mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-02 07:11:49 +00:00
5b7c499806
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230259 91177308-0d34-0410-b5e6-96231b3b80d8
626 lines
26 KiB
C++
626 lines
26 KiB
C++
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers LLVM IR exception handling into something closer to what the
|
|
// backend wants. It snifs the personality function to see which kind of
|
|
// preparation is necessary. If the personality function uses the Itanium LSDA,
|
|
// this pass delegates to the DWARF EH preparation pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Analysis/LibCallSemantics.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "winehprepare"
|
|
|
|
namespace {
|
|
|
|
struct HandlerAllocas {
|
|
TinyPtrVector<AllocaInst *> Allocas;
|
|
int ParentFrameAllocationIndex;
|
|
};
|
|
|
|
// This map is used to model frame variable usage during outlining, to
|
|
// construct a structure type to hold the frame variables in a frame
|
|
// allocation block, and to remap the frame variable allocas (including
|
|
// spill locations as needed) to GEPs that get the variable from the
|
|
// frame allocation structure.
|
|
typedef MapVector<AllocaInst *, HandlerAllocas> FrameVarInfoMap;
|
|
|
|
class WinEHPrepare : public FunctionPass {
|
|
std::unique_ptr<FunctionPass> DwarfPrepare;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
WinEHPrepare(const TargetMachine *TM = nullptr)
|
|
: FunctionPass(ID), DwarfPrepare(createDwarfEHPass(TM)) {}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Windows exception handling preparation";
|
|
}
|
|
|
|
private:
|
|
bool prepareCPPEHHandlers(Function &F,
|
|
SmallVectorImpl<LandingPadInst *> &LPads);
|
|
bool outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
|
|
LandingPadInst *LPad, CallInst *&EHAlloc,
|
|
AllocaInst *&EHObjPtr, FrameVarInfoMap &VarInfo);
|
|
};
|
|
|
|
class WinEHFrameVariableMaterializer : public ValueMaterializer {
|
|
public:
|
|
WinEHFrameVariableMaterializer(Function *OutlinedFn,
|
|
FrameVarInfoMap &FrameVarInfo);
|
|
~WinEHFrameVariableMaterializer() {}
|
|
|
|
virtual Value *materializeValueFor(Value *V) override;
|
|
|
|
private:
|
|
FrameVarInfoMap &FrameVarInfo;
|
|
IRBuilder<> Builder;
|
|
};
|
|
|
|
class WinEHCatchDirector : public CloningDirector {
|
|
public:
|
|
WinEHCatchDirector(LandingPadInst *LPI, Function *CatchFn, Value *Selector,
|
|
Value *EHObj, FrameVarInfoMap &VarInfo)
|
|
: LPI(LPI), CurrentSelector(Selector->stripPointerCasts()), EHObj(EHObj),
|
|
Materializer(CatchFn, VarInfo),
|
|
SelectorIDType(Type::getInt32Ty(LPI->getContext())),
|
|
Int8PtrType(Type::getInt8PtrTy(LPI->getContext())) {}
|
|
|
|
CloningAction handleInstruction(ValueToValueMapTy &VMap,
|
|
const Instruction *Inst,
|
|
BasicBlock *NewBB) override;
|
|
|
|
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
|
|
|
|
private:
|
|
LandingPadInst *LPI;
|
|
Value *CurrentSelector;
|
|
Value *EHObj;
|
|
WinEHFrameVariableMaterializer Materializer;
|
|
Type *SelectorIDType;
|
|
Type *Int8PtrType;
|
|
|
|
const Value *ExtractedEHPtr;
|
|
const Value *ExtractedSelector;
|
|
const Value *EHPtrStoreAddr;
|
|
const Value *SelectorStoreAddr;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char WinEHPrepare::ID = 0;
|
|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
|
|
return new WinEHPrepare(TM);
|
|
}
|
|
|
|
static bool isMSVCPersonality(EHPersonality Pers) {
|
|
return Pers == EHPersonality::MSVC_Win64SEH ||
|
|
Pers == EHPersonality::MSVC_CXX;
|
|
}
|
|
|
|
bool WinEHPrepare::runOnFunction(Function &Fn) {
|
|
SmallVector<LandingPadInst *, 4> LPads;
|
|
SmallVector<ResumeInst *, 4> Resumes;
|
|
for (BasicBlock &BB : Fn) {
|
|
if (auto *LP = BB.getLandingPadInst())
|
|
LPads.push_back(LP);
|
|
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
|
|
Resumes.push_back(Resume);
|
|
}
|
|
|
|
// No need to prepare functions that lack landing pads.
