copy");
BuildMI(MBB, I, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
unsigned MSP430InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != MSP430::JMP &&
I->getOpcode() != MSP430::JCC &&
I->getOpcode() != MSP430::Br &&
I->getOpcode() != MSP430::Bm)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
bool MSP430InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid Xbranch condition!");
MSP430CC::CondCodes CC = static_cast<MSP430CC::CondCodes>(Cond[0].getImm());
switch (CC) {
default: llvm_unreachable("Invalid branch condition!");
case MSP430CC::COND_E:
CC = MSP430CC::COND_NE;
break;
case MSP430CC::COND_NE:
CC = MSP430CC::COND_E;
break;
case MSP430CC::COND_L:
CC = MSP430CC::COND_GE;
break;
case MSP430CC::COND_GE:
CC = MSP430CC::COND_L;
break;
case MSP430CC::COND_HS:
CC = MSP430CC::COND_LO;
break;
case MSP430CC::COND_LO:
CC = MSP430CC::COND_HS;
break;
}
Cond[0].setImm(CC);
return false;
}
bool MSP430InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
if (!MI->isTerminator()) return false;
// Conditional branch is a special case.
if (MI->isBranch() && !MI->isBarrier())
return true;
if (!MI->isPredicable())
return true;
return !isPredicated(MI);
}
bool MSP430InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!I->isBranch())
return true;
// Cannot handle indirect branches.
if (I->getOpcode() == MSP430::Br ||
I->getOpcode() == MSP430::Bm)
return true;
// Handle unconditional branches.
if (I->getOpcode() == MSP430::JMP) {
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (std::next(I) != MBB.end())
std::next(I)->eraseFromParent();
Cond.clear();
FBB = nullptr;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = nullptr;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
assert(I->getOpcode() == MSP430::JCC && "Invalid conditional branch");
MSP430CC::CondCodes BranchCode =
static_cast<MSP430CC::CondCodes>(I->getOperand(1).getImm());
if (BranchCode == MSP430CC::COND_INVALID)
return true; // Can't handle weird stuff.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to
// the same destination.
if (TBB != I->getOperand(0).getMBB())
return true;
MSP430CC::CondCodes OldBranchCode = (MSP430CC::CondCodes)Cond[0].getImm();
// If the conditions are the same, we can leave them alone.
if (OldBranchCode == BranchCode)
continue;
return true;
}
return false;
}
unsigned
MSP430InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"MSP430 branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(MSP430::JMP)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
BuildMI(&MBB, DL, get(MSP430::JCC)).addMBB(TBB).addImm(Cond[0].getImm());
++Count;
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(MSP430::JMP)).addMBB(FBB);
++Count;
}
return Count;
}
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
unsigned MSP430InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const MCInstrDesc &Desc = MI->getDesc();
switch (Desc.TSFlags & MSP430II::SizeMask) {
default:
switch (Desc.getOpcode()) {
default: llvm_unreachable("Unknown instruction size!");
case TargetOpcode::CFI_INSTRUCTION:
case TargetOpcode::EH_LABEL:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::DBG_VALUE:
return 0;
case TargetOpcode::INLINEASM: {
const MachineFunction *MF = MI->getParent()->getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
return TII.getInlineAsmLength(MI->getOperand(0).getSymbolName(),
*MF->getTarget().getMCAsmInfo());
}
}
case MSP430II::SizeSpecial:
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown instruction size!");
case MSP430::SAR8r1c:
case MSP430::SAR16r1c:
return 4;
}
case MSP430II::Size2Bytes:
return 2;
case MSP430II::Size4Bytes:
return 4;
case MSP430II::Size6Bytes:
return 6;
}
}