|
|
if (LPads.empty())
|
|
return false;
|
|
|
|
// Classify the personality to see what kind of preparation we need.
|
|
EHPersonality Pers = classifyEHPersonality(LPads.back()->getPersonalityFn());
|
|
|
|
// Delegate through to the DWARF pass if this is unrecognized.
|
|
if (!isMSVCPersonality(Pers))
|
|
return DwarfPrepare->runOnFunction(Fn);
|
|
|
|
// FIXME: This only returns true if the C++ EH handlers were outlined.
|
|
// When that code is complete, it should always return whatever
|
|
// prepareCPPEHHandlers returns.
|
|
if (Pers == EHPersonality::MSVC_CXX && prepareCPPEHHandlers(Fn, LPads))
|
|
return true;
|
|
|
|
// FIXME: SEH Cleanups are unimplemented. Replace them with unreachable.
|
|
if (Resumes.empty())
|
|
return false;
|
|
|
|
for (ResumeInst *Resume : Resumes) {
|
|
IRBuilder<>(Resume).CreateUnreachable();
|
|
Resume->eraseFromParent();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WinEHPrepare::doFinalization(Module &M) {
|
|
return DwarfPrepare->doFinalization(M);
|
|
}
|
|
|
|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
DwarfPrepare->getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool WinEHPrepare::prepareCPPEHHandlers(
|
|
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
|
|
// These containers are used to re-map frame variables that are used in
|
|
// outlined catch and cleanup handlers. They will be populated as the
|
|
// handlers are outlined.
|
|
FrameVarInfoMap FrameVarInfo;
|
|
SmallVector<CallInst *, 4> HandlerAllocs;
|
|
SmallVector<AllocaInst *, 4> HandlerEHObjPtrs;
|
|
|
|
bool HandlersOutlined = false;
|
|
|
|
for (LandingPadInst *LPad : LPads) {
|
|
// Look for evidence that this landingpad has already been processed.
|
|
bool LPadHasActionList = false;
|
|
BasicBlock *LPadBB = LPad->getParent();
|
|
for (Instruction &Inst : LPadBB->getInstList()) {
|
|
// FIXME: Make this an intrinsic.
|
|
if (auto *Call = dyn_cast<CallInst>(&Inst))
|
|
if (Call->getCalledFunction()->getName() == "llvm.eh.actions") {
|
|
LPadHasActionList = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we've already outlined the handlers for this landingpad,
|
|
// there's nothing more to do here.
|
|
if (LPadHasActionList)
|
|
continue;
|
|
|
|
for (unsigned Idx = 0, NumClauses = LPad->getNumClauses(); Idx < NumClauses;
|
|
++Idx) {
|
|
if (LPad->isCatch(Idx)) {
|
|
// Create a new instance of the handler data structure in the
|
|
// HandlerData vector.
|
|
CallInst *EHAlloc = nullptr;
|
|
AllocaInst *EHObjPtr = nullptr;
|
|
bool Outlined = outlineCatchHandler(&F, LPad->getClause(Idx), LPad,
|
|
EHAlloc, EHObjPtr, FrameVarInfo);
|
|
if (Outlined) {
|
|
HandlersOutlined = true;
|
|
// These values must be resolved after all handlers have been
|
|
// outlined.
|
|
if (EHAlloc)
|
|
HandlerAllocs.push_back(EHAlloc);
|
|
if (EHObjPtr)
|
|
HandlerEHObjPtrs.push_back(EHObjPtr);
|
|
}
|
|
} // End if (isCatch)
|
|
} // End for each clause
|
|
} // End for each landingpad
|
|
|
|
// If nothing got outlined, there is no more processing to be done.
|
|
if (!HandlersOutlined)
|
|
return false;
|
|
|
|
// FIXME: We will replace the landingpad bodies with llvm.eh.actions
|
|
// calls and indirect branches here and then delete blocks
|
|
// which are no longer reachable. That will get rid of the
|
|
// handlers that we have outlined. There is code below
|
|
// that looks for allocas with no uses in the parent function.
|
|
// That will only happen after the pruning is implemented.
|
|
|
|
// Remap the frame variables.
|
|
SmallVector<Type *, 2> StructTys;
|
|
StructTys.push_back(Type::getInt32Ty(F.getContext())); // EH state
|
|
StructTys.push_back(Type::getInt8PtrTy(F.getContext())); // EH object
|
|
|
|
// Start the index at two since we always have the above fields at 0 and 1.
|
|
int Idx = 2;
|
|
|
|
// FIXME: Sort the FrameVarInfo vector by the ParentAlloca size and alignment
|
|
// and add padding as necessary to provide the proper alignment.
|
|
|
|
// Map the alloca instructions to the corresponding index in the
|
|
// frame allocation structure. If any alloca is used only in a single
|
|
// handler and is not used in the parent frame after outlining, it will
|
|
// be assigned an index of -1, meaning the handler can keep its
|
|
// "temporary" alloca and the original alloca can be erased from the
|
|
// parent function. If we later encounter this alloca in a second
|
|
// handler, we will assign it a place in the frame allocation structure
|
|
// at that time. Since the instruction replacement doesn't happen until
|
|
// all the entries in the HandlerData have been processed this isn't a
|
|
// problem.
|
|
for (auto &VarInfoEntry : FrameVarInfo) {
|
|
AllocaInst *ParentAlloca = VarInfoEntry.first;
|
|
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
|
|
|
|
// If the instruction still has uses in the parent function or if it is
|
|
// referenced by more than one handler, add it to the frame allocation
|
|
// structure.
|
|
if (ParentAlloca->getNumUses() != 0 || AllocaInfo.Allocas.size() > 1) {
|
|
Type *VarTy = ParentAlloca->getAllocatedType();
|
|
StructTys.push_back(VarTy);
|
|
AllocaInfo.ParentFrameAllocationIndex = Idx++;
|
|
} else {
|
|
// If the variable is not used in the parent frame and it is only used
|
|
// in one handler, the alloca can be removed from the parent frame
|
|
// and the handler will keep its "temporary" alloca to define the value.
|
|
// An element index of -1 is used to indicate this condition.
|
|
AllocaInfo.ParentFrameAllocationIndex = -1;
|
|
}
|
|
}
|
|
|
|
// Having filled the StructTys vector and assigned an index to each element,
|
|
// we can now create the structure.
|
|
StructType *EHDataStructTy = StructType::create(
|
|
F.getContext(), StructTys, "struct." + F.getName().str() + ".ehdata");
|
|
IRBuilder<> Builder(F.getParent()->getContext());
|
|
|
|
// Create a frame allocation.
|
|
Module *M = F.getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
|
|
Function *FrameAllocFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::frameallocate);
|
|
uint64_t EHAllocSize = M->getDataLayout()->getTypeAllocSize(EHDataStructTy);
|
|
Value *FrameAllocArgs[] = {
|
|
ConstantInt::get(Type::getInt32Ty(Context), EHAllocSize)};
|
|
CallInst *FrameAlloc =
|
|
Builder.CreateCall(FrameAllocFn, FrameAllocArgs, "frame.alloc");
|
|
|
|
Value *FrameEHData = Builder.CreateBitCast(
|
|
FrameAlloc, EHDataStructTy->getPointerTo(), "eh.data");
|
|
|
|
// Now visit each handler that is using the structure and bitcast its EHAlloc
|
|
// value to be a pointer to the frame alloc structure.
|
|
DenseMap<Function *, Value *> EHDataMap;
|
|
for (CallInst *EHAlloc : HandlerAllocs) {
|
|
// The EHAlloc has no uses at this time, so we need to just insert the
|
|
// cast before the next instruction. There is always a next instruction.
|
|
BasicBlock::iterator II = EHAlloc;
|
|
++II;
|
|
Builder.SetInsertPoint(cast<Instruction>(II));
|
|
Value *EHData = Builder.CreateBitCast(
|
|
EHAlloc, EHDataStructTy->getPointerTo(), "eh.data");
|
|
EHDataMap[EHAlloc->getParent()->getParent()] = EHData;
|
|
}
|
|
|
|
// Next, replace the place-holder EHObjPtr allocas with GEP instructions
|
|
// that pull the EHObjPtr from the frame alloc structure
|
|
for (AllocaInst *EHObjPtr : HandlerEHObjPtrs) {
|
|
Value *EHData = EHDataMap[EHObjPtr->getParent()->getParent()];
|
|
Value *ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, 1);
|
|
EHObjPtr->replaceAllUsesWith(ElementPtr);
|
|
EHObjPtr->removeFromParent();
|
|
ElementPtr->takeName(EHObjPtr);
|
|
delete EHObjPtr;
|
|
}
|
|
|
|
// Finally, replace all of the temporary allocas for frame variables used in
|
|
// the outlined handlers and the original frame allocas with GEP instructions
|
|
// that get the equivalent pointer from the frame allocation struct.
|
|
for (auto &VarInfoEntry : FrameVarInfo) {
|
|
AllocaInst *ParentAlloca = VarInfoEntry.first;
|
|
HandlerAllocas &AllocaInfo = VarInfoEntry.second;
|
|
int Idx = AllocaInfo.ParentFrameAllocationIndex;
|
|
|
|
// If we have an index of -1 for this instruction, it means it isn't used
|
|
// outside of this handler. In that case, we just keep the "temporary"
|
|
// alloca in the handler and erase the original alloca from the parent.
|
|
if (Idx == -1) {
|
|
ParentAlloca->eraseFromParent();
|
|
} else {
|
|
// Otherwise, we replace the parent alloca and all outlined allocas
|
|
// which map to it with GEP instructions.
|
|
|
|
// First replace the original alloca.
|
|
Builder.SetInsertPoint(ParentAlloca);
|
|
Builder.SetCurrentDebugLocation(ParentAlloca->getDebugLoc());
|
|
Value *ElementPtr =
|
|
Builder.CreateConstInBoundsGEP2_32(FrameEHData, 0, Idx);
|
|
ParentAlloca->replaceAllUsesWith(ElementPtr);
|
|
ParentAlloca->removeFromParent();
|
|
ElementPtr->takeName(ParentAlloca);
|
|
delete ParentAlloca;
|
|
|
|
// Next replace all outlined allocas that are mapped to it.
|
|
for (AllocaInst *TempAlloca : AllocaInfo.Allocas) {
|
|
Value *EHData = EHDataMap[TempAlloca->getParent()->getParent()];
|
|
// FIXME: Sink this GEP into the blocks where it is used.
|
|
Builder.SetInsertPoint(TempAlloca);
|
|
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
|
|
ElementPtr = Builder.CreateConstInBoundsGEP2_32(EHData, 0, Idx);
|
|
TempAlloca->replaceAllUsesWith(ElementPtr);
|
|
TempAlloca->removeFromParent();
|
|
ElementPtr->takeName(TempAlloca);
|
|
delete TempAlloca;
|
|
}
|
|
} // end else of if (Idx == -1)
|
|
} // End for each FrameVarInfo entry.
|
|
|
|
return HandlersOutlined;
|
|
}
|
|
|
|
bool WinEHPrepare::outlineCatchHandler(Function *SrcFn, Constant *SelectorType,
|
|
LandingPadInst *LPad, CallInst *&EHAlloc,
|
|
AllocaInst *&EHObjPtr,
|
|
FrameVarInfoMap &VarInfo) {
|
|
Module *M = SrcFn->getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
|
|
// Create a new function to receive the handler contents.
|
|
Type *Int8PtrType = Type::getInt8PtrTy(Context);
|
|
std::vector<Type *> ArgTys;
|
|
ArgTys.push_back(Int8PtrType);
|
|
ArgTys.push_back(Int8PtrType);
|
|
FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
|
|
Function *CatchHandler = Function::Create(
|
|
FnType, GlobalVariable::ExternalLinkage, SrcFn->getName() + ".catch", M);
|
|
|
|
// Generate a standard prolog to setup the frame recovery structure.
|
|
IRBuilder<> Builder(Context);
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "catch.entry");
|
|
CatchHandler->getBasicBlockList().push_front(Entry);
|
|
Builder.SetInsertPoint(Entry);
|
|
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
|
|
|
|
// The outlined handler will be called with the parent's frame pointer as
|
|
// its second argument. To enable the handler to access variables from
|
|
// the parent frame, we use that pointer to get locate a special block
|
|
// of memory that was allocated using llvm.eh.allocateframe for this
|
|
// purpose. During the outlining process we will determine which frame
|
|
// variables are used in handlers and create a structure that maps these
|
|
// variables into the frame allocation block.
|
|
//
|
|
// The frame allocation block also contains an exception state variable
|
|
// used by the runtime and a pointer to the exception object pointer
|
|
// which will be filled in by the runtime for use in the handler.
|
|
Function *RecoverFrameFn =
|
|
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
|
|
Value *RecoverArgs[] = {Builder.CreateBitCast(SrcFn, Int8PtrType, ""),
|
|
&(CatchHandler->getArgumentList().back())};
|
|
EHAlloc = Builder.CreateCall(RecoverFrameFn, RecoverArgs, "eh.alloc");
|
|
|
|
// This alloca is only temporary. We'll be replacing it once we know all the
|
|
// frame variables that need to go in the frame allocation structure.
|
|
EHObjPtr = Builder.CreateAlloca(Int8PtrType, 0, "eh.obj.ptr");
|
|
|
|
// This will give us a raw pointer to the exception object, which
|
|
// corresponds to the formal parameter of the catch statement. If the
|
|
// handler uses this object, we will generate code during the outlining
|
|
// process to cast the pointer to the appropriate type and deference it
|
|
// as necessary. The un-outlined landing pad code represents the
|
|
// exception object as the result of the llvm.eh.begincatch call.
|
|
Value *EHObj = Builder.CreateLoad(EHObjPtr, false, "eh.obj");
|
|
|
|
ValueToValueMapTy VMap;
|
|
|
|
// FIXME: Map other values referenced in the filter handler.
|
|
|
|
WinEHCatchDirector Director(LPad, CatchHandler, SelectorType, EHObj, VarInfo);
|
|
|
|
SmallVector<ReturnInst *, 8> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
|
|
BasicBlock::iterator II = LPad;
|
|
|
|
CloneAndPruneIntoFromInst(CatchHandler, SrcFn, ++II, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, "",
|
|
&InlinedFunctionInfo,
|
|
SrcFn->getParent()->getDataLayout(), &Director);
|
|
|
|
// Move all the instructions in the first cloned block into our entry block.
|
|
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
|
|
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
|
|
FirstClonedBB->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
CloningDirector::CloningAction WinEHCatchDirector::handleInstruction(
|
|
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
|
|
// Intercept instructions which extract values from the landing pad aggregate.
|
|
if (auto *Extract = dyn_cast<ExtractValueInst>(Inst)) {
|
|
if (Extract->getAggregateOperand() == LPI) {
|
|
assert(Extract->getNumIndices() == 1 &&
|
|
"Unexpected operation: extracting both landing pad values");
|
|
assert((*(Extract->idx_begin()) == 0 || *(Extract->idx_begin()) == 1) &&
|
|
"Unexpected operation: extracting an unknown landing pad element");
|
|
|
|
if (*(Extract->idx_begin()) == 0) {
|
|
// Element 0 doesn't directly corresponds to anything in the WinEH
|
|
// scheme.
|
|
// It will be stored to a memory location, then later loaded and finally
|
|
// the loaded value will be used as the argument to an
|
|
// llvm.eh.begincatch
|
|
// call. We're tracking it here so that we can skip the store and load.
|
|
ExtractedEHPtr = Inst;
|
|
} else {
|
|
// Element 1 corresponds to the filter selector. We'll map it to 1 for
|
|
// matching purposes, but it will also probably be stored to memory and
|
|
// reloaded, so we need to track the instuction so that we can map the
|
|
// loaded value too.
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
ExtractedSelector = Inst;
|
|
}
|
|
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
// Other extract value instructions just get cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
|
|
// Look for and suppress stores of the extracted landingpad values.
|
|
const Value *StoredValue = Store->getValueOperand();
|
|
if (StoredValue == ExtractedEHPtr) {
|
|
EHPtrStoreAddr = Store->getPointerOperand();
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (StoredValue == ExtractedSelector) {
|
|
SelectorStoreAddr = Store->getPointerOperand();
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Any other store just gets cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
|
|
// Look for loads of (previously suppressed) landingpad values.
|
|
// The EHPtr load can be ignored (it should only be used as
|
|
// an argument to llvm.eh.begincatch), but the selector value
|
|
// needs to be mapped to a constant value of 1 to be used to
|
|
// simplify the branching to always flow to the current handler.
|
|
const Value *LoadAddr = Load->getPointerOperand();
|
|
if (LoadAddr == EHPtrStoreAddr) {
|
|
VMap[Inst] = UndefValue::get(Int8PtrType);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (LoadAddr == SelectorStoreAddr) {
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Any other loads just get cloned.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>())) {
|
|
// The argument to the call is some form of the first element of the
|
|
// landingpad aggregate value, but that doesn't matter. It isn't used
|
|
// here.
|
|
// The return value of this instruction, however, is used to access the
|
|
// EH object pointer. We have generated an instruction to get that value
|
|
// from the EH alloc block, so we can just map to that here.
|
|
VMap[Inst] = EHObj;
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>())) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
// It might be interesting to track whether or not we are inside a catch
|
|
// function, but that might make the algorithm more brittle than it needs
|
|
// to be.
|
|
|
|
// The end catch call can occur in one of two places: either in a
|
|
// landingpad
|
|
// block that is part of the catch handlers exception mechanism, or at the
|
|
// end of the catch block. If it occurs in a landing pad, we must skip it
|
|
// and continue so that the landing pad gets cloned.
|
|
// FIXME: This case isn't fully supported yet and shouldn't turn up in any
|
|
// of the test cases until it is.
|
|
if (IntrinCall->getParent()->isLandingPad())
|
|
return CloningDirector::SkipInstruction;
|
|
|
|
// If an end catch occurs anywhere else the next instruction should be an
|
|
// unconditional branch instruction that we want to replace with a return
|
|
// to the the address of the branch target.
|
|
const BasicBlock *EndCatchBB = IntrinCall->getParent();
|
|
const TerminatorInst *Terminator = EndCatchBB->getTerminator();
|
|
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
|
|
assert(Branch && Branch->isUnconditional());
|
|
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
|
|
BasicBlock::const_iterator(Branch));
|
|
|
|
ReturnInst::Create(NewBB->getContext(),
|
|
BlockAddress::get(Branch->getSuccessor(0)), NewBB);
|
|
|
|
// We just added a terminator to the cloned block.
|
|
// Tell the caller to stop processing the current basic block so that
|
|
// the branch instruction will be skipped.
|
|
return CloningDirector::StopCloningBB;
|
|
}
|
|
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>())) {
|
|
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
|
|
Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
|
|
// This causes a replacement that will collapse the landing pad CFG based
|
|
// on the filter function we intend to match.
|
|
if (Selector == CurrentSelector)
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
|
|
else
|
|
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
|
|
// Tell the caller not to clone this instruction.
|
|
return CloningDirector::SkipInstruction;
|
|
}
|
|
|
|
// Continue with the default cloning behavior.
|
|
return CloningDirector::CloneInstruction;
|
|
}
|
|
|
|
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
|
|
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
|
|
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
|
|
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
|
|
// FIXME: Do something with the FrameVarMapped so that it is shared across the
|
|
// function.
|
|
}
|
|
|
|
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
|
|
// If we're asked to materialize an alloca variable, we temporarily
|
|
// create a matching alloca in the outlined function. When all the
|
|
// outlining is complete, we'll collect these into a structure and
|
|
// replace these temporary allocas with GEPs referencing the frame
|
|
// allocation block.
|
|
if (auto *AV = dyn_cast<AllocaInst>(V)) {
|
|
AllocaInst *NewAlloca = Builder.CreateAlloca(
|
|
AV->getAllocatedType(), AV->getArraySize(), AV->getName());
|
|
FrameVarInfo[AV].Allocas.push_back(NewAlloca);
|
|
return NewAlloca;
|
|
}
|
|
|
|
// FIXME: Do PHI nodes need special handling?
|
|
|
|
// FIXME: Are there other cases we can handle better? GEP, ExtractValue, etc.
|
|
|
|
// FIXME: This doesn't work during cloning because it finds an instruction
|
|
// in the use list that isn't yet part of a basic block.
|
|
#if 0
|
|
// If we're asked to remap some other instruction, we'll need to
|
|
// spill it to an alloca variable in the parent function and add a
|
|
// temporary alloca in the outlined function to be processed as
|
|
// described above.
|
|
Instruction *Inst = dyn_cast<Instruction>(V);
|
|
if (Inst) {
|
|
AllocaInst *Spill = DemoteRegToStack(*Inst, true);
|
|
AllocaInst *NewAlloca = Builder.CreateAlloca(Spill->getAllocatedType(),
|
|
Spill->getArraySize());
|
|
FrameVarMap[AV] = NewAlloca;
|
|
return NewAlloca;
|
|
}
|
|
#endif
|
|
|
|
return nullptr;
|
|
}
|